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Abstract

In this note, we introduce and study a concept of fuzzy equalization. Fuzzy equalization concerns a process of building
information granules that are semantically and experimentally meaningful. The experimental relevance of a given information
granule (fuzzy set) is directly linked with an encapsulation of a certain experimental evidence conveyed by the respective
probability density function of available data. We establish a detailed equalization algorithm developed for triangular fuzzy
sets. The study elaborates on the role of the fuzzy equalization in system design. c© 2001 Elsevier Science B.V. All rights
reserved.
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1. Introductory remarks

There have been a lot of considerations dealing with
the nature and usage of linguistic labels — fuzzy sets.
The essence of all these discussions revolves around
an origin of fuzzy sets. Where do they come from?
The commonly encountered arguments point out at the
origin of fuzzy sets viewed as the basic entities emerg-
ing in a process of human cognition and inherently
associated with various problem solving activities. As
a follow-up of some psychological �ndings, the num-
ber of fuzzy sets being used to granulate individual
variables is often restricted to 7± 2 terms.
The current state of fuzzy modeling and simulation

hinges on numeric data. First, these data are used to
construct fuzzy models. Subsequently, numeric data
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are used to evaluate and verify the already developed
structures. It is therefore highly justi�able to expect
that all information granules used in system devel-
opment need to be fully legitimized in terms of the
experimental (numeric) data. This observation means
that information granules used throughout the process
should be both semantically meaningful and experi-
mentally meaningful. The aspect of semantics of the
individual fuzzy sets and their collections (families)
has been already thoroughly discussed in the existing
literature, see e.g. [2–4,7,8,10]. It exhibits a number
of facets and concerns fuzzy sets to be complete and
su�ciently disjoint. By subscribing to the data mean-
ingfulness requirements, we become more cognizant
about the important relationships between fuzzy sets
and probability calculus. To rephrase this observa-
tion, one may ask about links between fuzzy sets and
experimental data. Our conjuncture is that the lin-
guistic terms emerge only if there is an experimental
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Fig. 1. Experimental data vis-�a-vis linguistic labels; note that there
is no justi�cation as to the existence and speci�c distribution of
some fuzzy sets (such as A3 and A4).

evidence behind them. Naturally, if there are no perti-
nent experimental data, there is no point of construct-
ing a linguistic label: its existence cannot be justi�ed
in terms of numeric data. Moreover, one cannot ex-
pect this linguistic label to be veri�able in the frame-
work of any fuzzy construct based on some previously
existing experimental evidence. If introduced, such
label accomplishes nothing. It does not encapsulate
any data. Fig. 1 alludes directly to this point by show-
ing several linguistic labels superimposed over a col-
lection of the available experimental data. Observe
that some of the linguistic labels do not deal with any
experimental evidence. The form and distribution does
not bear any relevance.
Let us also make another observation that becomes

quite evident. With the advent of neural networks
and various ideas of neurofuzzy computing [1,5], it
is important to cast the question of the origin of the
linguistic labels in this speci�c conceptual and al-
gorithmic framework. It is usually stated that neural
networks (or being more precise fuzzy neural net-
works) can construct fuzzy sets on their own. Despite
the particular learning techniques being used to train
the network (including the parameters of the under-
lying fuzzy sets), it is also evident that behind any
changes or build-up of the fuzzy sets stand numeric
data. The data show up quite explicitly in the form of
the performance index we minimize. In this way, the
data set a�ects the form of the fuzzy sets. The changes
of the membership functions are also made legitimate
once supported by the existing data. This reinforces
the previous argument being made in the context of
data illustrated in Fig. 1.
The underlying objective of this study is to

develop fuzzy sets de�ned in a certain universe of
discourse in such a way that they are data-justi�able.
Put the problem in a di�erent perspective: when look-
ing at the experimental numeric data we are involved

in their granular (fuzzy) equalization. This equal-
ization is completed in the form of fuzzy sets. By
pursuing this avenue, it becomes apparent that proba-
bility and fuzziness attempt to collaborate rather than
compete [9].
With the reasons outlined later on, in this paper

we con�ne ourselves to triangular fuzzy sets with 1
2

overlap occurring between two successive linguistic
terms. Through the 1

2 overlap realized there, all these
fuzzy sets form a fuzzy partition of the universe of
discourse X. Furthermore (which is dominant in ex-
isting applications), we assume that X is just a subset
of reals (X⊂R).
The material is organized as follows. First, we

formulate the problem in Section 2. The complete
algorithm is included in Section 3. This is followed
by illustrative experimental examples covered in
Section 4.

2. Linguistic data equalization

The concept of granular data equalization originates
from the idea of fuzzy events [6]. Any fuzzy set de-
�ned in some universe of discourse over which given
is also some probability density function (pdf) either
in its continuous or discrete format, comes with some
cumulative probability. This probability is determined
by integrating over the support of the fuzzy set. More
precisely, we obtain

P(A)=
∫
x
A(x)p(x) dx; (1)

where A is the fuzzy set of interest whereas p(x) de-
notes the corresponding pdf de�ned in X.
Usually when discussing fuzzy sets over X we

are concerned with a family of fuzzy sets, say
A= {A1; A2; : : : ; Ac}. To make each Ai meaningful,
we require that

P(A1)=P(A2)= · · · =P(Ac)= 1=c: (2)

The above equalization condition (1) states that each
element of A carries (encapsulates) the same amount
of experimental evidence (see also Fig. 2). It is no-
ticeable that fuzzy sets become more speci�c in the
regions of X where pdf attains local minima. On the
other hand, in the areas of low values of pdf we
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Fig. 2. The idea of linguistic equalization.

need fuzzy sets of broader support to gain su�cient
evidence.
For the continuous pdf, the calculations of P(Ai)

can be carried out following (1). For the discrete data
set X= {x1; x2; : : : ; xN}, this formula is reformulated
as follows:

P(A)=
1
N

∑
k

A(xk):

Several obvious, yet interesting observations can be
made, refer again to Fig. 2:

• for the uniform pdf, the required fuzzy sets of A
are all equal in terms of their energy measure of
fuzziness. This measure is given in the form∫
x
A(x) dx =

1
c
; (3)

• fuzzy sets de�ned over the regions of X with higher
probability values become more speci�c (their mea-
sure of fuzziness gets lower),

• with the increased number of the fuzzy sets in A
their probabilistic evidence diminishes.

The formulation of the problem, as conveyed by (2),
is concise and straightforward. The solution to it may
be quite complicated depending on the form of the
membership functions of the underlying pdfs. Our in-
tent is to treat the linguistic equalization as a basic
vehicle for data preprocessing completed in the realm
of fuzzy sets. Thus, it is justi�able to con�ne to a cer-
tain family of fuzzy sets A so that this helps reduce
the ensuing computational e�ort.

3. The algorithm

The algorithm outlined below realizes the idea of
data equalization through a series of triangular fuzzy
numbers with an 1

2 overlap between successive fuzzy

sets. Moreover, the �rst as well as the last fuzzy set
in A is de�ned by a trapezoidal membership function.
These assumptions as to the family of the fuzzy sets
used here (even though they may look quite restric-
tive) are often encountered in practice. They are also
well justi�ed taking into consideration an algorithmic
substance of the proposed method. The way of equal-
ization is the following:

0. Specify the number of elements of linguistic gran-
ules in A, say “c”.

1. Start from the lower bound of X denoted by xmin.
2. Proceed towards higher values of X computing the
moving value of the integral
∫ a

xmin

A1(x)p(x) dx=
∫ a

xmin

p(x) dx

(this integral describes the characteristic part of the
membership function of A1). Stop once the value of
this integral has reached the value of 12c and record
the corresponding value of the argument. Denote
the value of this argument by “a”.

3. We determine the upper bound (b) of the support of
A1 so that the probability of the fuzzy event implied
by the decreasing part of the membership function
becomes equal to

∫ b

a
A1(x)p(x) dx=

1
2c
: (4)

4. For the triangular fuzzy sets (starting from A2 and
proceeding with A3; A4, etc.) we compute the prob-
ability of the fuzzy event associated with the in-
creasing part of the fuzzy set

�=
∫ b

a
A2(x)p(x) dx: (5)

5. Next, we optimize the decreasing part of the mem-
bership function by determining the upper bound
of support of the fuzzy set such that it satis�es the
condition∫ c

b
A2(x)p(x) dx=

1
c
− � (6)

(for details refer to Fig. 3).
6. Repeat steps 4 and 5 for the successive fuzzy sets
in A.
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Fig. 3. The concept of linguistic equalization — a summary of
pertinent optimization details.

Fig. 4. Realizability condition of fuzzy equalization.

There are several reasons behind the use of the trian-
gular fuzzy numbers:

• Triangular fuzzy sets with the 12 overlap produce an
error-free decoding. This means that once any nu-
meric datum has been transformed (encoded) via
these fuzzy sets giving rise to the corresponding
membership values, such membership grades along
with the corresponding modal values of the linguis-
tic terms help decode the original datumwithout any
error. This feature is commonly utilized when in-
terfacing fuzzy set constructs with a numeric world.
It is worth underlining that any departure from the
1
2 overlap leads to the nonzero decoding error.• These fuzzy sets form a fuzzy partition of X mean-
ing that for each element in X the sum of the mem-
bership values is equal to 1. This helps de�ne the
level of probabilistic support to be associated with
the individual fuzzy set.

The algorithm is straightforward. There is, however,
a certain requirement one has to be aware of to make
the construct (fuzzy sets) meaningful. It arises as an
e�ect of a two-phased development of the individual
fuzzy sets of A (refer to Fig. 4).

As fuzzy set Ai has been already determined, this
predetermines the probability of the positive (increas-
ing) segment of Ai+1. Denote it by �+,

�+ =
∫ mi+1

mi
Ai+1(x)p(x) dx;

what is left to determine the negative (decreasing)
segment of Ai+1. It comes with the probability �−
computed as

�−=
1
c
− �+:

Obviously, if �+ exceeds 1=c then Ai+1 cannot be con-
structed as no positive probability cannot be assigned
to the negative segment of the fuzzy set.
The realizability requirement assuring the co-

herency of the overall design can be formulated as
follows:∫ mi+1

mi
Ai+1(x)p(x) dx¡

1
c

that holds for any linguistic term of A.
One should stress that the algorithm in its current

version is geared toward the granulation of a single
variable. It cannot be extended to a multivariable case
in a straightforward manner. The main reason behind
this lies in the linear ordering of the modal values of
the fuzzy sets where this order is required to carry out
all computing. Nevertheless, the generalization to the
multivariable case could be easily completed by tak-
ing a bottom-up development approach. We simply
consider each variable separately, develop fuzzy sets
therein, and �nally aggregate these fuzzy sets in the
form of the respective fuzzy relations. The combina-
tion operator (Cartesian product) merging the individ-
ual fuzzy sets can be realized by taking any t-norm.
This way of pursuing the development of the fuzzy
constructs emphasizes the design of the basic entities,
namely fuzzy sets rather than focuses on their compos-
ites (fuzzy relations). To make the picture complete,
one should emphasize that the e�ect of an interaction
between fuzzy sets in any multidimensional problem
has not been fully addressed in an explicit manner.
The only vehicle available at this point comes with
the choice of the speci�c t-norm that can help model a
strength of interaction between the contributing fuzzy
sets. The aspect of an experimental veri�cation of this
facet is left open.



W. Pedrycz / Fuzzy Sets and Systems 119 (2001) 329–335 333

4. Experimental examples

The experiments reported in this section deal both
with a continuous pdf as well as experimental data
(resulting in discrete histograms).
The continuous case involves a Gaussian pdf that is

eventually the most commonly used form of the prob-
ability distribution function. This pdf reads as follows:

p(x)=
1

�
√
2�
exp

(
− (x − m)2

2�2

)
:

In the experiment, we assume thatm=3:0 and �=1:0.
The universe of discourse X is taken as a segment of
real numbers spreading from 1 to 6, X= [1; 6]. The
parameters of the optimized triangular membership
functions are given below

1:0000
1:8375
2:5971
3:0097
3:6265
4:2585

In the sequel, the resulting membership functions are
portrayed in Fig. 5. Observe that the boundary fuzzy
sets are far broader (less speci�c) that the rest of the
linguistic terms. This is quite intuitive and is caused
by the long yet quite limited “tails” of the Gaussian
distribution. To compensate for low mass of probabil-
ity in these two regions, we need fuzzy sets of lower
granularity (broader support).
In the second experiment, the discrete probabilities

are provided by experimental data that form a part
of the housing data set available at the UC at Irvine
(UCI Repository of Machine Learning Databases and
Domain Theorem, http:==www.ics.uci.edu). We take
the last variable of the data set that concerns price
of real estate (given in K$). The produced histogram
involves 506 data points and is visualized in Fig. 6.
Note that the histogram is quite distinct from the

standard Gaussian distribution and exhibits a number
of local modal values.
To complete a comprehensive analysis, we carry

out fuzzy equalization for several number of the local
linguistic terms. The results are shown in a tabular
form (Table 1).
In the case of c=4 and 6, the resulting fuzzy sets

are given in Fig. 7.

Fig. 5. Membership functions of the triangular fuzzy sets resulting
from the Gaussian probability function.

Fig. 6. A histogram of real estate price (in thousand of $).

Fig. 7. Membership functions of the triangular fuzzy sets com-
pleting fuzzy equalization for c=4 and 6.
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Table 1
Modal values of the triangular fuzzy sets for di�erent values of “c”

c=3 c=4 c=5 c=6 c=7 c=8

5:00 5:00 5:00 5:00 5:00 5:00
14:45 13:44 12:71 11:92 11:37 10:85
22:18 20:02 18:21 17:15 16:19 15:60
25:24 22:45 21:27 20:23 19:31 18:13

30:44 24:10 22:17 20:92 20:60
32:42 25:27 23:61 21:74

35:28 25:30 24:32
38:70 26:41

40:18

5. Fuzzy equalization in system design

In a nutshell, fuzzy modeling and system design
arising within this setting emerge as a synonym of
perceiving and capturing dependencies between infor-
mation granules (regarded as fuzzy sets or fuzzy re-
lations). Rather than being interested in minute and
quite often irrelevant details, the focal point is to re-
veal dependencies (associations) at the level of some
meaningful and easily comprehensible chunks of in-
formation. Two issues should be stressed as to the
current practices of modeling and design exploiting
information granules:

• very often fuzzy models are built up to very detailed
relationships (dependencies) between information
granules;

• fuzzy models are constructed (and veri�ed after-
wards) based on experimental (and commonly nu-
meric) data.

Surprisingly enough, not too much attention has been
paid to the articulation of the relevance of the infor-
mation granules using which all constructs are devel-
oped. The underlying requirement of viewing all such
granules legitimate (that is supported by experimental
data to the same extent) sounds like a solid model-
ing prerequisite. This is nothing but an alternative for-
mulation of the fuzzy equalization. Subsequently, the
system design becomes apparently a two-phase pro-
cedure consisting of the following phases:

◦ the construction of meaningful linguistic granules
— conceptual tidbits;

◦ the development of the detailed fuzzy model being
dwelled on the already speci�ed linguistic
granules.

Fig. 8. An example of the fuzzy contingency table constructed
for two variables with a number of linguistic granules de�ned for
the individual variables and resulting in the families of fuzzy sets
A and B.

The �rst phase predetermines an overall performance
of the detailed model. With the equalized linguistic
terms, the resulting model gets more balanced. Ob-
viously, the impact of the equalization itself could
vary from case to case and depend on the complexity
of the relationships to be described by the particular
model. The less detailed and sophisticated the ensuing
relationships are, the more crucial the phenomenon of
the linguistic equalization. In a simple scenario of a
fuzzy contingency table (see Fig. 8) this impact be-
comes profoundly visible.
As the linguistic granules are balanced, the entire

table is also equalized meaning that each entry of the
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table contributes to the model to a similar degree. Put
it di�erently: as there is the same level of experimental
(numerical) evidence behind each entry of the table,
the strengths of the associations between any two en-
tities can easily be compared. Note also that the e�ect
of a highly unbalanced model could produce some-
what misleading conclusions. For instance, the level
of association could be high between two information
granules yet these two information granules may not
be strongly supported by the experimental data. As a
consequence, the otherwise high degree of association
is not overly meaningful.

6. Conclusions

We have studied the concept of fuzzy equalization
regarded as a basic vehicle of construction linguistic
labels that are both semantically and experimentally
meaningful. The way of building fuzzy sets underlines
an important synergy between the technology of fuzzy
sets and probability theory. The detailed algorithm is
provided for triangular fuzzy sets. We have also iden-
ti�ed the pertinent realizability conditions. The selec-
tion of this class of membership functions is strongly
supported by the current system design practices.
Finally, the study elaborates on the impact the equal-
ization e�ect has on system design.
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