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Abstract — Swarm robotics is a decentralized control 

architecture, where global behavior emerges as a result of 
local interactions between neighboring robots. The deficiency 
of the swarm behavior model is the stochastic nature of 
movement patterns, which reduces its applicability, when 
precise maneuvering is needed. This paper alleviates this 
problem by introducing fuzzy manual control of a multi-
robot system utilizing the swarm behavior model. The built-
in swarm behavior controls low level tasks such as formation 
keeping and obstacle avoidance. A fuzzy controller works as 
an intelligent mechanism for tuning the manual control 
signal received by the robots. The main advantages of the 
presented algorithm are: 1) deliberating the operator from 
low level maneuvering tasks; 2) single operator control of 
multi-robot group; 3) robustness, flexibility and scalability. 
The presented architecture was implemented and tested in a 
simulation environment. The introduced system can 
significantly improve the performance of search and rescue 
operations as well as exploration of dangerous environments.  
 

Keywords — Exploration, Fuzzy Control, Multi-Robot 
System, Search and Rescue, Swarm Robotics. 
 

I. INTRODUCTION 
WARM robotic, first introduced in [1], is an attractive 
and relatively new area of research. It specializes at 

mimicking the behavior patterns observed in social insects 
[2]-[4].  This parallel is used in the field of collective 
robotics [5], [6]. As opposed to the centralized control of 
larger robotic groups, swarm behavior model is based on 
the concept of sensing only local neighborhood and acting 
accordingly [7]. It was shown that collective behavior 
emerges in the system even if no group leadership, 
hierarchical control and global information are present [8]-
[10]. 
 Intelligent and expensive autonomous mobile robots are 
commonly used either for solo operations or working in 
small groups [11]. On the other hand, robotic swarm 
consists of a large number of homogenous autonomous 
relatively incapable or inefficient robots with only local 
sensing and communication capabilities [12]. The main 
advantages of swarm robotics are robustness, flexibility 
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and scalability of the system. 
 The deficiency of the purely decentralized control 
mechanism is the stochastic nature of the movement 
patterns of the robotic swarm [13], [14]. This randomness 
of the emergent global behavior decreases the applicability 
of the robotic swarm in applications, where precise manual 
control is needed. Considerable research has been done in 
combining the behavior based control with classical 
navigation using predefined path or a set of checkpoints 
[15]-[17]. But to the best of our knowledge, an approach 
for combining the swarm behavior with manual control is 
missing. 
 This paper presents an algorithm for a fuzzy manual 
control of multi-robot system with a built-in swarm 
behavior. The behavior model is responsible for low-level 
navigation tasks such as formation keeping and obstacle 
avoidance. The received manual control signal is tuned by 
a fuzzy controller. The controller works as an adaptive 
intelligent mechanism and improves the maneuvering 
performance of the robotic group. The implemented 
system combines the robustness, flexibility and scalability 
of swarm robotics with full control and precise 
maneuvering of classical manual control.  

The proposed system can be applied in areas, where the 
use of a single robot is insufficient. The specific 
applications can be search and rescue operations, 
dangerous environment exploration or surveillance. For 
instance, during a search and rescue operation the robotic 
swarm is deployed in the target environment. The operator 
can navigate the group precisely towards the area of 
interest. The proposed algorithm deliberates the operator 
from low-level navigation tasks such as formation keeping 
and obstacle avoidance. At the same time the swarm is 
covering a large area of the searched environment, thus 
leading to a faster localization of possible victims. 
 The rest of the paper is organized as follows. Section 2 
describes the implemented model of swarm behavior. 
Section 3 introduces the fuzzy manual control algorithm. 
Section 4 presents the experimental results achieved 
during the simulation of the proposed architecture. Final 
conclusions and proposals for further work are given in 
section 5. 

II. SWARM BEHAVIOR MODEL 
The swarm behavior model, implemented in each robot, 

follows the original concept proposed by Reynolds [18]. 
Each robot is capable of local perception of other robots 
and obstacles in its local environment. The behavior of 
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individuals is guided by local repulsion, alignment and 
attraction. Each robot maintains a minimum distance to 
others at all times – the repulsion behavior. If not 
performing repulsion maneuver, robots are attracted by 
others and tend to align with their neighbors – the 
orientation and attraction behavior. 

Circular local sensing zones around each robot were 
adopted from [19]. Zone of repulsion (ZOR) being the 
closest to the robot followed by the zone of orientation 
(ZOO) and the zone of attraction (ZOA). Fig. 1 illustrates 
the local sensing zones. The robot is located in the middle 
of the zones (black dot). The radius of particular local 
sensing zone is denoted by rZOR, rZOO and rZOA  
respectively. First the directional vectors of particular 
behaviors are calculated. Then the behaviors are combined 
into a final vector and the steering angle for modifying the 
directional vector of robot’s movement is computed. 

A. Computation of Directional Vectors  
As described in [19], each robot tries to avoid the 

presence of any other robots in its ZOR by steering away. 
Similarly each robot is attracted by its neighbors in the 
ZOA and attempts to steer towards them. Finally each 
robot tends to align its direction with the average direction 
of its neighbors in its ZOO. Additionally, in order to 
prevent a collision, each robot tries to steer away from the 
nearest obstacle in its ZOR. 

Following the description in [19], if there are NZOR 
robots located in the ZOR of robot i, then the directional 
vector of the repulsion behavior is computed as:  
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Here ip

r  and jp
r  denote the position of robot i and its 

neighbors respectively and Dirv
r  stands for the direction of 

movement of robot i. 
If there are NZOA robots in the ZOA and NZOO robots in 

the ZOO of robot i, then the directional vectors of the 
attraction and orientation behavior are given as: 
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Here jv

r  denotes the direction of movement of robot j. 

In addition, vector Obstv
r

 is computed as the vector 
pointing away from the nearest obstacle located in the 
ZOR of robot i.  

Fig. 2 describes the computation of the directional 
vectors for particular behaviors. 

B. Combining Directional Vectors 
To determine the combined directional vector Cv

r , the 
priority of particular behaviors has to be considered. In the 
presented algorithm the obstacle avoidance is assigned the 
highest priority. Further, as defined in [19], if there are 
robots in the ZOR of particular robot, the repulsion 
behavior inhibits the other behaviors. If there are only 
robots presented in the ZOA and ZOO of the given robot, 
then the final directional vector is obtained as an average 
of the attraction and orientation directional vectors. 

The rules are summarized in the following equation: 
 

 
Fig. 1. Local sensing zones maintained by each robot. 

 
(a)                                        (b) 

 
(c)                                         (d) 

 
Fig. 2. Computation of the repulsion (a), orientation (b), attraction (c) and 
obstacle avoidance (d) behaviors. 
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C. The Steering Angle 
The computed combined directional vector Cv

r  for robot 
i is transformed into a steering angle Sα . Steering angle 
determines the relative change to the vector of movement 

Dirv
r  of robot i. It is computed based on the angular 
difference between vectors Dirv

r  and Cv
r . The sign of the 

steering angle Sα  determines the direction of the update. 
An upper bound on the amplitude of the steering angle 

is determined by the maximum turning rate θ . If the 
amplitude of the computed steering angle Sα  exceeds the 
parameter θ , it is decreased to the value of θ : 
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III. FUZZY MANUAL CONTROL OF ROBOTIC SWARM 
In parallel with computing the swarm behavior model, 
every robot receives a manual control signal. The signal is 
tuned by a fuzzy controller and combined with the output 
of the swarm behavior model. The combined result is 
applied to the robot. 
 The motion control using only the swarm behavior 
model is depicted in Fig. 3a. The robot senses its local 
environment, evaluates the swarm behavior model and 
applies the computed result to the motion control. Fig. 3b 
shows the presented fuzzy manual control architecture. 
The intelligent fuzzy control block was added into the 
system. This block first receives the manual control signal 
from a human-computer interface station. The control 
signal is adjusted by the intelligent fuzzy controller based 
on the evaluation of the local environment. The modified 
signal is combined with the output of the swarm behavior 
model and finally applied to the motion control of the 
robot. 

A. Manual Control Signal 
In the presented algorithm, three degrees of freedom of 

the swarm movement were identified. In particular, the 
operator can control the speed, the direction of movement 
and the radius of the local sensing zones of the robotic 
swarm. The control signal is broadcasted from the 
operator’s interface to all robots. The individual robots do 
not send any information about their position or direction 

back to the operator.  
The control signal contains three commands.  Command 
SpeedΔ  is used to update the speed of the robots. Command 

ZonesΔ  modifies the radius of the local sensing zones. And 
command AngleΔ  contains the relative angular update of 

the current directional vector of the robot. Both SpeedΔ  and 

ZonesΔ  are expressed as percentage difference between the 
actual and the desired value. For instance, after receiving 
the control signal { }3,05.0,02.0 −=Δ−=Δ=Δ AngleZonesSpeed , 
the robots should speed up by 2%, decrease the radius of 
their local sensing by 5% and steer to the right by 3 
degrees. 

The intelligent controller applies the received control 
commands SpeedΔ  and ZonesΔ  directly to the robot. Speed si 
of robot i is updated as: 

 
 ( )Speedtiti ss Δ+=+ 1,1,  (6) 
 
Similarly, the new radii of the local sensing zones 

ZOR
ir , ZOO

ir and ZOA
ir , which are depicted in Fig. 1, are 

computed as: 
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The control command AngleΔ  is first adjusted by the 

fuzzy controller, before the robot’s directional vector Dirv
r  

is updated. The fuzzy controller is described in the 
following section.  

B. The Intelligent Fuzzy Control 
 The decentralized swarm behavior model is responsible 
for a global coherent flocking motion of the robotic group. 
When maneuvering through an environment, individual 
robots might temporarily become incoherent with the 

 
            (a) 
 

               (b) 
 
Fig. 3. Diagram a motion control mechanism using only the swarm
behavior  model (a) and the fuzzy manual control with built-in swarm
behavior (b). 



 

 

swarm movement. For instance, this can happen when 
robots try to avoid a collision with an obstacle.  
 Applying manual control command AngleΔ  to robots, 
which are temporarily misaligned with the rest of the 
swarm, might result in further compromising the integrity 
of the group. Consequently the performance of the manual 
control would be significantly reduced. The fuzzy 
controller tunes the manual control command AngleΔ  in 
order to prevent such a scenario. 

Two main situations posing the most danger on the 
compactness of the swarm were identified as:  

1) Obstacle avoidance 
2) Separation from the swarm 
In the first case, the manual control signal should be 

suppressed so that the robot can successfully avoid the 
collision with the obstacle. Similarly in the second case, 
the manual control signal should be suppressed as well. In 
this way the swarm behavior is emphasized and the robot 
aligns back with the swarm. 

Using the previously computed value of Sα  (5) and the 
received manual command AngleΔ , the final steering angle 

iα  for robot i is computed as follows: 
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Here μ  is used to suppress the manual control 

command. The value of μ  is computed using a fuzzy 
controller [20], [21]. Fuzzy representation of the concept 
distance from an obstacle is shown in Fig. 4a. Fuzzy 
representation for the concept separation from the swarm, 
shown in Fig. 4b, is computed based on the mean distance 
from the 4 nearest neighbors of robot i. If some of the 
nearest neighbors are located outside of the ZOA of robot 
i, then they are assigned the distance ZOA

ir . The value of 
the output fuzzy concept integrity of the swarm is modeled 
as shown in Fig. 4c. 

The output of the fuzzy controller is calculated using the 
triangular membership functions and Zadeh’s max-min 
composition [22]. 

The final steering angle iα  is used to modify the robot’s 
directional vector Dirv

r . 

IV. EXPERIMENTAL RESULTS 
To demonstrate the performance of the presented 

algorithm, a virtual simulation environment was written in 
C++ programming language. Three experiments were 
designed to test different parts of the system. First the 
operator’s ability to maneuver the multi-robot group was 
demonstrated. Then the robustness of the system was 
shown by simulating communication failures between the 
operator and the robots. In the last experiment, the 
performance of the fuzzy controller was evaluated. 

A. Maneuvering the Swarm 
During this test, a group of robots performs an 

exploration task, simulating a search and rescue operation. 
The robots are deployed in an indoor environment 
consisting of open rooms connected by narrow corridors. 
The swarm has to spread out in order to cover as much 
area of the open rooms as possible. However, the group 
has to maintain a tight formation when passing to another 
room through the narrow corridors (possibly pipeline or 
tunnels).  

Fig. 5 shows the recorded trajectories of a multi-robot 
group consisting of 10 robots. The operator maneuvers the 
swarm from the bottom of the environment through the 
narrow zigzag corridor to the upper room. It is 
demonstrated that the operator can control the formation 
and the direction of movement of the group as desired. By 
increasing the radii rZOR, rZOO and rZOA, the robots spread 
out to cover larger areas. By decreasing the radii, the 
robots are forced to come together to negotiate narrow 
passages. This mechanism results in an efficient 
maneuvering, enabling the operator to control the 
movement of the swarm without major collisions with 
obstacles. 

(a) 
 

(b) 
 

(c) 
 

Fig. 4 Fuzzy representation of concepts distance from an obstacle (a),
separation from the swarm (b) and the integrity of the swarm (c). 



 

 

B. Robustness of the System 
Robust communication is one of the biggest issues of 

remote robot control in real world. Loss of communication 
usually leads to losing the control over the robot. 

This experiment was designed to test the robustness of 
the algorithm by simulating coommunication failures 
between the operator and a certain number of robots. 
Robot, which was having a communication failure, was 
receiving no manual control commnad AngleΔ  for update 
of its directional vector. The operator had to perform a 
simple maneuver consisting of navigating a group of 10 
robots between two square-shaped obstacles. In 
consecutive runs, the number of robots having a 
communication failure was increased. Fig. 6 shows the 
recorded trajectories of the robotic swarm. The top picture 
illustrates the desired maneuver. Underneath, from the top 
to the bottom, the number of robots having a 
communication failure was increased from 0, to 5, 8 and 9.  

From Fig. 6 it can be observed that as the number of 
robots having a communication failure is increasing, the 
trajectories are drifting away from the optimal path. 
However, even with 9 out of 10 robots from the whole 
group having a communication failure, the operator still 
has enough control to complete the desired maneuver. This 
is a result of the swarm behavior model that forces the 
robots to align with their neighbors.  

C. Fuzzy Controller Evaluation 
In this experiment, the performance of the fuzzy 

controller was evaluated. Its output was recorded during 
the two hazardous scenarios identified in section III B 
(obstacle avoidance and swarm separation). In the first 
case the robot was purposely separated from the rest of 
swarm. The recorded response of the fuzzy controller is 
plotted in Fig. 7a, along with the mean distance to its 4 

nearest neighbors dN. In the second case the robot was 
intentionally navigated towards an obstacle. The plot of 
the response is shown in Fig. 7b, along with the distance to 
the obstacle dO.  

The first case, as the robot is separated from the rest of 
the swarm (around time 75 and 280), the fuzzy controller 
detects the hazardous situation and temporarily suppresses 
the manual control signal. As the robot returns to the 
swarm (around time 110 and 400), the control is handed 
back to the operator.  

In the second case, it can be observed that as the robot is 
approaching closer to an obstacle (around time 35), the 
manual control signal is again suppressed by the output of 

 
Fig. 6. Trajectories of the swarm performing a simple maneuver. The top
diagram shows the desired maneuver. Bellow, the communication failure
is simulated. 

 
 

Fig. 5. Trajectories of the multi-robot group as it maneuvers through a
narrow corridor between two rooms. The arrow shows the direction of
movement.  



 

 

the fuzzy controller. When the robot avoids the obstacle 
and maneuvers further away (around time 55), the control 
is again handed back to the operator. This prevents the 
operator from endangering the robot as well as posing risk 
to the environment. 

V. CONCLUSION AND FURTHER WORK 
An algorithm for fuzzy manual control of multi-robot 

system with built-in swarm behavior was presented in this 
paper. The swarm behavior model controls the low-level 
navigation tasks such as maintaining formation and 
obstacle avoidance. The fuzzy controller, implemented on 
the top of the existing swarm behavior, adjusts the manual 
control signal to improve the performance of the system. 

Experimental testing demonstrated that the operator 
maintains efficient control for correct maneuvering of the 
swarm. Furthermore, the robustness of the system was 
demonstrated by simulating communication failures for 
individual robots. The operator was able to perform the 
desired maneuver even when 9 out of 10 robots stopped 
receiving the manual control signal. The performance of 
the fuzzy control was shown to correctly recognize 
hazardous situations and adjust the manual control signal 
appropriately. 

Suitable force-feedback haptic devices are currently 
considered for a use with the presented algorithm. Adding 
a tactile augmentation would create a complete system for 
a precise manual navigation of multi-robot group. 
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(a) 

(b) 
Fig. 7.  The output of the fuzzy controller for a robot getting separated
from the swarm (a) and approaching an obstacle (b). 


