
HSI 2009 Catania, Italy, May 21-23, 2009



Abstract  — Low-level network traffic information is often 
times beyond the understanding of common system operators 
(byte  counts,  port  numbers,  packet  data,  etc.).  However, 
anomaly  based  Intrusion  Detection  Systems  (IDS)  often 
provide such low-level, difficult to comprehend information. 
This paper details a Human Interface for Security Awareness 
(HISA) algorithm for interpreting cyber incident information 
to human operators from anomaly based intrusion detections 
systems. A similarity algorithm mapping anomaly results to 
signature  based  intrusion  system  rules  is  developed. 
Categorizations of attacks found in rules created for the Snort 
intrusion  system  were  used  as  a  basis  of  information  to 
present to the user. A proof of concept system was developed 
using Perl native functions and custom modules.  Testing with 
generated  ICMP  packets  resulted  in  an  identification 
accuracy of 60% proving the efficacy of the presented HISA 
algorithm.

Keywords —  site  security  monitoring,  command  and 
control systems.

I. INTRODUCTION

OMPREHENSIVE state awareness of safety and security is 
a  preeminent  concern  for  critical  infrastructures. 

Modern  implementations  of  these  infrastructures  rely 
heavily  on  networked  communication  systems.  Network 
intrusion attacks can lead to high financial costs and the 
endangerment of public safety. Therefore it is imperative 
that control operators receive relevant and comprehensible 
cyber  health information. This paper  provides a solution 
for  presenting  cyber  incident  information  from anomaly 
based  Intrusion  Detection  Systems  (IDS)  to  human 
operators.  The  stored  knowledge  inherent  in  rule  based 
intrusion systems is used to classify newly identified attack 
vectors.  A similarity algorithm mapping novel  to known 
attack classifications is presented. 

C

The increased threat of cyber attacks is well documented 
and  has  been  acknowledged  by  many  governmental, 
commercial  and  academic  entities  world  wide  [1],[2]. 
Computer  based  systems  used  within  many  critical 
infrastructures  to  monitor  and  control  physical  functions 
are not immune to this threat and may potentially be more 
vulnerable than common information technology systems 
[3].  Despite  large  expenditures  of  effort,  systems  will 

 Work supported by the U.S. Department of Energy under DOE Idaho 
Operations Office Contract DE-AC07-05ID14517, performed as part of 
the  Instrumentation,  Control,  and  Intelligent  Systems  Distinctive 
Signature  (ICIS)  of  Idaho  National  Laboratory.  Authors  email: 
denis.vollmer@inl.gov, misko@ieee.org

continue to be penetrated or threatened by human failings. 
These issues provide incentive to develop capabilities that 
enhance operator’s awareness and understanding of system 
security measures. 

There  are  two primary types  of  IDS’s,  signature  and 
anomaly based. The primary purpose of both is to detect 
and possibly react to illicit network intrusion activity. The 
signature  based  systems  provide  monitoring  and  alert 
services based on static rule sets.  Static rule sets perform 
well on known signatures but rely upon human experts to 
recognize  an  issue,  perform  analysis  and  develop  a 
detection rule.  As is shown in virus protection products, 
small variances in behavior  can bypass static rules.  This 
necessitates  constant  and  expensive  updates  by  the 
vendors. 

An  anomaly  IDS  is  based  on  recognizing  deviations 
from  a  learned  model  of  normal  behavior  [4].  A 
representative model is built primarily on historical data. 
The features of future intrusions are not assumed apriori 
and  anomaly  decisions  are  based  on  profiling  current 
activity, in contrast to the stored normal behavior [5]. Such 
a system is capable of detecting previously unknown and 
dynamically  changing  intrusion  instances.  This  is  most 
effective  when  the  intrusions  are  distinctively  different 
from the learned model of acceptable behavior. 

According to [6], IDS implementations primarily make 
use of the previously mentioned static rule configuration. 
Most of these IDS systems are generic in application and 
have  rules  designed  for  more  typical  information 
technology infrastructures. Control systems networks have 
similar  communication  infrastructures,  but  different 
behavior patterns. Research detailed in this paper may help 
drive the control  industry to  make use of  both types  of 
systems  working  cooperatively  together.  These  systems 
used in combination may be robust enough to cover both 
novel and known intrusions.

Even though current IDS systems implement a different 
approach to attack recognition, they have a common base 
in regards to input and intent. In turn, this can provide a 
common basis for notification output. As is shown in this 
paper,  the power of anomaly detection can be combined 
with the inherent knowledge representation of rule based 
systems to provide attack information to an operator. The 
information  is  presented  in  terms  of  similarity  to  well 
defined  attack  classes,  such  as  denial  of  service,  and 
references to known vulnerabilities. 

The rest of the paper is organized as follows. Related 
work  with  intrusion  systems  is  presented  in  section  2. 

Human Interface for Cyber Security Anomaly 
Detection Systems

Denis Todd Vollmer†, Milos Manic ‡, Members, IEEE
†Idaho National Laboratory, ‡University of Idaho



Section  3  gives  a  more  detailed  description  of  the 
problems associated with rule and anomaly based systems. 
Section  4  introduces  the  Human  Interface  for  Security 
Awareness  (HISA)  algorithm.  Section  5  presents  the 
achieved experimental results followed by the conclusion 
given in section 6.

II.RELATED WORK

Rule based IDS’s are being used to provide an important 
layer of security for computer systems and networks. In [7] 
the authors state that an IDS’s responsibility is to detect 
suspicious  or  unacceptable  system and  network  activity 
and to alert a systems administrator to this activity. Their 
intent was to identify a way in which SNORT® could be 
improved by generalizing rules to identify novel  attacks. 
The  conditions  and  parameters  of  a  sample  set  of  rules 
were modified to relax the conditions and parameters. The 
approach was proven using a set of network capture data 
obtained from the Massachusetts Institute of Technology. 
Previously undetected variants of attacks were identified.

False alert reduction is important in rule based systems. 
Because  the  definition  of  a  rule  can  be  general,  it  is 
increasingly likely that false positives will occur given a 
large volume of network traffic. Long et al. made use of 
Snort  alerts  in  XML format  to  form clusters  [8].   The 
clusters  were  formed  using  an  XML  distance  measure. 
This  proved  effective  in  discriminating  between  normal 
sessions that  raised false alerts  and those that  contained 
real attack information.

Many IDS’s  use  rule  based  signature  solutions.  Rule 
formats used by most of these systems are not  standard. 
This leads to duplication of effort making definitions for 
the same attack in multiple expressions. In [9] the author 
proposed and implemented an automated rule conversion 
system.  The  results  showed  that  Snort  rules  can  be 
generalized for use in other systems. Such a system could 
be used by the HISA algorithm to broaden the scope of 
rules.

Anomaly based IDS’s usually report events via one of 
three  different  mechanisms.  The  first  is  simply  if  an 
anomaly event was detected or not [10]. This can be based 
on passing some threshold and may contain a confidence 
factor.   Second,  when  labeled  data  is  available,  a 
supervised network can be trained to distinguish between 
different input vectors [11]. The output then can present 
the appropriate label if it closely matches any of the known 
categories. Third, a new set of rules for identifying attacks 
can  be  created  [12].  These  rules  use  a  derived  set  of 
attributes  from  the  data  sets  that  are  identified  as 
anomalous.  This  requires  analyzing  the  known  attack 
attributes and choosing those that  are  general  enough to 
identify a group of attack types.

III.  PROBLEM DESCRIPTION

This paper focuses on the specific manner in which the 
results  of  anomaly  based  systems  are  presented  to  an 
operator  by making use of  information from a signature 
based  IDS.  Rule  based  systems  can  identify  specific 

intrusions and report human friendly messages. The rules 
themselves  are  created  by  people  allowing  for  the 
opportunity  to  embed  relevant  information  in  the  rule 
definition  such  as  an  attack  category  or  well  known 
vulnerability  reference.  These  rules  are  hence  easy  to 
comprehend  as  they  present  an  abstract  view  of  the 
information that is typically beyond the knowledge of the 
common  control  system  operator  (byte  counts,  IP 
addresses,  port  numbers,  network  protocols  and  packet 
data).

Network traffic that is outside the norm can be identified 
by  anomaly  based  systems.  This  feature  provides  the 
ability to  detect  new attacks.  Systems such as  these can 
report  on  the  peculiarities  that  caused  identification  of 
traffic  determined  to  be  outside  the  norm. They do  not 
have the information or generally the capability to express 
the  attack  alert  in  human terms.  In  contrast,  rule  based 
systems  have  a  built  in  categorization  mechanism.  The 
human  creation  of  rules  provides  the  opportunity  for 
general categorization of attack features. In addition to the 
rules primary purpose as an attack recognition repository, 
they are a valuable source of community knowledge. They 
provide  a  useful  historical  database  of  information  and 
characteristics.  This  database  of  attack  features  can  be 
used for similarity comparisons to help describe previously 
unseen attacks.

Anomaly based  systems can  identify new attacks  and 
alert users to the situation. However, there have been few 
proposed mechanisms for delivering alert information in a 
meaningful  way  to  system  operators.  Specifically,  as 
illustrated  in  section  2,  anomaly  systems  can  report 
whether or not traffic is anomalous or if it closely matches 
a  known signature.  The  signature  match  requires  either 
training  a  system  with  tagged  data  or  generating  rules 
based on known attack characteristics. The later method is 
similar  to  our  proposal.  However  the  HISA  algorithm 
makes  use  of  community  defined  rule  sets,  instead  of 
sample network data, which is unique. 

A. Snort Rule Analysis
Snort is an open source IDS created by Martin Roesch. 

It  is  capable  of  performing  protocol  analysis,  content 
searching/matching  and  many  other  abilities  including 
using  rule  sets.  Several  rule  sets  are  available  for  use 
including  those  officially  approved  by  the  Sourcefire 
Vulnerability Research Team (VRT) and those contributed 
by other communities [13], [14]. Snort supports a simple 
rule  language  that  matches  against  network  packets, 
generating alerts  or log messages. Rules are broken into 
two  logical  sections:  rule  headers  and  rule  options. 
Because of these factors it was chosen as a starting point 
for our algorithm implementation.

Rule  headers  contain  necessary  protocol  fields  that 
every rule  must  have  and  rule  options  contain  a  list  of 
optional information used to refine a match. The rule field 
format and an example rule is as follows:



<action>  <protocol>  <source  IP>  <source  port> 
<direction>  <destination  IP>  <destination  port>  (<rule 
options>)

Alert tcp any any -> 192.168.1.0/24 any (content:”ELHO”)

The rule  action tells  Snort  what to  do  when a match 
occurs. A common action is to log information to an alert 
file.  The  protocol  field  specifies  one  of  four  possible 
values: TCP, UDP, ICMP and IP. Each value has options 
specific  to  the  protocol  available  for  use  in  the  option 
section.  The  source  IP  address  section  can  contain  the 
keyword  any,  a  single  IP  address  or  a  CIDR (Classless 
Inter-Domain  Routing)  block.  CIDR  blocks  allow  for 
specifying ranges of IP  addresses.  Port  numbers may be 
specified as a single static port, a range or use the keyword 
any. 

There are two direction operators. One specifies that the 
source and destination sections of a rule must match the 
appropriate items from a packet. The bidirectional operator 
indicates that the source and destination sections can match 
either  portion of  a  packet.  This  allows for  tracking two 
way conversations (i.e. FTP sessions). 

Rule  options  provide  further  refinement  of  matching 
parameters and tie the rule to a rule identification system. 
There are four major categories of rule options: general, 
payload, non-payload and post-detection. General options 
provide  information  about  the  rule  such  as  reference 
information, rule identification and specific log messages. 
Payload options examine data contained in the packet data 
such  as  content  matching  expressions.  Non-payload 
options  provide  matching  specifications  against  packet 
header  data  outside  of  ports  and  IP  addresses.  Options 
include fragment offsets,  time-to-live values and specific 
IP options.

An important option keyword is classtype. This keyword 
is  used to mark a rule  as  belonging to a  specific  attack 
class. The attack classes are predefined in a configuration 
file. This makes for a consistent description and format for 
the attack information. Although it is an optional field, all 
rules  provided  for  general  consumption  include  a 
classification.  These  classifications  can  be  provided  to 
operators as they convey meaningful information without 
requiring a lot of in-depth technical knowledge about cyber 
incident specifics. The default classifications are show in 
Table  I.  The classtype names are descriptive but  further 
details can be found in [15].

B. Snort Rule Processing Description
Snort  builds  a  tree  structure  used  to  compare  against 

packet  features.  Each mandatory field  in a  Snort  rule  is 
stored  in  a  Rule Tree  Node (RTN).  An OTN (Optional 
Tree Node) is associated with an RTN and used to store 
optional rule fields. If multiple rules have the same RTN 
fields  they are  only represented  by a  single  node.  This 
optimization feature allows for removal of multiple rules 
from consideration once a negative match occurs. This is a 
detrimental aspect to the proposed HISA algorithm and it 

TABLE I: SNORT CLASSIFICATIONS.
Classtype Classtype   
attempted-admin rpc-portmap-decode
attempted-user successful-dos
kickass-porn successful-recon-largescale
policy-violation successful-recon-limited
shellcode-detect suspicious-filename-detect
successful-admin suspicious-login
successful-user system-call-detect
trojan-activity unusual-client-connection
unsuccessful-user web-application-activity
web-application-attack icmp-event
attempted-DOS misc-activity
attempted-recon network-scan
bad-unknown not-suspicious
default-login-attempt protocol-command-decode 
denial-of-service string-detect
misc-attack unknown
non-standard-protocol tcp-connection

is  important  to  recognize  the  impact  on  the  processing 
time. 

The  intrusion  rule  can  be  seen  as  a  Boolean  truth 
statement. In order for Snort to identify a match, a logical 
and of  all  positive  field  matches  is  necessary.  Upon 
discovery of a false condition in the and evaluation, further 
processing of that rule is halted. The set of all rules would 
then be equivalent to a logical or. 

Short  circuit  of  rule  evaluation  prevents  using  a 
modified  Snort  source  as  a  base.  As  the  Snort  engine 
processes a rule section that proves false for a rule that rule 
is  no longer  considered  for  a  possible  match.  This  is  a 
logical  performance  enhancement  that  speeds  the 
execution of the rule  engine.  However this prohibits  the 
intent of the proposed algorithm. 

In  the  HISA  processing,  all  parts  of  a  rule  will  be 
evaluated to see if it matches the packet data regardless of 
a previous rule section match. A value of 1 for each header 
field indicates a match, 0 otherwise. The header values are 
a necessary match condition but are not always a strong 
indicator of similarity. For instance, a TCP packet on port 
80 is a very common packet as this is traditionally where 
the http protocol takes place. However, a large amount of 
attacks of varying types can take place via http. A stronger 
indicator  of  an  attack  type  is  in  the  packet  header  and 
payload  details  (i.e.  Snort  rule  option  fields). 
Consequently,  these  details  are  required  for  a  stronger 
response  upon match.  The  more  detailed  and  specific  a 
rule proves to be a more relevant match indicator it should 
prove to be. 

Three sources for acquiring rules were used. Sourcefire 
VRT  certified  rules  and  community  rules  are  available 
online from the Snort repository [13]. The third set was 
obtained from emerging threats and is available online at 
[15].  All  of  these  sets  combined to  define 16,181  rules 
covering 31 of the 34 class categories. Table II describes 
the protocol and number of related rule sets available in 
these sets. 



TABLE II: SNORT CLASSIFICATIONS.
Protocol (number) Protocol (number) 
TCP (12,325) UDP (890)
IP (2,808) ICMP (158)

IV. HISA ALGORITHM DESCRIPTION

The  goal  of  HISA  is  to  present  information 
characterizing  an  unknown attack  to  a  human user.  An 
approach  utilizing  prior  rule  definitions  to  find  a  close 
match is described. The computational process necessary 
to do so is described next in a pseudo coding style. Each 
major functional area is described in detail in the sections 
following.

Initialization:
find rules and load them into a rule structure.
open network packet file.

Check for matches:
Loop through packets
Decode packet;
Loop through rules

initialize matches to 0;
check for match on IP address;
check for match  on protocol;
switch on protocol type

check matches on protocol specific;
store match information;

end rule loop
end packet loop

Process results:
Loop through packet records
Loop through rule match record

sum match results; 
end rule match loop
identify largest match count rule(s);
end packet loop

The  network  packet  data  is  identified  by  an  outside 
anomaly  detection  routine  and  is  passed  to  the  HISA 
algorithm  for  possible  identification.  The  identification 
process consists of traversing all rule sets looking for those 
rules that match as closely as possible by matching each 
part of a rule.

A.  Initialization
The rules are defined in several different file sets. These 

files  are  opened  and  loaded  into  memory.  The  Snort 
specific rule format is well defined in [16] and is the only 
rule format currently supported. Each rule is parsed into its 
component parts and stored in a record for fast search and 
retrieval. The record itself is a hash or associative array of 
rule part names to textual values. These rule parsing and 
record population routines were implemented using a Perl 
module called Net::Snort::Parse [17]. 

The record matches are stored in the records as text by 
default.  An  additional  field  is  included  to  handle  IP 

addresses which can be stored using CIDR notation. The 
CIDR record field maintains an object reference to handle 
these  types  of  checks.  The  Perl  module  Net::CIDR 
available  on  Cpan  has  functions  for  dealing  with  IP 
address range checks.

Special  handling  of  port  and  IP  sections  is  required. 
Snort  rules  allow for  variables  or  the  keyword  ‘any’  in 
these  sections.  The  variables  can  be  defined  once  with 
specific  values  that  are  replaced  in  the  rules  when 
encountered. When processing rules, these variables need 
to  be  accounted  for,  in  both  destination  and  source,  by 
replacing  them  with  legal  values.  Tables  III  and  IV 
illustrate the mapping from variable name to replacement 
value that is used.

TABLE III: PORT VARIABLE DEFINITIONS.
Variable Definition 
$HTTP_PORTS 80
$SHELLCODE_PORTS !80
$ORACLE_PORTS 1521
$SSH_PORTS 22

TABLE IV: IP VARIABLE DEFINITIONS.
Variable Definition 
any 0.0.0.0/0
$AIM_SERVERS !0.0.0.0/0
$*_NET 0.0.0.0/0

The anomaly data is stored in pcap format which is an 
industry  standard  file  format  for  captured  network 
information. The packet data consists of anomalous packet 
data  only.  The  system  assumes  that  each  packet  is  of 
interest  and attempts to match each packet  to the stored 
rule  information. The  packet  can  be  seen  as  a  feature 
vector v  where each feature v is a unique data point in the 
vector such that ivvv ...0


 . The set S contains all feature 

vectors v  in a collection of network packet data. 

B. Match Check
The match check is a O(n2) portion of the algorithm as is 

shown in (1) where n  is the number of packets and rules 
(n approaches  infinity).  The  match  function  maps  the 
attributes of rule (r) to those of packets (p) . The function 
T(n)  is  a  constant  time  operation  with  a  fixed  set  of 
comparison operations.


 


n

p

n

r
prmatchnT

1 1

),()( (1)

Each packet in the stored file is compared against the 
specifics of each rule definition. A match record stores an 
integer  value  for  each  match  item defined.  If  a  match 
occurs, a 1 is stored 0 otherwise. This is a simple method 
to  indicate  a  match.  The  value  is  stored  as  an  integer 
despite  the  current  storing  of  a  binary  value.  A  future 
improvement may be to weigh specific matches differently 
with a unique value.



The  current  system  matches  on  the  following  items: 
source  IP  address,  source  port,  destination  IP  address, 
destination  port,  protocol,  payload  content,  ICMP  id, 
ICMP  sequence,  ICMP  type,  ICMP  code.  These  are  a 
subset of the possible match fields with a focus on ICMP 
values as is explained in the results section.

C. Process Results
The  match  check  records  are  processed  individually. 

Each  match  item  value  is  summed  and  tracked.  The 
resulting sums are sorted and grouped from largest value to 
smallest. The top matching item is then considered to be 
the closest match. The class type, as previously defined in 
Table 1, and message ID of the winning sum is presented 
as  the  closest  match to  the  user.  When the  largest  sum 
value has multiple rule matches,  a weighted class list  is 
presented.

The weighted  class  list  shows the percentage  of  each 
class that matched. For instance,  if five rules match and 
three of them are of the denial-of-service class and two are 
policy-violation  the  resulting  values  of  0.60  and  0.40 
respectively are presented. The intent is to provide the user 
with high level information about the nature of the attack.

V. EXPERIMENTAL RESULTS

ICMP rules and characteristics were the primary focus 
of the test data set creation to show a proof of concept. 
ICMP packets have fewer options in both packet  details 
and rule match items. In addition, as can be seen in Table 
V, the number and class type representations are reduced. 
This simplification could have had a negative impact on 
the  results.  With  fewer  data  points  to  work  from,  the 
similarity  measure  may  not  have  produced  meaningful 
results.  However  this does  not  appear  to  have  been  the 
case as is shown in this section.

TABLE V: ICMP RULE CLASSIFICATIONS.
ClassType Count (total 145)
denial-of-service 1
misc-activity 103
bad-unknown 3
attempted-recon 11
attempted-user 1
trojan-activity 9
attempted-dos 16
network-scan 1

As  a  base  case,  to  prove  program  correctness,  the 
system was exercised with test packets against all  ICMP 
rules.  These  test  packets  were  crafted  to  cause  specific 
rules  from  different  classes  to  exactly  match  the  rule 
parameters.  It  was surmised that if the system could not 
match  known  vectors  than  it  might  be  fundamentally 
flawed.  The  system  correctly  identified  100%  of  test 
packets with the appropriate static rule definition. 

Nemesis is a network packet crafting and injection tool 
[18]. Implemented as a command line tool, it is well suited 
for  reproducing  test  scenarios.  Nemesis  can  create  and 
inject ARP, DNS, ETHERNET, ICMP, IGMP, IP, OSPF, 

RIP, TCP and UDP packets. It  was used to produce the 
ICMP test  packets.   An example command line used to 
create a packet is shown below.

> nemesis -i 8 -s 0 -d 666 -d lo

 This command will create an ICMP packet with a type 
of 8 sequence number of 0 and ICMP-ID within the header 
of 666. Subsequently the packet will be placed on the lo 
interface of the machine.

The  packets  created  using  the  nemesis  tool  were 
captured and stored as a pcap data file. Five different test 
packets were created to trigger five different Snort rules. 
Each  rule  was chosen for  its  membership  in a  different 
class type. The packet nemesis command line specifics and 
class types are presented in Table VI.

TABLE VI: ICMP PACKET DETAILS.
Packet Details Class Type

-i 0 -s 0 -e 667 attempted-dos
-i 8 -s 0 -e 666 attempted-recon
-i 5 -c 0 bad-unknown
-i 3 -c 2 attempted-user
-i 8 -s 14611 -c 123 misc-activity

The 145 ICMP rules had representation from all three 
sources  mentioned  in  section  3.  After  proving  the 
correctness  via  the  previously mentioned  base  case,  the 
matching rule  definitions  were  removed  from operation. 
The intent was to run the test packets through the system 
without the matching rules. This simulates the availability 
of unknown attack vectors and tests the systems ability to 
identify similarities with known attacks. It also provides a 
known set of results to compare the categorization results 
against. The results are shown in Table VII.

TABLE VII: ICMP RULE CLASSIFICATIONS.
Correct  
ClassType

Identified ClassType % Match

attempted-dos attempted-dos(3) 100%
attempted-recon attempted-recon(4) 

network-scan(1)
80%

bad-unknown bad-unknown(2)
attempted-recon(3)
misc-activity (28)

6%

trojan-activity attempted-user(1) 0%
misc-activity misc-activity(1) 100%

The first column in the table is the class type that the test 
packet originally matched before removal of the associated 
rule. The second column shows the system classification 
output. The class type is followed by the number of rule 
matches  that  had  the  highest  similarity  score.  As  is 
illustrated by the number in parenthesis, it was possible to 
have multiple hits with the same score. In the final column 
a  percentage  value  is  recorded.  This  value  represents  a 
match percentage of the output results. For  example, the 
attempted-dos  test  had  three  results  with the  same class 
type.  All  of  the  class  types  matched  the  correct  value 



resulting in a 100% score.  The attempted-recon test  had 
four correct hits and one miss. This resulted in a score of 
80%.

Overall, if a match score of 80% or greater is considered 
as successful, the system correctly identified three of the 
five (60%) of the test cases. Veracity and detail of rules 
makes a difference.  The quality of the answer is only as 
good as the basis from which it is drawn. In this case, the 
Snort  rule  set  and  matching  algorithm  are  the  basis 
features. It  can be observed that 71% of the ICMP rules 
are  in  the  misc-activity  category.  There  may  be  an 
opportunity  for  refining  these  rules  into  a  more  useful 
category. However even with this limitation the results are 
positive and provide useful information.

VI. CONCLUSION

An algorithm for  presenting  anomaly based  intrusion 
detection  alerts  based  on  similarity  to  static  rules  was 
presented.  Rules  developed  for  the  Snort  IDS  and  their 
default  classifications  were  used.  A similarity algorithm 
was  developed  that  utilized  a  simple  match  summation 
process. This process utilized native Perl functionality and 
custom modules. For each match found in a rule, a positive 
value was noted. The rule(s) with the max sum was used to 
identify  the  attack  class  membership.  This  result  was 
subsequently  presented  to  the  user  as  an  indicator  of 
system cyber security status. An identification rate of 60% 
demonstrated the effectiveness of the proposed algorithm 
on test ICMP data.

REFERENCES

[1] B.  Gellman,  "Cyber-Attacks  by  Al  Qaeda  Feared."  Washington 
Post.  Online:  ,http://www.washingtonpost.com/ac2/wp-
dyn/A50765-2002, Jun26

[2] J. Meserve, “Sources: Staged cyber attack reveals vulnerability in 
power  grid.”   CNN.  Online http://www.cnn.com/2007/US/09/26/ 
power.at.risk/.

[3] C.  Taylor,  P  Oman,  A.  Krings,  “Assessing  Power  Substation 
Network Security and Survivability: A Work in Progress Report”, 
Proceedings  of  the  International  Conference  on  Security  and 
Management (SAM '03), Las Vegas, pp 23-26, 2003

[4] A.  K.  Gosh,  A.  Schwartzbard,  M.  Schatz,  “Learning  Program 
Behavior Profiles for Intrusion Detection”, In Proceedings of the 1st 

USENIX  Workshop  on  Intrusion  Detection  and  Network 
Monitoring, Santa Clara, CA, April 1999, pp. 51-62.

[5] O. Linda, T. Vollmer, M. Manic, “Neural Network Based Intrusion 
Detection For Critical Infrastructures”,  IJCNN09, Int. Joint INNS-
IEEE Conf.  on  Neural  Networks,  Atlanta,  Georgia,  June  14-19, 
2009.

[6] M.  Analoui,  B.  Bidgoli,  M.  Rezvani,  “Hierarchical  Two-Tier 
Ensemble  learning:  A  new  Paradigm  for  Network  Intrusion 
Detection.”

[7] U.  Aickelin,  J.  Twycross  and  T.  Hesketh-Roberts  ‘Rule 
generalisation in intrusion detection systems using SNORT’, Int. J. 
Electronic Security and Digital Forensics, Vol. 1,  No. 1, pp.101–
116, 2007

[8] J. long, D. Schwartz, S. Stoecklin, ‘Distinguishing False from True 
Alerts in Snort by Data Mining Patterns of Alerts’,  SPIE Defense 
and Security Symposium 2006, Orlando, FL, USA, 17 April 2006

[9] S.  T.  Eckmann,  “Translating  Snort  rules  to  STATL scenarios”, 
2001 

[10] S.  Zanero, S. Savaresi,  ‘Unsupervised learning techniques for an 
intrusion detection system’, SAC 04 March 14-17, Nicosia, Cyprus

[11] L. Khan, M. Awad, B Thuraisingham, ‘A new intrusion detection 
system using support vector machines and hierarchical clustering’, 
The VLDB Journal, Vol. 16 pp. 507-521, 2007.

[12] Y. Huang, L. Wenke, ‘A Cooperative Intrusion Detection System 
for Ad Hoc Networks’, in  Proc. 1st ACM workshop on security of  
ad hoc and sensor networks, Fairfax, Virginia, 2003 pp.135-147

[13] M.  Roesch.  Writing  Snort  Rules:  How To write  Snort  rules and 
keep your sanity. http://www.snort.org.

[14] http://www.emergingthreats.net
[15] M. Roesch. Snort – lightweight intrusion detection for networks. In 

Proceedings of USENIX LISA ’99, November 1999
[16] Sourcefire, Inc. Snort Users Manual 2.8.3, September 15, 2008, pp 

102-103
[17] B.  Caswell,  Perl-Net-Snort-Parser  online: 

http://projects.honeynet.org
[18] J. Nathan, Nemisis online: http://nemesis.sourceforge.net


