Chapter 2 Making a Database Model

2.1 The Example

In order to study database design and implementation it is useful to consider an example. In this section you will be introduced to the example that we will use throughout the book. Since the author loves horses, the database will store information about a riding school: Old Lake Farm.

Old Lake Farm is a busy place. They have 10 "school" horses, which are horses owned by the farm and used for giving riding lessons. They also board 35 other horses that belong to individuals who come out to take lessons and ride on their own. In order to keep up with the demand for lessons they have three main trainers: Joan, Melissa and Mary. Owners usually take lessons on their own horse, although they may ride a school horse if their horse is lame. The farm charges more for taking lessons on school horses than if you use your own horse.

Old Lake Farm also serves as a certification center for trainers. The training programs for each level of certification require the trainers to complete several courses. The three main trainers at the farm teach the courses.

The farm wants a database so that it can keep track of its activities. On talking to the barn manager, C.J., we learned that she wanted to be able to track the following types of information:

· Who owned which horses and how could she contact them in an emergency?

· How many lessons were being taught?

· How much work was each trainer doing?

· How heavily were the school horses being worked?

· Who to contact if a rider had an accident?

· Medical information on each horse.

· Certification information on each trainer

· Special needs of horses such as: feed supplements, when to blanket, when to shoe, and when to give worming medicine.

· Restrictions on whom can ride each horse. (There may be a weight limit, or the owner may have a restricted list of who can ride their horse).

· The current status of trainers in their certification course.

With this example in mind, let us make the first step towards designing and implementing a database - constructing a model.

2.2 The Importance of Modeling

A database holds information about a portion of the world. The more accurately the information in the database reflects the situation within that portion of the world, the more useful the database. In order to provide an accurate description, the database must contain all the data that describes the portion of the world we are interested in, and it must describe how that data interacts. In other words, it should describe how one piece of data can affect others, and how groups of data fit together. It is easy to see that we cannot achieve this goal if we do not have a thorough understanding of the piece of the world we are trying to represent.

Constructing a model is a formal method for describing the portion of the world we want to represent in the database. The process of constructing the model is almost more important than the model itself. It is during this process that we question and probe to learn more about the real world situation we are dealing with. The questions raised by the modeling process help us attain the level of understanding necessary to create the model, and eventually the database.

Having constructed a model, it is not very difficult to consider different representations of the model. Thus the process is analogous to the programming process: having constructed a correct algorithm, it is not difficult to program the process in various programming languages.

The Role of Semantics in Modeling

Database models should be semantic models. In other words, they should capture the meaning of the portion of the world we are representing. In order to do this we must examine all the kinds of data to be stored and how they relate to other kinds of data.

When we talk of semantic modeling, we are referring to the fact that our model must capture the meaning of the portion of the world we are describing in the database. The more semantically correct our model is, the more useful the resulting database will be. By incorporating the fundamental meaning of the real world into the database, we decrease the ability for unreasonable results to be deduced from the database.

For example, our database for Old Lake Farm will hold information about people and horses. We know that people are associated with horses and that this information needs to be kept. In order to do this we must consider what it means for a person to be associated with a horse. Here are just a few of the ways in which a person could be connected to a horse.

· A person can own a horse.

· A person may have taken a lesson on a horse.

· A person may teach lessons to a rider on a horse.

· A person may be banned from riding a horse (for example, they may exceed the weight limit for that horse).

· A person may be scheduled to take a lesson on a horse

· A person may like (or dislike) a horse.

We now need to ask two questions. The first of these is what rules govern the taking of riding lessons that could affect these associations? For example, we may not allow a school horse to be used more than twice a day. This would mean that no more than two people could be scheduled to take a lesson on that horse on any given day. Another example, is that a rider cannot be scheduled to take a lesson on a horse from which they are banned. These rules that describe the meaning of the portion of the world we are describing are called integrity rules. To have a meaningful model, we need it to enforce as many integrity rules as possible. Some integrity rules will be enforceable by the design of the model. Those that are not need to be noted as we will have to ensure they are enforced at some point in our database development.

The second question is, which of these associations is meaningful? Well, in their own way, they are all meaningful. So let us ask, which of these associations is meaningful for the database that we wish to create? To answer this we must understand why we want the database in the first place.

The Beginning Questions

Here is a list of basic questions that must be answered before we can proceed with developing a database model:

· Who will use the database?

· What environment will they be using it in?

· What will they use it for?

· How will the information in the database be updated?

Considering our example, you can see that the decision, as to which associations between people and horses are meaningful, will differ as the answers to these questions change. If the database is to be used by the barn manager to keep track of the use of horses, then we are concerned with who is scheduled to take lessons on which horse. If the database is to be used by trainers when setting up lessons then they need who know from which horses a person is banned. They may also want to know which horses a person likes or dislikes.

The environment that the database will be used in refers to the way in which the database will be accessed. Are the users expecting reports to be generated, or do they want immediate response to interactive queries. The barn manager, C.J., may want a nightly listing of how many times each school horse was used. A trainer might want an immediate list of available school horses if the horse that was scheduled to be used became lame. C.J. may want a bill produced for each person who took lessons at the end of each month.

With a complete list of all the ways in which the database will be used, it would be simple to determine whether or not a piece of information is important to the database. It would also help us determine which associations are meaningful. The trouble is that it is next to impossible to construct a complete list! However, the more complete the list is, the better your database model will be. For our example, here is a partial list of uses for the database:

List all lessons scheduled for today for each trainer

List a payment history for a specific person

List courses that are offered this month.

List trainers taking a specific course.

Find out which horses are to be used in lessons this morning.

Print bills for each person at the end of the month.

Find out which horses need medicine today.

Print checks for trainers at the end of each month.

We can probably add to this list of uses if we talk more to the barn manager, C. J.! She knows everything that is going on. With the list we have produced so far, we can see that we need to keep track of people, their payment histories, and which courses trainers are taking. We also need to keep track of horses and any associated needs. We do not need to specifically keep all the information referred to above. For example, we should be able to calculate how much a person owes from knowing what lessons they took and their payment history. When we design a database, we plan to keep track of the minimal information necessary. Information that can be deduced is not stored in the database, but calculated as needed.

Finally, we need to decide how the information in our database is going to be kept current. Although this is not strictly necessary for the completion of a semantic model, it will be essential information when we actually design and implement the database. For this reason, we include this question in the list of basic questions to be asked when starting a database model.

For each type of data that is in the database we need to know from where we will get updated information and how often we will receive it. Returning to our example, we may expect course registration information to be given to us at the start of each course. On the other hand, lessons may be scheduled and cancelled on an on-going basis. This would mean on-line updating of this information.

Knowing this information is important as it helps us see which data need to be updated quickly, and which can be updated in the background. This will help us design our database so these changes can be made in an appropriate manner.

2.3 Basic Semantic Modeling

Having answered our basic questions, we are ready to start putting our information into the context of a semantic model. In order to do this, we must first identify the types of data that we wish to incorporate into the model.

Entities and Entity Sets

An entity is an item that exists in the real world and is distinguishable from other entities. For example: this book is an entity, you are an entity, your coat is an entity, and so on. These are all items that exist, and what is more, they can be distinguished from other similar items. You could find your coat in a pile of coats, this book in a pile of books, you are distinguishable from the other people around you.

However, entities do not have to be physical. In other words they do not have to be items you can touch. For example, a course is an entity. So is a plane flight. A time slot is another entity. You can not pick up, touch, or kick any of these items, but they do exist and you call tell them apart from each other. Therefore they are entities.

We can group entities together into sets. For example we have the entity set Books, the entity set Coats and the entity set People. Similarly we have the entity sets Courses, Flights and Time Slots. We put entities together into a set if we can describe them all in the same way. For example, books can be described by giving their title, author, year of publication, number of pages, etc. Therefore we group the book entities into a set we call Books.

Most database people are very lax about using the terms entity and entity set. They often use them interchangeably. Thus you will hear someone state that their database contains the entity Plane Flights. Technically they mean that their database stores information about entities that are in the entity set Plane Flights. There is little harm in this as every entity is in an entity set, and using one term instead of another does not lead to confusion.

Answering the basic questions was our first step in creating our semantic model. The second step is to create a list of the entity sets that we will need to model our portion of the real world. It is important to realize that this list will probably change as we proceed with our model. We will probably realize later that some entities have been forgotten, or some are not really entities at all, or that two entities are really one. So be prepared to be flexible when creating the initial list!

In our example, a possible list of entity sets is:

· People

· Horses

· Trainers

At this point it a good idea to look back at the answers to the basic questions. Do those answers suggest that there might be any other entity sets besides those listed? An inspection of our answers suggests that we may want to add the entity set Payments.

Attributes

Now that we have a list of entity sets, the next step is to decide what information we want to store about the entities in each set. For example, the entity set People contains entities that are people. What information could we store about them? Consider the following list:

· Last name

· First name

· Middle name

· Address

· Height

· Weight

· Hair color

· Phone number

· Date of Birth

· Shoe size

· Social Security Number

This is just a portion of the information we could store about a person. Each of these attributes tells us something about an entity. All entities in an entity set will have the same set of attributes. The particular values of the attributes will vary from entity to entity, but all of the entities will have the same descriptive information or attributes.

Obviously some attributes are more meaningful than others. Again we need to go back to the answers we gave to our basic questions. By examining these we can decide which attributes we wish to include in our model for each entity. If we look back at the answers we gave for our riding school, we would probably decide not to bother with hair color or shoe size as these are not relevant to the portion of the world we are trying to model. However we would probably want to include an attribute Level of Experience whose value would tell us how well the person rode.

Domains

When we discussed attributes such as name and shoe size it was easy to imagine the values that these attributes would have. Adding the attribute Level of Experience raises the question, "What values would such an attribute have?" It turns out that this is an important question for all attributes.

The set of values that an attribute is allowed to have is called its domain. This set of values should be very carefully defined. In the case of the attribute Level of Experience, a good domain might be {Beginner, Trots, Canters, Low Jumps, Experienced}. This is an area that many computer people have problems with. Programmers are used to thinking about variables and data types. It is very tempting to think of attributes as variables that are used to describe an entity. While this is fairly reasonable, the problem comes when trying to define a domain for an attribute. This is NOT analogous to defining a data type for a variable

For example, the attribute Last Name does not have the domain String(25). Although we may store the Last Name as a string of maximum length 25 in the computer eventually, this is not an accurate description of the set of values that the attribute may take. The string "XX&*234" is of the correct data type. It is not in the domain of the attribute Last Name.

To define a domain we want to describe the set of legal values for an attribute as specifically as possible. While we may not be able to avoid some illegal values from fitting our description, we want to minimize the occurrence of them. A possible domain definition for the attribute Last Name would be:

A string of up to 25 characters. The first character must be an uppercase alphabet character. All other characters must be either alphabet characters or one of hyphen, apostrophe, space or period.

This definition allows last names such as Jones Jr., Peterson-Smith, and O'Hara. It does not stop someone from entering A'''...O. We could tighten our domain definition to specify that any hyphen, apostrophe, or space could only be followed by an alphabet character. We could further specify that periods could only be followed by spaces. However, this would still not stop someone from entering "A'x'x'x'x. -b" as a last name. And no matter how tight we make our definition, can we eliminate misspellings? We begin to see that the tightening of domains becomes a game of diminishing returns. At some point we have to trust the source of the data.

To repeat, a domain defines the set of legal values for an attribute. In practice we want to define this domain as accurately as possible while still being practical. In other words, we realize that some domains can not be defined precisely. With these domains, we define them to the level of accuracy we want to enforce. In other words, the domain definition tells the database user, what level of accuracy is guaranteed by the database.

Keys

One final, but essential, piece of information is needed about our entity sets. Remember that all entities within a set are distinguishable from each other. We need to be able to tell one entity from another. We cannot afford to confuse one person with another when it comes to billing! Thus we introduce a very important rule:

A combination of attributes that can be used to distinguish entities is called a candidate key. The only rule we have when selecting a candidate key from a set of attributes is that it must always uniquely distinguish an entity. In other words, if we said that the set of attributes {Last Name, First Name, Middle Name} was a candidate key for the entity set People, then we would be guaranteeing that every person in the database would have a unique name. If we do not feel that we can guarantee this then we cannot choose this set of attributes as a candidate key.

Note that the environment in which the database is going to be used, and the purposes for which it is to be used influence the decision about possible candidate keys. For example, consider a small soccer league database. This database is to be used to keep track of which children are on which team, and who is coaching each team. We have about 300 children and about 20 coaches in any one season. The entity sets involved are Coaches, Players, and Teams. The attributes for Coaches are Last Name, First Name, Address, Home Phone, Work Phone, and Experience. A possible candidate key is {Last Name, First Name}. Now, it is possible, although unlikely, that we would have two coaches with the same name (e.g. John Peterson). However we can ensure uniqueness by using nicknames for the attribute First Name as necessary (e.g. Jack Peterson for one of the two). This is feasible in this environment.

Now return to our original example of the Old Lake Farm. Would {Last Name, First Name} be a candidate key for the entity set People in this environment? No. We are now talking about a larger number of people (C.J. hopes it is very large so we are making lots of money!), and we are in an environment where use of nicknames is not appropriate within the database. We are writing bills and checks to people and these can not use nicknames. So what can we use as a candidate key? Probably the best choice is {Social Security Number}.

Some entity sets only have one candidate key while others have several. It is important to identify all candidate keys as they will play an important role in the implementation of our database. Once we know all the candidate keys for an entity set, we can choose one to be the primary key. All the other keys are then referred to as alternate keys. The choice of primary key is arbitrary, although it is useful to pick a primary key that contains as small a number of attributes as possible.

Binary Relationships between Entities

At this point we have decided on our entity sets. We know what attributes are used to describe each entity within the set. We know the legal values (domains) of those attributes. And we know which sets of attributes (keys) can be used to distinguish the entities within each entity set. This gives us a thorough description of the data to be contained in the database. This is one of the two pieces of information we said we needed in order to construct a database mode. The second piece was a description of how the data interacts. For this we need to consider relationships between the entities.

An entity has a relationship with another entity if they are connected with each other in the real world. For example, if a trainer is taking a course at Old Lake Farm, then there is a relationship between that trainer and the particular course. We can call this relationship "is taking.” Since any trainer from the entity set Trainer could have a similar relationship with any course from the entity set Courses, we say that the two entity sets participate in relationship "is taking."

When two entity sets participate in a relationship, that means that entities from the two sets may be associated with each other. For example, since Trainers participates in the relationship "is taking" with Courses, then any given trainer may be taking any given course. This does not preclude having a trainer who is not taking any course. Nor does it preclude having a course that is not being taken by any trainer.

Every relationship formed between entity sets needs to be classified as to its functionality. Mathematically speaking, a relationship is a mapping from one set (say Trainers) to another set (say Courses). This mapping may be classified as 1-1, or 1-many, many-1, or many-many.

A 1-1 relationship means that each entity in each set can be associated with at most one entity in the other set. In this example it would mean that each trainer could only be taking 1 course and that each course could only have 1 trainer taking it. This is not representative of the situation at Old Lake Farm.

A 1-many or many-1 relationship indicates that an entity in one set is associated with exactly one entity in the other, but that many entities in the second set are associated with one entity in the first set. For example, if "is taking" is 1-many, then each trainer may be taking many courses, but each course has only one trainer. If "is taking" is many-1 then each trainer is taking one course, but each course can have many trainers taking it. Since courses are intensive, Old Lake Farm insists that trainers only take one course at a time. Therefore the relationship "is taking" has a functionality of many-1.

A many-many relationship allows each entity in each set to be associated with many entities from the other set. In our example, this would mean that each trainer could be taking many courses, and that each course would have many trainers taking it.

Relationships Involving One Entity Set

There is no reason why the two entity sets participating in a relationship need to be distinct. They could both be the same entity set. For example, a person could be associated to another person by the relationship "is the mother of.” Again, not all people in our entity set People need to participate in this relationship.

Note that we still need to classify the relationship as 1-1, 1-many, many-1 or many-many. The correct functionality for "is the mother of" is 1-many. A person can be the mother of many people, but each person only has 1 mother. An example of a 1-1 relationship might be "is married to." An example of a many-many relationship would be "is related to."

Relationships Involving Three or More Entity Sets

A trickier situation arises when you have three or more entities participating in one relationship. For example, we want to store information about the riding lessons taken at Old Lake Farm. We have the three entity sets Horse, Rider and Trainer. These three sets can participate in the relationship "take lesson with." This relationship associates a horse with the person riding during a lesson and the trainer teaching the lesson. As before we can have horses in the entity set Horse that are not used in any lessons, riders in the entity set Rider that are not taking lessons, and trainers in the entity set Trainers who are not giving lessons.

When a three-way relationship is formed, this carries semantic meaning. This meaning is conveyed by the fact that either all three entity sets participate in the relationship, or none do so. It is not possible for only two entities to participate. In our example, a rider cannot be taking a lesson on a horse unless they are also associated with a trainer. Thus the three-way relationship insists on riders taking lessons with a trainer when they ride. If this is not the meaning that we want to enforce in the database, then we need to choose a different relationship (or relationships). Note that this is the relationship we wish to enforce if we are only interested in recording lesson information. If people riding outside lessons are of no concern to us and we do not wish to record them in the database, then the three-way relationship is ideal.

Assuming that we have the semantics correct so far, let us now consider the functionality of this relationship. Is it 1-1-1, 1-1-many, 1-many-1, 1-many-many, many-1-1, many-1-many, many-many-1 or many-many-many? The chart in figure 2-1 explains the meaning of each of these possibilities. Which is the best for our riding school example? The many-many-many functionality makes the most sense as it allows for flexibility in the use of horses and allows trainers to teach more than one person. Notice that defining functionality is much more difficult for a three-way relationship.

Relationships can associate as many entities as desired. The more entities involved in a relationship, the harder it is to understand the functionality of the relationship. Luckily, it is rare that a database design needs a three-way relationship, and even rarer that a more complex relationship is required. Remember, for an n-way relationship, all n entities must participate in the relationship or none can. If you sometimes want to associate fewer entities, then you need to use simpler relationships.

	Functionality
	Semantics for "take lesson with" Horse-Rider-Trainer

	1-1-1
	Each horse is used by the same rider in lessons with the same trainer. Each rider always rides the same horse with the same trainer. Each trainer always trains the same horse and rider. For example, Amy and only Amy rides Straw (never any other horse). Joan, who never teaches anyone else, always teaches them.

	1-1-many
	Each horse is used by the same rider in lessons, but there may be different trainers for the lessons. Each rider always rides the same horse, but there may be different trainers. Each trainer always trains the same horse and rider. For example, Amy and only Amy rides Straw (never any other horse). They are taught sometimes by Joan and sometimes by Melissa. Joan and Melissa only teach Amy and Straw.

	1-many-1
	Various riders use each horse in lessons, but always with the same trainer. Each rider always rides the same horse and has the same trainer. Each trainer always trains the same horse, but with different riders. For example, Amy rides Straw in her lessons, so does Andrew. They never ride other horses. They are always taught by Joan, who never teaches any student if they are not riding Straw.

	Many-1-1
	Each horse is used by the same rider in lessons with the same trainer. Each rider can ride many different horses, but always with the same trainer. Each trainer only teaches one rider, but on many horses. For example, Amy rides Straw or Ally with Joan. Straw and Ally are only ridden by Amy in lessons with Joan. Joan only teaches Amy.

	1-many-many
	Various riders use each horse in lessons, with various trainers. Each rider always rides the same horse, but is taught by different trainers. Each trainer trains different riders but only works with one horse. For example, Amy and Andrew both take lessons on Straw, sometimes from Joan and sometimes from Melissa. They never ride other horses. Joan and Melissa only give lessons to riders on Straw.

	Many-1-many
	Each horse is used by one rider in lessons from many trainers. Each rider rides different horses in lessons from different trainers. Each trainer teaches one rider but on different horses. For example, Amy rides either Ally or Straw in lessons with either Joan or Melissa. Straw and Ally are only ever ridden by Amy. Joan and Melissa only teach Amy.

	Many-many-1
	Various riders ride each horse in lessons from a specific trainer. Each rider rides many horses in lessons from a specific trainer. Each trainer teaches many riders on many horses. For example, Amy and Andrew may ride Straw or Ally, but they only have lessons from Joan. Straw and Ally are not used in lessons by any other trainer.

	Many-many-many
	Various riders ride each horse in lessons from different trainers. Each rider rides many horses in lessons from different trainers. Each trainer teaches many riders on many horses. For example, Amy and Andrew may ride Ally or Straw and be taught by either Joan or Melissa.

Figure 2-1 Functionality of 3-way relationship

2.4 Further Semantic Modeling

Occasionally we find that an entity set has a stronger association with another entity set than is indicated by the existence of a relationship. Knowing which entity sets participate in which relationships does not give a complete understanding of the semantic meaning involved in the relationships. We may need more information. In this section some of the more common types of relationships are examined.

Weak and Strong Entities

One association that is stronger than a simple relationship is dependence. One entity is existence dependent on another entity, if it can only exist if it participates in a given relationship with that entity. For example, if we say that we are only interested in storing information about a person if they own a horse, the entity set Owner is existence dependent on the entity set Horse. We call Owner a weak entity. Entities that are not weak are called strong entities or regular entities.

Aggregation

Sometimes we would like to group two or more entities together and treat them as a single unit. For example, if our riding school only dealt with riders who owned their own horses, then we could have a 1-many relationship "owns" between the entity sets Owner and Horse. Now if owners only ever take lessons on their own horse(s), then we want to associate a trainer with a given Owner-Horse pair for a lesson. Thus the "owns" relationship defines an aggregate Owner-Horse that can then be associated with a trainer using a relationship "take lesson".

In this situation we can store information about all the owners and the horses they own. Then for each pair of horse and rider, we can record a lesson with a trainer using the relationship "take lesson". Thus information about horses and riders is separate from lessons, but when a trainer gives a lesson both the horse and rider information is included. Note the difference in the semantics between this situation and the 3-way relationship "take lesson with" described earlier. Then the horse and rider information was only stored when connected to a trainer in a lesson.

For our riding school, we may want to use all of the relationships "owns", "take lesson", and "take lesson with". This would allow us to have four entities: owners, riders, horses and trainers. People who owned their own horses would participate in the "owns" relationship, and therefore the "take lesson" relationship based on the aggregate Owner-Horse. People who took lessons on horses owned by the riding school would participate in the 3-way relationship "take lesson with".

Generalization

Notice that we now have three groups of people: owners, riders and trainers. We originally started by saying that we had one entity set called People. Now we seem to have different groups of people. We could consider each group of people as a separate entity set, but some people may then belong to several entity sets. Since some of the information we want to store about people is always the same (such as their name), it is redundant to have a person appear in several similar entity sets.

Let us create three entity sets: Owners, Riders and Trainers. Some of the information we want to store about all of these entities will be the same no matter what entity set they are in. For example, we will want to know the name, address, and phone number of all these people. For owners, we may also want to know an emergency phone number in case of an accident involving their horse. For trainers we would want to know their level and date of certification. For riders we want to know their height and weight so we can place them on the best suited horse.

When we have a situation where we have generic information about several entities and specialized information about each entity set, then we have generalization. Here we can think of having one generalized entity with attributes that apply to all the entity sets involved. Then we can have relationships between this generalized entity and each individual entity set. This ensures that we keep the same basic information about all the entities in a consistent manner.

For our example, we create an entity set People with attributes ID#, Last Name, First Name, Phone Number, and Address. The key for this entity set would be ID#. Then we create entity set Trainer with attributes Date of Certification and Level of Certification. Trainer would participate in a relationship "is a trainer" with People. Similarly, Owner would have the attribute Emergency Phone, and would participate in a relationship "is an owner" with People.

By identifying a generalization we are noting that while several entity sets have a set of common attributes, they each have specialized information about them. Note that we can now store information about people without having them be owners or trainers or riders. In this way our People entity set can contain information about all the people associated with the riding school (including grooms and barn workers). It also means that if a person is both an Owner and a Trainer (for example), the general information about them is only stored once. This makes it easier to ensure that the data about a person remains consistent.

Importance of Classifying Entities and Relationships

It is important to identify weak entities and the entity sets on which they are dependent. (Note that a weak entity may be existence dependent on more than one entity set.) When we implement our database we will need to ensure that a weak entity is only put into the database if it is associated with it's corresponding strong entity.

Similarly it is important to identify aggregates. If a relationship associates an entity with an aggregate then we must make sure that the aggregate exists before recording the relationship information in the database. For example, we cannot record a lesson unless we have an Owner-Horse pair.

With generalizations, we must avoid the situation of having entities in the specialized sets without them occurring in the generalized entity set. For example, we should not enter information about a Rider in the database unless the corresponding information has been entered in the People entity set.

These pieces of information are integrity rules. Integrity rules ensure the correctness of the database. We need to have a complete list of integrity rules so that we can ensure they are enforced when the database is implemented.

2.5 The Entity/Relationship Diagram

In 1976, P.P. Chen (ACM Transactions on Database Systems, Vol.1, No. 1, 1976, pages 9-36) proposed the Entity/Relationship Model. This is a semantic model that has become very popular due to its diagramming technique. Many people relate easily to visual models and the E/R diagram provides a visual model for database design. It allows you to pictorially describe both the data that is to be contained within the database and the relationships between the data. It often makes a good communication tool with non-technical people.

Although easy to describe, the E/R diagram is full of subtleties that reflect the real-world situation you are trying to represent in the database. Care must be taken to consider exactly what you are modeling. Thus one of the main advantages of constructing an E/R diagram is that it gives you a deeper understanding of the database you are designing.

Basic Diagram Techniques

The basics of an E/R diagram are very straightforward. Entity sets are represented by rectangles and relationships between entity sets are shown using diamonds. Looking at Figure 1 you see that we have two entity sets, Owner and Horse. These are connected by a relationship "Owns". In this way we have represented the information that a person can own a horse. Note that not all entities in the set Horse have to participate in the relationship. In other words, we allow there to be horses that are not owned

[image: image1.wmf]Owner

Owns

Horse

Figure 1

The information given in this diagram can be enhanced in two ways. First, we can add information about the attributes of the entity classes. Second we can add information about the functionality of the relationships involved. In Figure 2 we see that the attributes for the entity sets have been added. Also, the relationship "Owns" has been marked as being 1-1. Thus we are showing that each horse has one owner and each owner has one horse. A more realistic functionality might be 1-many. This is shown in Figure 3.

[image: image2.wmf]Owner

Horse

Owns

ID#

Name

Phone

Name

Birth

Year

Figure 1

[image: image3.wmf]Owner

Horse

Owns

ID#

Name

Phone

Name

Birth

Year

Figure 2

In Figure 3, the double arrow leaving the entity set Owner indicates that it goes to many members of the entity set Horse. The single arrow leaving Horse indicates that a horse is associated with exactly one Owner. Unfortunately, there is no default syntax for marking functionality on an E/R diagram. Figure 4 shows alternative techniques for showing functionality, using the same functionality as shown in Figure 3. This book will use the arrows as shown in Figure 3, but when you are looking at E/R diagrams from other sources you should always check the functionality notation.

Attributes of Relationships

Sometimes we have pieces of information we want to store that do not seem to belong to any particular entity. For example, we may want to store the date on which a person purchased a particular horse. We can record this information as an attribute called date of purchase. However, it is not clear where it belongs. If we think of it as an attribute of an owner entity, then we face several problems. A person who is a member of the Owner entity set but has not yet purchased a horse, has no value for this attribute. Worse, a person who owns several horses has several values for this one attribute. Very often we realize we have a problem when we want to record multiple values of an attribute for an entity. In this case it is worthwhile reexamining whether the attribute truly belongs to the entity.

Maybe the attribute should belong to the entity set Horse. In this case every horse would have an associated date of purchase. However, this is not true for horses who have not yet been sold to an owner. So it does not look like the attribute belongs here either.

In reality, a date of purchase only makes sense when an owner purchases a horse. In other words, when we have an association between a horse and an owner then we can describe that association using the attribute date of purchase. Thus the attribute belongs to the relationship "Owns." We can mark this on the E/R diagram by drawing the attribute and connecting it to the relationship with a straight line. We are clear that this is an attribute of the relationship, and not an entity, because it is drawn using an oval. See Figure 5.

Note that in attaching the attribute to the relationship we have ensured the integrity of our database. The attribute date of purchase is associated with a horse and owner pair. If we had allowed the attribute to belong to Horse, for example, then we could have had the inconsistency of having a date of purchase for a horse that had no owner! This fact alone should be enough to convince us that the attribute belongs to the relationship.

Weak Entity Sets, Generalizations and Aggregates

Weak entity sets can be marked on E/R diagrams by enclosing them in a double box. However, if the weak entity participates in more than one relationship, it is necessary to separately note which entity is the strong entity on which it is existence dependent. Thus the E/R

[image: image4.wmf]Owner

Horse

Owns

ID#

Name

Phone

Name

Birth

Year

[image: image5.wmf]M

1

Owner

Horse

Owns

ID#

Name

Phone

Name

Birth

Year

[image: image6.wmf]M

1

Owner

Horse

Owns

ID#

Name

Phone

Name

Birth

Year

[image: image7.wmf]Owner

Horse

Owns

ID#

Name

Phone

Name

Birth

Year

Figure 4 An Owner Has Many Horses

[image: image8.wmf]Date of

Purchase

Owner

Horse

Owns

ID#

Name

Phone

Name

Birth

Year

Figure 5 Relationships can have Attributes

diagram can alert us that an integrity rule needs to be enforced (the weak entity), but it does not tell the integrity rule (which entity set the weak entity is dependent upon).

Generalizations can also be noted using the weak entity notation. Since the specialized entity sets will be existence dependent upon the generalized entity set, we can mark them all as weak entities. Again, the E/R diagram gives us no way of noting that we have a generalization. However, we can use the convention of labeling the relationships involved using the term "is a". Figure 6 shows an E/R diagram for the generalization People of the entity sets Owner, Trainer and Rider.

[image: image9.wmf]People

is a

trainer

is a

rider

is an

owner

Rider

Trainer

Owner

Figure 6 Generalization

Aggregates can be more clearly marked on an E/R diagram. Enclosing the entities and the relationship in a box shows the aggregate clearly. This box can then be considered as an entity when defining new relationship. For example, in Figure 7, the aggregate Owner-Horse is shown participating in the "take lesson" relationship with Trainer.

[image: image10.wmf]Owner

Horse

take

lesson

Trainer

owns

Figure 7 Aggregation of Horse and Owner

Note that there is no point in marking an aggregate on an E/R diagram, unless that aggregate is going to participate in a relationship. The reason for noting aggregates is to enforce the underlying integrity rule. In this example, we are saying that you cannot take a lesson from a trainer if you do not own a horse to ride in the lesson. The participation of an aggregate in a relationship states that the aggregate must exist in order for the relationship to be valid. As discussed earlier, this is a different meaning than the one conveyed by a three-way relationship.
You will see that E/R diagrams can begin to get quite complicated, as is shown in Figure 8, which combines Figure 6 and Figure 7. This is the major drawback of E/R diagrams. They sometimes become too large and complex to be useful. Notice that in Figure 8, it is possible to see that Owner participates in the "is an owner" relationship, and not the aggregate Owner-Horse. This is shown by the fact that the arrow goes inside the aggregate box to the individual entity.

Evaluating the E/R Diagram

This is a good point to remember that the construction of an E/R diagram, or the design of a semantic model, is not our end goal. These are tools that we are using to help us achieve a good database design. At the end of the modeling process we should have an understanding of what information is to be stored in the database (entities) and how that information interacts (relationships). We should also have begun to discover the integrity rules that will allow us to ensure that the information within our database remains correct.

Having a complete E/R diagram, it is time to step back and try to ensure that it is complete and will provide a model for a database that will be able to accomplish the tasks we set

 Figure 8

for it when we asked our original questions. Now is the time to find our list of ways in which the database will be used. We will use it to test our E/R diagram design. For each use of the database we need to make sure that there is a path between the related pieces of information on the E/R diagram.

For example, if one of the uses of our database was to get the phone numbers of the people who ride with a particular trainer, then we need to have a path from trainer to those people. In figure 8, we can go from Trainer to the Owner-Horse aggregate which tells us the Owner, who is connected to People and so we can retrieve the phone number. However, if we have Riders who are not Owners then we have no way of telling which of them rides with a given trainer. This indicates that we have missing information on our E/R diagram. We need to show relationship "take lesson with" in order to be able to correctly use our database.

2.6 Introduction to Logical Level Models

Having completed a semantic model of our database, the next step is to implement it. This involves deciding how the data will actually be stored on the computer (the physical level) and creating the logical level for the user. Many times you will be using a database package to implement your database. If so, the package will probably make most of the physical level decisions for you. Your choice of package will also determine the model you will use to implement the logical level. Most packages on the market today are based on the relational model.

If you do need to design and implement the physical level, then you will need to call on all your skills as a computer programmer. There are some special issues involved when designing the physical level for a database. This will be discussed in Chapter 3.

If you are creating a new database you will probably use the relational model. Most of this book is dedicated to this model. Object-oriented databases are also popular, but these are essentially object-oriented interfaces to a relational database. The hierarchical model and the network model are older logical level models. You will most likely meet these in the course of modifying an existing database. They are discussed in more detail in the Appendices.

What Makes a Logical Level Model?

As we discussed in Chapter 1, the logical level of a database is the level that the user interacts with in order to accomplish their task. Therefore, the logical level model should provide a clear structure for storing the data we want to put in the database. This is the modeling portion of the logical level. The relational model uses relations (or tables), the hierarchical model uses trees and the network model uses directed graphs.

A logical level model should also provide a mechanism (or language) for defining specific structures for a particular database. This is the Data Definition Language (DDL). This language allows you specify how your data is to be put into the structures defined by the model. It is similar to the data declaration portion of a program.

Finally a logical level model should provide the user with a method for extracting data from the database. This is the Query Language, also called the Data Manipulation Language (DML). The term DML is more appropriate because we have other operations we need to accomplish other than extracting data. For example, we need to insert new data, update existing data and delete old data. Without a DML, a logical level model is not useful.

The theoretical basis for relational model query languages is relational algebra. This is discussed in Chapter 5. SQL and QBE (query-by-example) are two query languages that are used in relational database packages. These are discussed in Chapter 6. SQL is really a DML (as opposed to a query language) in that it provides methods for data manipulation other than data extraction. SQL is also a DDL. Chapter 10 discusses these additional SQL functions.
Entity Sets

People

Horses

Trainers

Payments

Attributes for Entity Set People

Last name		Weight

First name		Social Security Number

Middle name		Date of Birth

Address		Phone number

Height

Domain definition for Last Name

A string of up to 25 characters. The first character must be an uppercase alphabet character. All other characters must be either alphabet characters or one of hyphen, apostrophe, space or period. An alphabet character must follow each hyphen, apostrophe or space. A period must be followed by a space.

Candidate Keys for Entity Set People

{Social Security Number}

*in this case we only have one candidate key so it is the primary key.

Domain definition for Color for Entity Set Horse

One of the values in the set {Chestnut, Bay, Dark Bay, Brown,

White, Gray, Strawberry Roan,...}

The list does not have to be repeated in its entirety if you can give a reference to the list.

Attributes for Entity Set Horse

Name			Year of Birth

Height			Color

Markings

Candidate Keys for Entity Set Horse

{Name}

{Color, Markings, Year of Birth}

Owner

Trainer

is an owner

is a

trainer

is a

rider

Rider

People

owns

Horse

take lesson

Every entity set must have at least one combination of attributes that can be used to tell one entity from another.

24
22

_1003929159.doc

Owner

Horse

Owns

ID#

Name

Phone

Name

Birth Year

M

1

_1003929540.doc

Owner

Horse

Owns

ID#

Name

Phone

Name

Birth Year

_1005742533.doc

Owner

Horse

Owns

ID#

Name

Phone

Name

Birth Year

Date of Purchase

_1006328933.doc

Owner

Horse

owns

take lesson

Trainer

_1003929241.doc

Owner

Horse

Owns

ID#

Name

Phone

Name

Birth Year

M

1

_1003927909.doc

Owner

Horse

Owns

ID#

Name

Phone

Name

Birth Year

_1003928852.doc

Owner

Horse

Owns

ID#

Name

Phone

Name

Birth Year

_1003927184.doc

Owner

Horse

Owns

ID#

Name

Phone

Name

Birth Year

