

985

APPENDIX

D

Storage Structures and
Access Methods

D.1

Introduction

D.2

Database Access: An Overview

D.3

Page Sets and Files

D.4

Indexing

D.5

Hashing

D.6

Pointer Chains

D.7

Compression Techniques

D.8

Summary
Exercises
References and Bibliography

D.1 INTRODUCTION

In this appendix we present a tutorial survey of techniques typically used in today’s systems
for physically representing and accessing the database on the disk. (

Note:

 We use the term

disk

 throughout to stand generically for all direct-access media, including, for example,
RAID arrays, mass storage, optical disks, and so forth, as well as conventional moving-
head magnetic disks

per se

.) You are assumed to have a basic familiarity with disk architec-
ture and to understand what is meant by the terms

seek time, rotational delay, cylinder,
track, read/write head,

 and so on. Good tutorials on such material can be found in many
places; see, for example, reference [D.4].

The basic point motivating all storage-structure and access-method technology is that
disk access times are

much

 slower than main-memory access times. Typical seek times
and rotational delays are both on the order of 5 or 6 milliseconds or so, and typical data
transfer rates are somewhere in the range 5 to 10 million bytes per second; main-memory
access is thus likely to be at least four or five orders of magnitude faster than disk access

986

Appendix D / Storage Structures and Access Methods

on any given system. An overriding performance objective is thus to

 minimize the num-
ber of disk accesses

 (or disk I/O’s). This appendix is concerned with techniques for
achieving that objective—that is, techniques for arranging data on the disk so that any
required piece of data, say some specific record, can be located in as few I/O’s as possible.

Note:

 Throughout this appendix, since our discussions are all at the storage level, we use
storage-level terminology (in particular,

files, records,

 and

fields,

 meaning

stored

 files,
records, and fields, respectively) in place of relational terminology.

As already suggested, any given arrangement of data on the disk is referred to as a

storage structure

. Many different storage structures can be and have been devised, and of
course different structures have different performance characteristics; some are good for
some applications, others are good for others. There is probably no single structure that is
optimal for all possible applications. It follows that a good system should support a vari-
ety of different structures, so that different portions of the database can be stored in differ-
ent ways, and the storage structure for a given portion can be changed as performance
requirements change or become better understood.

The structure of the appendix is as follows. Following this introductory section, Sec-
tion D.2 explains in outline what is involved in the overall process of locating and access-
ing some particular record, and identifies the major software components involved in that
process. Section D.3 then goes into a little more detail on two of those components, the

file manager

 and the

disk manager

. Those two sections (D.2 and D.3) need only be
skimmed on a first reading; a lot of the detail they contain is not really required for an
understanding of the subsequent material. The next four sections (D.4–D.7) should not
just be skimmed, however, since they represent the most important part of the entire dis-
cussion; they describe some of the most commonly occurring storage structures found in
present-day systems, under the headings “Indexing,” “Hashing,” “Pointer Chains,” and
“Compression Techniques,” respectively. Finally, Section D.8 presents a summary and a
brief conclusion.

Note:

 The emphasis throughout is on

concepts,

 not detail. The objective is to explain
the general idea behind such notions as indexing, hashing, and so on without getting too
bogged down in the specifics of any one particular system or technique. If you want such
detail, see the books and papers listed in the “References and Bibliography” section at the
end of the appendix.

D.2 DATABASE ACCESS: AN OVERVIEW

Before we get into our discussion of storage structures

per se,

 we first need to consider
what is involved in the overall process of data access in general. Locating a specific piece
of data in the database and presenting it to the user involves several distinct layers of soft-
ware. Of course, the details of those layers vary considerably from system to system, as
does the terminology, but the principles are fairly standard and can be explained in outline
as follows (refer to Fig. D.1).

1. First, the DBMS determines what record is required, and asks the

file manager

 to
retrieve that record. (We assume for the purposes of this simple explanation that the

Appendix D / Storage Structures and Access Methods

987

DBMS is able to pinpoint the exact record desired ahead of time. In practice it might
need to retrieve a set of several records and search through those records in main
memory to find the specific one desired. In principle, however, this only means that
the sequence of steps 1–3 must be repeated for each record in that set.)

2. The file manager in turn determines what page contains the desired record, and asks
the

disk manager

 to retrieve that page.

3. Finally, the disk manager determines the physical location of the desired page on the
disk, and issues the necessary disk I/O request.

Note:

 Sometimes, of course, the re-
quired page will already be in a buffer in main memory as the result of a previous re-
trieval, in which case it obviously should not be necessary to retrieve it again.

Loosely speaking, therefore, the DBMS has a view of the database as a collection of
records, and that view is supported by the file manager; the file manager, in turn, has a
view of the database as a collection of pages, and that view is supported by the disk
manager; and the disk manager has a view of the disk “as it really is.” The next three
subsections amplify these ideas somewhat. Section D.3 then goes into more detail on the
same topics.

Fig. D.1

The DBMS, file manager, and disk manager

DBMS

File
manager

Disk
manager

Stored
database

Stored
record
returned

Request
stored
record

Request
stored
page

Disk I/O
operation

Stored
page
returned

Data read
from desk

988

Appendix D / Storage Structures and Access Methods

Disk Manager

The disk manager is a component of the underlying operating system. It is the component
responsible for all physical I/O operations (in some systems it is referred to as the “basic
I/O services” component). As such, it clearly needs to be aware of

physical disk
addresses

. For example, when the file manager asks to retrieve some specific page

p,

 the
disk manager needs to know exactly where page

p

 is on the disk. However, the user of the
disk manager—namely, the file manager—does

not

 need to know that information.
Instead, the file manager regards the disk simply as a logical collection of

page sets

, each
consisting of a collection of fixed-size pages. Each page set is identified by a unique

page-
set ID

. Each page, in turn, is identified by a

page number

 that is unique within the disk;
distinct page sets are disjoint (i.e., do not have any pages in common). The mapping
between page numbers and physical disk addresses is understood and maintained by the
disk manager. The major advantage of this arrangement (not the only one) is that all
device-specific code can be isolated within a single system component (namely, the disk
manager), and all higher-level components—in particular, the file manager—can thus be

device-independent.

As just explained, the complete set of pages on the disk is divided into a collection of
disjoint subsets called page sets. One of those page sets, the

free-space

 page set, serves as
a pool of available (i.e., currently unused) pages; the others are all considered to contain
significant data. The allocation and deallocation of pages to and from page sets is per-
formed by the disk manager in response to requests from the file manager. The operations
supported by the disk manager on page sets—that is, the operations the file manager is
able to request—include the following:

�

Retrieve page

p

 from page set

s

.

�

Replace page

p

 within page set

s

.

�

Add a new page to page set

s

 (i.e., acquire an empty page from the free-space page
set and return the new page number

p

).

�

Remove page

p

 from page set

s

 (i.e., return page

p

 to the free-space page set).

The first two of these operations are of course the basic page-level I/O operations the
file manager needs. The other two allow page sets to grow and shrink as necessary.

File Manager

The file manager uses the disk manager facilities just described in such a way as to permit
its user—that is, the DBMS—to regard the disk as a collection of

files

. Each page set will
contain zero or more files.

Note:

 The DBMS might need to be aware of the existence of
page sets, even though it is not responsible for managing them in detail, for reasons indi-
cated in the next subsection. In particular, the DBMS might need to know when two files
share the same page set or when two records share the same page.

Each file is identified by a

file name

 or

file ID

, unique at least within its containing
page set; each record in turn is identified by a

record number

 or

record ID

 (RID),
unique at least within its containing file. (In practice, record IDs are usually unique not
just within their containing file but actually within the entire disk, since they typically

Appendix D / Storage Structures and Access Methods

989

consist of the combination of a page number and some value that is unique within that
page. See Section D.3.)

The operations supported by the file manager on files—that is, the operations the
DBMS is able to request—include the following:

�

Retrieve record

r

 from file

f

.

�

Replace record

r

 within file

f

.

�

Add a new record to file

f

 and return the new record ID

r

.

�

Remove record

r

 from file

f

.

�

Create a new file

f

.

�

Destroy file

f

.

Using these primitive file management operations, the DBMS is able to build and
manipulate the storage structures that are the principal concern of this appendix (see Sec-
tions D.4–D.7).

Note:

 In some systems the file manager is a component of the underlying operating
system; in others it is packaged with the DBMS. For our purposes the distinction is not
important. However, we remark in passing that although operating systems do invariably
provide such a component, it is often the case that the general-purpose file manager pro-
vided by the operating system is not ideally suited to the requirements of the special-
purpose “application” that is the DBMS. For more discussion of this topic, see reference
[D.44].

Clustering

We should not leave this overview discussion without a brief mention of the subject of

data clustering

. The basic idea behind clustering is to try to store records that are logically
related (and therefore frequently used together) physically close together on the disk.
Physical data clustering is an extremely important factor in performance, as can easily be
seen from the following. Suppose the record most recently accessed is

r1,

 and suppose the
next record required is

r2

. Suppose also that

r1

 is stored on page

p1

 and

r2

 is stored on
page

p2

. Then:

1. If

p1

 and

p2

 are one and the same, then access to

r2

 will not require any physical I/O
at all, because the desired page

p2

 will already be in a buffer in main memory.

2. If

p1

 and

p2

 are distinct but physically close together—in particular, if they are physi-
cally adjacent—then access to

r2

 will require a physical I/O (unless, of course,

p2

also happens to be in a buffer in main memory), but the seek time involved in that I/O
will be small, because the read/write heads will already be close to the desired posi-
tion. In particular, the seek time will be

zero

 if

p1

 and

p2

 are in the same cylinder.

As an example of clustering, we consider the usual suppliers-and-parts database:

1

1

We assume for simplicity throughout this appendix that each individual supplier, part, or shipment tuple
maps to a single record on the disk, as would typically be the case in most commercial systems today. See
Appendix A for further discussion.

990

Appendix D / Storage Structures and Access Methods

�

If sequential access to all suppliers in supplier number order is a frequent application
requirement, then the supplier records should be clustered such that the supplier S1
record is physically close to the supplier S2 record, the supplier S2 record is physi-
cally close to the supplier S3 record, and so on. This is an example of

intra-file

 clus-
tering: The clustering is applied within a single file.

�

If, on the other hand, access to some specific supplier together with all shipments for
that supplier is a frequent application requirement, then supplier and shipment
records should be stored interleaved, with the shipment records for supplier S1 physi-
cally close to the supplier S1 record, the shipment records for supplier S2 physically
close to the supplier S2 record, and so on. This is an example of

inter-file

 clustering:
The clustering is applied across more than one file.

Of course, a given file or set of files can be physically clustered in at most one way at any
given time.

The DBMS can support clustering, both intra- and inter-file, by storing logically
related records on the same page where possible and on adjacent pages where not (this is
why the DBMS might need to know about pages as well as files). When the DBMS cre-
ates a new record, the file manager must allow it to specify that the new record be stored
“near”—that is, on the same page as, or at least on a page logically near—some existing
record. The disk manager, in turn, will do its best to ensure that two pages that are logi-
cally adjacent are physically adjacent on the disk. See Section D.3.

In general, of course, the DBMS can only know what clustering is required if the
database administrator is able to tell it. A good DBMS should allow the DBA to specify
different kinds of clustering for different files. It should also allow the clustering for a
given file or set of files to be changed if the performance requirements change. Further-
more, of course, any such change in physical clustering should obviously not require any
concomitant changes in application programs, if data independence is to be achieved.

D.3 PAGE SETS AND FILES

As explained in the previous section, a major function of the disk manager is to allow the
file manager to ignore all details of physical disk I/O and to think in terms of (logical)
“page I/O” instead. This function of the disk manager is referred to as

page management

.
We present a very simple example to show how page management is typically handled.

Consider the suppliers-and-parts database once again. Suppose the desired logical
ordering of records is (loosely)

primary key sequence

—that is, suppliers are required to be
in supplier number order, parts in part number order, and shipments in part number order
within supplier number order.

2

 To keep matters simple, suppose too that each file is stored
in a page set of its own, and that each record requires an entire page of its own. Now con-
sider the following sequence of events.

2

We say “loosely” because the term

primary key sequence

 is not well-defined if the primary key is com-
posite. In the case of shipments, for example, it might mean either part number order within supplier
number order or the other way about. (In any case, primary keys are a relational concept, not a file-level
concept, so we really ought not to be talking about primary keys at all at the storage level.)

Appendix D / Storage Structures and Access Methods

991

1. Initially the database contains no data at all. There is only one page set, the free-space
page set, which contains all pages on the disk—except for page zero, which is special
(see later). The remaining pages are numbered sequentially from one.

2. The file manager requests the creation of a page set for supplier records, and inserts
the five supplier records for suppliers S1–S5. The disk manager removes pages 1–5
from the free-space page set and labels them “the suppliers page set.”

3. Similarly for parts and shipments. Now there are four page sets: the suppliers page
set (pages 1–5), the parts page set (pages 6–11), the shipments page set (pages 12–
23), and the free-space page set (pages 24, 25, 26, and so on). The situation at this
point is as shown in Fig. D.2.

To continue with the example:

4. Next, the file manager inserts a new supplier record (for a new supplier, supplier S6).
The disk manager locates the first free page in the free-space page set—namely, page
24—and adds it to the suppliers page set.

5. The file manager deletes the record for supplier S2. The disk manager returns the
page for supplier S2 (page 2) to the free-space page set.

6. The file manager inserts a new part record (for part P7). The disk manager locates the
first free page in the free-space page set—namely, page 2—and adds it to the parts
page set.

7. The file manager deletes the record for supplier S4. The disk manager returns the
page for supplier S4 (page 4) to the free-space page set.

And so on. The situation at this juncture is as illustrated in Fig. D.3. The key point is
the following: After the system has been running for a while, it can no longer be guaran-
teed that pages that are logically adjacent are still physically adjacent, even if they started

Fig. D.2

Disk layout after creation and initial loading of the suppliers-and-parts database

1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

0

S1 S2 S3 S4 S5

P2 P3P1 P4 P5 P6

S1/P2 S1/P3S1/P1 S1/P4 S1/P5 S1/P6

S2/P2 S3/P2S2/P1 S4/P2 S4/P4 S4/P5

992

Appendix D / Storage Structures and Access Methods

out that way. For this reason, the logical sequence of pages in a given page set must be
represented not by physical adjacency but by pointers. Each page will contain a page
header—that is, a set of control information that includes (among other things) the physi-
cal disk address of the page that immediately follows that page in logical sequence. See
Fig. D.4.

Points arising from the foregoing example:

� The page headers—in particular, the “next page” pointers—are managed by the disk
manager; they should be completely invisible to the file manager.

Fig. D.3 Disk layout after inserting supplier S6, deleting supplier S2, inserting part P7,
and deleting supplier S4

Fig. D.4 Fig. D.3 revised to show “next page” pointers (top right corner of each page)

1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

0

S1 P7 S3 S5

P2 P3P1 P4 P5 P6

S1/P2 S1/P3S1/P1 S1/P4 S1/P5 S1/P6

S2/P2 S3/P2S2/P1 S4/P2 S4/P4 S4/P5

S6

1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25

3

8

14

20

26 26 27

5

9 10

15 16

21 22

27 28 28 29

25 24

11 2

17 18

23

29 30

0

7

13

19

S1 P7 S3 S5

P2 P3P1 P4 P5 P6

S1/P2 S1/P3S1/P1 S1/P4 S1/P5 S1/P6

S2/P2 S3/P2S2/P1 S4/P2 S4/P4 S4/P5

S6

Appendix D / Storage Structures and Access Methods 993

� As explained in the subsection on clustering at the end of Section D.2, it is desirable
to store logically adjacent pages in physically adjacent locations on the disk (as far as
possible). For this reason, the disk manager normally allocates and deallocates pages
to and from page sets, not one at a time as suggested in the example, but rather in
physically contiguous groups or extents of (say) 64 pages at a time.

� The question arises: How does the disk manager know where the various page sets
are located?—or, more precisely, how does it know, for each page set, where the (log-
ically) first page of that page set is located? (It is sufficient to locate the first page, of
course, because the second and subsequent pages can then be located by following
the pointers in the page headers.) The answer is that some fixed location on the
disk—typically cylinder zero, track zero—is used to store a page that gives precisely
that information. That page (variously referred to as the disk table of contents, the
disk directory, the page set directory, or simply page zero) thus typically contains a
list of the page sets currently in existence on the disk, together with a pointer to the
first page of each such page set. See Fig. D.5.

Now we turn to the file manager. Just as the disk manager allows the file manager to
ignore details of physical disk I/O and to think for the most part in terms of logical pages,
so the file manager allows the DBMS to ignore details of page I/O and to think for the
most part in terms of files and records. This function of the file manager is referred to as
record management. We discuss that function very briefly here, once again taking the
suppliers-and-parts database as the basis for our examples.

Suppose, then (rather more realistically now), that a single page can accommodate
several records, instead of just one as in the page management example. Suppose too that

Fig. D.5 The disk directory (“page zero”)

0

Page set

Free space

Suppliers

Parts

Shipments

Address of
first page

4

1

6

12

994 Appendix D / Storage Structures and Access Methods

the desired logical order for supplier records is supplier number order, as before. Consider
the following sequence of events:

1. First, the five records for suppliers S1–S5 are inserted and are stored together on
some page p, as shown in Fig. D.6. Note that page p still contains a considerable
amount of free space.

2. Now suppose the DBMS inserts a new supplier record (for a new supplier, say sup-
plier S9). The file manager stores this record on page p (because there is still space),
immediately following the record for supplier S5.

3. The DBMS deletes the record for supplier S2. The file manager erases the S2 record
from page p, and shifts the records for suppliers S3, S4, S5, and S9 up to fill the gap.

4. The DBMS inserts a new supplier record for another new supplier, supplier S7. Again
the file manager stores this record on page p (because there is still space); it places the
new record immediately following that for supplier S5, shifting the record for supplier
S9 down to make room. The situation at this juncture is illustrated in Fig. D.7.

And so on. The key point here is that the logical sequence of records within any given
page can be represented by physical sequence within that page; the file manager will shift
records up and down to achieve this effect, keeping all data records together at the top of
the page and all free space together at the bottom. (The logical sequence of records across
pages is of course represented by the sequence of those pages within their containing page
set, as described in the page management example earlier.)

As explained in Section D.2, records are identified internally by record ID (RID).
Fig. D.8 shows how RIDs are typically implemented. The RID for a record r consists of

Fig. D.6 Layout of page p after initial loading of the five supplier records for S1–S5

Smith

Blake

20

30

S2

S4

10

20

London

Paris

Paris

London

S1

S3

p (Rest of header)

Adams 30 AthensS5

Jones

Clark

Appendix D / Storage Structures and Access Methods 995

two parts: (a) the page number of the page p containing r and (b) a byte offset from the
foot of p identifying a slot that contains, in turn, the byte offset of r from the top of p. This
scheme represents a good compromise between the speed of direct addressing and the
flexibility of indirect addressing: Records can be shifted up and down within their con-
taining page, as illustrated in Figs. D.7 and D.8, without having to change RIDs (only the
local offsets at the foot of the page have to change); yet access to a given record given its

Fig. D.7 Layout of page p after inserting supplier S9, deleting supplier S2, and inserting
supplier S7

Fig. D.8 Implementation of record IDs (RIDs)

20

20

S3

S5

20

10

London

London

S1

S4

p (Rest of header)

.S7 S9

Smith

Clark

Blake

Adams

Paris

Athens

RID
for r

Page
no.

Offset
from foot of page

Page p

Record r

996 Appendix D / Storage Structures and Access Methods

RID is fast, involving only a single page access. (It is desirable that RIDs not change,
because they are typically used elsewhere in the database as pointers to the records in
question—for example, in indexes. If the RID of some record did in fact change, then all
such pointer references elsewhere would have to be changed too.)

Note: Access to a specific record under the foregoing scheme might in rare cases
involve two page accesses (but never more than two). Two accesses will be required if a
varying-length record is updated in such a way that it is now longer than it was before,
and there is not enough free space on the page to accommodate the increase. In such a sit-
uation, the updated record will be placed on another page (an overflow page), and the
original record will then be replaced by a pointer (another RID) to the new location. If the
same thing happens again, so that the updated record has to be moved to still a third page,
then the pointer in the original page will be changed to point to this newest location.

We are now almost ready to move on to our discussion of storage structures. From
this point forward, we will assume for the most part (just as the DBMS normally assumes)
that a given file is simply a collection of records, each uniquely identified by a record ID
that never changes as long as that record remains in existence. A few final points to con-
clude this section:

� Note that one consequence of the preceding discussion is that, for any given file, it is
always possible to access all of the records in that file sequentially—where by
“sequentially” we mean “record sequence within page sequence within page set”
(typically, ascending RID sequence). This sequence is often referred to loosely as
physical sequence, though it should be clear that it does not necessarily correspond
to any obvious physical sequence on the disk. For convenience, however, we will
adopt the same term in what follows.

� Observe that access to a file in physical sequence is possible even if several files share
the same page set (i.e., if files are interleaved). Records that do not belong to the file
in question can simply be skipped during the sequential scan.

� It should be stressed that physical sequence is often at least adequate as an access
path to a given file. Sometimes it might even be optimal (especially if the file is
small). However, it is frequently the case that something better is needed. And, as
indicated in Section D.1, an enormous variety of techniques exist for achieving such a
“something better.”

� For the remainder of this appendix, we will usually assume for simplicity that the
(unique) “physical” sequence for any given file is primary key sequence (as defined in
Section D.3), barring explicit statements to the contrary. Please note, however, that
this assumption is made purely for the purpose of simplifying subsequent discussion;
we recognize that there might be good reasons in practice for physically sequencing a
given file in some other manner: for example, by the value(s) of some other field(s),
or simply by time of arrival (chronological sequence).

� For various reasons, a record will probably contain certain control information in
addition to its regular data fields. That information is typically collected together at
the front of the record in the form of a record prefix. Examples of the kind of infor-
mation found in such prefixes are the ID of the containing file (necessary if one page

Appendix D / Storage Structures and Access Methods 997

can contain records from several files), the record length (necessary for varying-
length records), a delete flag (necessary if records are not physically erased at the
time of a logical delete operation), pointers (necessary if records are chained together
in any way), and so on. But of course all such control information will normally be
concealed from the user.

� Finally, note that the regular data fields in a given record will be of interest to the
DBMS but not to the file manager (and not to the disk manager). The DBMS needs to
be aware of those fields because it will use them as the basis for building indexes,
responding to queries, and so forth. The file manager, however, has no need to be
aware of them at all. As noted in Chapter 2, therefore, another distinction between the
DBMS and the file manager is that a given record has an internal structure that is
known to the DBMS but not to the file manager (to the file manager, a record is basi-
cally just a byte string).

In the remainder of this appendix we describe some of the more important techniques
for achieving that desired “something better” (i.e., an access path that is better than physi-
cal sequence). The techniques are discussed under the general headings “Indexing,”
“Hashing,” “Pointer Chains,” and “Compression Techniques.” One final general remark:
The various techniques should not be seen as mutually exclusive. For example, it is per-
fectly feasible to have a file with (say) both hashed and indexed access to that file based
on the same field, or with hashed access based on one field and pointer-chain access based
on another.

D.4 INDEXING

Consider suppliers once again. Suppose the query “Get all suppliers in city c” (where c is
a parameter) is an important one—that is, one that is frequently executed and is therefore
required to perform well. Given such a requirement, the DBA might choose the stored
representation shown in Fig. D.9. In that representation, there are two files, a supplier file
and a city file (probably in different page sets); the city file, which we assume to be stored
in city sequence (because CITY is the primary key), includes pointers (RIDs) into the sup-
plier file. To get all suppliers in London (say), the DBMS now has two possible strategies
available to it:

1. Search the entire supplier file, looking for all records with city value equal to London.

2. Search the city file for the London entries, and for each such entry follow the pointer
to the corresponding record in the supplier file.

If the ratio of London suppliers to others is small, the second of these strategies is
likely to be more efficient than the first, because (a) the DBMS is aware of the physical
sequencing of the city file (it can stop its search of that file as soon as it finds a city that
comes later than London in alphabetic order), and (b) even if it did have to search the
entire city file, that search would still probably require fewer I/O’s overall, because the
city file is physically smaller than the supplier file (because the records are smaller).

998 Appendix D / Storage Structures and Access Methods

In this example, the city file is said to be an index (“the CITY index”) to the supplier
file; equivalently, the supplier file is said to be indexed by the city file. An index is thus a
special kind of file. To be specific, it is a file in which each entry—that is, each record—
consists of precisely two values, a data value and a pointer (RID); the data value is a value
for some field of the indexed file, and the pointer identifies a record of that file that has
that value for that field. The relevant field of the indexed file is called the indexed field, or
sometimes the index key (we will not use this latter term, however).

Note: Indexes are so called by analogy with conventional book indexes, which also
consist of entries containing “pointers” (page numbers) to facilitate the retrieval of infor-
mation from an “indexed file” (i.e., the body of the book). Note, however, that, unlike the
CITY index of Fig. D.9, book indexes are hierarchically compressed—that is, entries typ-
ically contain several page numbers, not just one. See Section D.7.

More terminology: An index on a primary key—for example, an index on field S#, in
the case of suppliers—is sometimes called a primary index. An index on any other field—
that is, the CITY index in the example—is sometimes called a secondary index. Also, an
index on a primary key, or more generally on any candidate key, is frequently called a
unique index.

How Indexes Are Used

The fundamental advantage of an index is that it speeds up retrieval. But there is a disad-
vantage too: It slows down updates. For instance, every time a new record is added to the
indexed file, a new entry will also have to be added to the index. As a more specific exam-
ple, consider what the DBMS must do to the CITY index of Fig. D.9 if supplier S2 moves
from Paris to London. In general, therefore, the question that must be answered when
some field is being considered as a candidate for indexing is: Which is more important,
efficient retrieval based on values of the field in question, or the update overhead involved
in providing that efficient retrieval?

For the remainder of this section we concentrate on retrieval operations specifically.

Fig. D.9 Indexing the supplier file on CITY

Athens

London

London

Paris

Paris

Smith

Jones

Blake

Clark

Adams

S1

S2

S3

S4

S5

20

10

30

20

30

London

Paris

Paris

London

Athens

City file (index) Supplier file (data)

Appendix D / Storage Structures and Access Methods 999

Indexes can be used in essentially two different ways. First, they can be used for
sequential access to the indexed file—where sequential means “in the sequence defined
by values of the indexed field.” For instance, the CITY index of Fig. D.9 will allow
records in the supplier file to be accessed in city sequence. Second, indexes can be used
for direct access to individual records in the indexed file on the basis of a given value for
the indexed field. The query “Get suppliers in London,” discussed at the start of the sec-
tion, illustrates this second case.

In fact, the two basic ideas just outlined can each be generalized slightly:

� Sequential access: The index can also help with range queries—for instance, “Get
suppliers whose city is in some specified alphabetic range” (e.g., begins with a letter
in the range L–R). Two important special cases are (a) “Get all suppliers whose city
alphabetically precedes (or follows) some specified value,” and (b) “Get all suppliers
whose city is alphabetically first (or last).”

� Direct access: The index can also help with list queries—for instance, “Get suppliers
whose city is in some specified list” (e.g., London, Paris, and New York).

In addition, there are certain queries—for example, existence tests—that can be
answered from the index alone, without any access to the indexed file at all. For example,
consider the query “Are there any suppliers in Athens?” The response to this query is
clearly “Yes” if and only if an entry for Athens exists in the CITY index. Similar remarks
apply to queries involving certain aggregate operators—for example, the query “Get the
first supplier city in alphabetic order,” which makes use of the aggregate operator MIN
(this possibility was mentioned in Chapter 18, as you might recall).

A given file can have any number of indexes. For example, the supplier file might have
both a CITY index and a STATUS index (see Fig. D.10). Those indexes could then be used
to provide efficient access to supplier records on the basis of given values for either or both
of CITY and STATUS. As an illustration of the “both” case, consider the query “Get sup-
pliers in Paris with status 30." The CITY index gives the RIDs—r2 and r3, say—for the

Fig. D.10 Indexing the supplier file on both CITY and STATUS

Athens

London

London

Paris

Paris

Smith

Jones

Blake

Clark

Adams

S1

S2

S3

S4

S5

20

10

30

20

30

London

Paris

Paris

London

Athens

CITY index Supplier file STATUS index

10

20

20

30

30

1000 Appendix D / Storage Structures and Access Methods

suppliers in Paris; likewise, the STATUS index gives the RIDs—r3 and r5, say—for suppli-
ers with status 30. From these two sets of RIDs it is clear that the only supplier satisfying
the original query is the supplier with RID equal to r3 (namely, supplier S3). Only then
does the DBMS have to access the supplier file itself, in order to retrieve the desired record.

More terminology: Indexes are sometimes referred to as inverted lists, for the fol-
lowing reason. First, a “regular” file—the supplier file of Figs. D.9 and D.10 can be taken
as a typical “regular file” in this sense—lists, for each record, the values of the fields in
that record. By contrast, an index lists, for each value of the indexed field, the records that
contain that value. (The inverted-list database systems mentioned briefly in Chapter 1,
Section 1.6, draw their name from this terminology.) And one more term: A file with an
index on every field is sometimes said to be fully inverted.

Indexing on Field Combinations

It is also possible to construct an index on the basis of values of two or more fields in com-
bination. For example, Fig. D.11 shows an index to the supplier file on the combination of
fields CITY and STATUS, in that order. Given such an index, the DBMS can respond to
the query “Get suppliers in Paris with status 30" in a single scan of a single index. If the
combined index were replaced by two separate indexes, then that query would involve two
separate index scans (as described earlier). Furthermore, it might be difficult in that case to
decide which of those two scans should be done first; since the two possible sequences
might have very different performance characteristics, the choice could be significant.

Note that the combined CITY/STATUS index can also serve as an index on the
CITY field alone, since all the entries for a given city are at least still consecutive within
the combined index. (Another, separate index will have to be provided if indexing on
STATUS is also required, however.) In general, an index on the combination of fields F1,
F2, F3, ..., Fn (in that order) will also serve as an index on F1 alone, as an index on the
combination F1F2 (or F2F1), as an index on the combination F1F2F3 (in any order),
and so on. Thus the total number of indexes required to provide complete indexing in this
way is not as large as might appear at first glance (see Exercise D.9 at the end of this
appendix).

Fig. D.11 Indexing the supplier file on the combination of CITY and STATUS

Athens/30

London/20

London/20

Paris/10

Paris/30

Smith

Jones

Blake

Clark

Adams

S1

S2

S3

S4

S5

20

10

30

20

30

London

Paris

Paris

London

Athens

CITY/STATUS index Supplier file

Appendix D / Storage Structures and Access Methods 1001

Dense vs. Nondense Indexing

As stated several times already, the fundamental purpose of an index is to speed up
retrieval—more specifically, to reduce the number of disk I/O’s needed to retrieve some
given record. Basically, this purpose is achieved by means of pointers; and up to this point
we have assumed that all such pointers are record pointers (i.e., RIDs). In fact, however, it
is sufficient for the stated purpose if those pointers are simply page pointers (i.e., page
numbers). It is true that to find the desired record within a given page, the system will then
have to do some additional work to search through the page in main memory, but the num-
ber of I/O’s will remain unchanged. Note: As a matter of fact, the book index analogy
mentioned earlier provides an example of an index in which the pointers are page pointers
rather than “record” pointers.

We can take this idea further. Recall that any given file has a single “physical”
sequence, represented by the combination of (a) the sequence of records within each page
and (b) the sequence of pages within the containing page set. Suppose the supplier file is
stored such that its physical sequence corresponds to the logical sequence as defined by
the values of some field, say the supplier number field; in other words, the supplier file is
clustered on that field (see the discussion of intra-file clustering at the end of Section D.2).
Suppose also that an index is required on that field. Then there is no need for that index to
include an entry for every record in the indexed file (i.e., the supplier file, in the example);
all that is needed is an entry for each page, giving the highest supplier number on the page
and the corresponding page number. See Fig. D.12 (where we assume for simplicity that a
given page can hold a maximum of two supplier records).

As an example, consider what is involved in retrieving supplier S3 using this index.
First the system must scan the index, looking for the first entry with supplier number
greater than or equal to S3. It finds the index entry for supplier S4, which points to page p
(say). It then retrieves page p and scans it in main memory, looking for the required record
(which in this example, of course, will be found very quickly).

Fig. D.12 Example of a nondense index

Smith

Jones

Blake

Clark

Adams

S1

S2

S3

S4

S5

20

10

30

20

30

London

Paris

Paris

London

Athens

S2

S4

S5

page p – 1

page p

page p + 1

S# index Supplier file

1002 Appendix D / Storage Structures and Access Methods

An index such as that of Fig. D.12 is said to be nondense (or sometimes sparse),
because it does not contain an entry for every record in the indexed file. (By contrast, all
indexes discussed in this appendix prior to this point have been dense.) One advantage of
a nondense index is that it will occupy less space than a corresponding dense index, for
the obvious reason that it will contain fewer entries. As a result, it will probably be
quicker to scan also. A disadvantage is that it might no longer be possible to perform
existence tests on the basis of the index alone (see the brief note on performing existence
tests in the subsection “How Indexes Are Used” earlier in this section).

Note that in general a given file can have at most one nondense index, because such
an index relies on the (unique) physical sequence of the file in question. All other indexes
must necessarily be dense.

B-Trees

A particularly common and important kind of index is the B-tree (in fact, most relational
systems support B-trees as their principal form of storage structure, and some support no
other). Before we can explain what a B-tree is, however, we must first introduce one more
preliminary notion: namely, the notion of a multi-level or tree-structured index.

The reason for providing an index in the first place is to remove the need for physical
sequential scanning of the indexed file. However, physical sequential scanning is still
needed in the index. If the indexed file is very large, then the index can itself get to be
quite sizable, and sequentially scanning the index can itself get to be quite time consum-
ing. The solution to this problem is the same as before: We treat the index simply as a reg-
ular file, and build an index to it (an index to the index). This idea can be carried to as
many levels as desired (three are common in practice; a file would have to be very large
indeed to require more than three levels of indexing). Each level of the index acts as a
nondense index to the level below (it must be nondense, of course, for otherwise nothing
would be achieved—level n would contain the same number of entries as level n+1, and
would therefore take just as long to scan).

Now we can discuss B-trees. A B-tree is a particular type of tree-structured index. B-
trees as such were first proposed by Bayer and McCreight in 1972 [D.16]. Since that time,
numerous variations on the basic idea have been investigated, by Bayer himself and by
many other researchers; as already suggested, B-trees of one kind or another are now
probably the most common storage structure of all in today’s database systems. Here we
describe the variation discussed by Knuth [D.1]. (We remark in passing that the index
structure of IBM’s Virtual Storage Access Method, VSAM [D.18], is very similar to
Knuth’s structure; however, the VSAM version was invented independently and includes
additional features of its own, such as the use of compression techniques. In fact, a precur-
sor of the VSAM structure was described as early as 1969 [D.19].)

In Knuth’s variation, the index consists of two parts, the sequence set and the index
set (to use VSAM terminology):

� The sequence set consists of a single-level index to the actual data; that index is nor-
mally dense, but could be nondense if the indexed file were clustered on the indexed
field. The entries in the index are (of course) grouped into pages, and the pages are
(of course) chained together, such that the logical ordering represented by the index is

Appendix D / Storage Structures and Access Methods 1003

obtained by taking the entries in physical order in the first page on the chain, fol-
lowed by the entries in physical order in the second page on the chain, and so on.
Thus the sequence set provides fast sequential access to the indexed data.

� The index set, in turn, provides fast direct access to the sequence set (and hence to
the data too). The index set is actually a tree-structured index to the sequence set; in
fact, it is the index set that is the real B-tree, strictly speaking. The combination of
index set and sequence set is sometimes called a “B+-tree.” The top level of the index
set consists of a single node (i.e., a single page, but of course containing many index
entries, like all the other nodes). That top node is called the root.

A simple example is shown in Fig. D.13. We explain that figure as follows. First, the
values 6, 8, 12, ..., 97, 99 are values of the indexed field, F say. Consider the top node,
which consists of two F values (50 and 82) and three pointers (actually page numbers).
Data records with F less than or equal to 50 can be found (eventually) by following the
left pointer from this node; similarly, records with F greater than 50 and less than or equal
to 82 can be found by following the middle pointer; and records with F greater than 82
can be found by following the right pointer. The other nodes of the index set are inter-
preted analogously; note that (for example) following the right pointer from the first node
at the second level takes us to all records with F greater than 32 and also less than or
equal to 50 (by virtue of the fact that we have already followed the left pointer from the
next higher node).

The B-tree (i.e., index set) of Fig. D.13 is somewhat unrealistic, however, for the fol-
lowing reasons:

� First, the nodes of a B-tree do not normally all contain the same number of data values.
� Second, they normally do contain a certain amount of free space.

In general, a “B-tree of order n” has at least n but not more than 2n data values at any
given node (and if it has k data values, then it also has k+1 pointers). No data value
appears in the tree more than once. We give the algorithm for searching for a particular
value V in the structure of Fig. D.13; the algorithm for the general B-tree of order n is a
simple generalization.

set N to the root node ;
do until N is a sequence-set node ;
 let X, Y (X < Y) be the data values in node N ;
 if V ≤ X then set N to the left lower node of N ;
 if X < V ≤ Y then set N to the middle lower node of N ;
 if V > Y then set N to the right lower node of N ;
end ;
if V occurs in node N then exit /* found */ ;
if V does not occur in node N then exit /* not found */ ;

A problem with tree structures in general is that insertions and deletions can cause the
tree to become unbalanced. A tree is unbalanced if the leaf nodes are not all at the same
level—that is, if different leaf nodes are at different distances from the root node. Since
searching the tree involves a disk access for every node visited, search times can become
very unpredictable in an unbalanced tree. Note: In practice, the top level of the index—
probably portions of other levels too—will typically be kept in main memory most of the

1004 Appendix D / Storage Structures and Access Methods

Fi
g.

 D
.1

3
Pa

rt
 o

f a
 s

im
pl

e
B

-t
re

e
(K

nu
th

’s
 v

ar
ia

ti
on

)

8
6

12
18

15
32

40
35

50
52

51
58

62
60

70
78

71
82

85
83

89
93

91
94

97
96

99

32
12

70
58

82
50

94
89

S
eq

ue
nc

e
se

t
(w

ith
 p

oi
nt

er
s

to
 d

at
a

re
co

rd
s)

In
de

x
se

t

Appendix D / Storage Structures and Access Methods 1005

time, which will have the effect of reducing the average number of disk accesses. The
overall point remains valid, however.

The notable advantage of B-trees, by contrast, is that the insertion and deletion algo-
rithms guarantee that the tree will always be balanced. (The “B” in “B-tree” is sometimes
said to stand for “balanced” for this reason.) We briefly consider insertion of a new value,
V say, into a B-tree of order n. The algorithm caters to the index set only, since (as
explained earlier) it is the index set that is the B-tree proper; a trivial extension is needed
to deal with the sequence set also.

� First, the search algorithm is executed to locate not the sequence-set node but that
node (N say) at the lowest level of the index set in which V logically belongs. If N
contains free space, V is inserted into N and the process terminates.

� Otherwise, node N (which must therefore contain 2n values) is split into two nodes
N1 and N2. Let S be the original 2n values plus the new value V, in their logical
sequence. The lowest n values in S are placed in the left node N1, the highest n values
in S are placed in the right node N2, and the middle value, W say, is promoted to the
parent node of N, P say, to serve as a separator value for nodes N1 and N2. Future
searches for a value U, on reaching node P, will be directed to node N1 if U ≤ W and
to node N2 if U > W.

� An attempt is now made to insert W into P, and the process is repeated.

In the worst case, splitting will occur all the way to the top of the tree; a new root
node (parent to the old root, which will now have been split into two) will be created, and
the tree will increase in height by one level (but even so will still remain balanced).

The deletion algorithm is of course essentially the inverse of the insertion algorithm
just described. Changing a value is handled by deleting the old value and inserting the
new one.

D.5 HASHING

Hashing—also called hash addressing, and sometimes, a little confusingly, hash index-
ing—is a technique for providing fast direct access to a specific record on the basis of a
given value for some field. The field in question is usually but not necessarily the primary
key. In outline, the technique works as follows:

� Each record is placed in the database at a location whose address—that is, RID, or
perhaps just page number—is computed as some function (the hash function) of
some field of that record (the hash field, or sometimes hash key; we will not use this
latter term, however). The computed address is called the hash address.

� To store the record initially, the DBMS computes the hash address for the new record
and instructs the file manager to place the record at that position.

1006 Appendix D / Storage Structures and Access Methods

� To retrieve the record subsequently given the hash field value, the DBMS performs
the same computation as before and instructs the file manager to fetch the record at
the computed position.

As a simple illustration, suppose that (a) supplier number values are S100, S200,
S300, S400, S500 (instead of S1, S2, S3, S4, S5), and (b) each supplier record requires an
entire page to itself, and consider the following hash function:

hash address (i.e., page number) =
 remainder after dividing numeric part of S# value by 13

This is a trivial example of a very common class of hash function called division/
remainder. (For reasons that are beyond the scope of this appendix, the divisor in a
division/remainder hash is usually chosen to be prime, as in our example.) The page num-
bers for the five suppliers are then 9, 5, 1, 10, 6, respectively, giving us the representation
shown in Fig. D.14.

It should be clear from the foregoing description that hashing differs from indexing
inasmuch as, while a given file can have any number of indexes, it can have at most one
hash structure. To state this differently: A file can have any number of indexed fields, but
only one hash field. (These remarks assume the hash is direct. By contrast, a file can have
any number of indirect hashes. See reference [D.24].)

In addition to showing how hashing works, the example also shows why the hash
function is necessary. It would theoretically be possible to use an “identity” hash func-
tion—in other words, to take the primary key value directly as the hash address (assum-
ing, of course, that the primary key is numeric). Such a technique would generally be
inadequate in practice, however, because the range of possible primary key values will
usually be much wider than the range of available addresses. For instance, suppose that
supplier numbers are in fact in the range S000–S999, as in the foregoing example. Then
there would be 1,000 possible distinct supplier numbers, whereas there might in fact be
only 10 or so actual suppliers. In order to avoid a considerable waste of storage space,
therefore, we would ideally like to find a hash function that will reduce any value in the
range 000–999 to one in the range 0–9 (say). To allow a little room for future growth, it is
usual to extend the target range by 20 percent or so; that was why we chose a function that
generated values in the range 0–12 rather than 0–9 in our example.

The example also illustrates one of the disadvantages of hashing: The “physical
sequence” of records within the file will almost certainly not be the primary key sequence,
nor indeed any other sequence that has any sensible logical interpretation. (In addition,
there will be gaps of arbitrary size between consecutive records.) In fact, the physical
sequence of a file with a hashed structure is usually—not invariably—considered to repre-
sent no particular logical sequence.

Note: Of course, it is always possible to impose any desired logical sequence on a
hashed file by means of an index; indeed, it is possible to impose several such sequences
by means of several indexes, one for each such sequence. See also references [D.35] and
[D.37], which discuss the possibility of hashing schemes that do preserve logical
sequence in the file as stored.

Another disadvantage of hashing in general is that there is always the possibility of
collisions: that is, two or more distinct records (“synonyms”) that hash to the same

Appendix D / Storage Structures and Access Methods 1007

Fi
g.

 D
.1

4
E

xa
m

pl
e

of
 a

 h
as

he
d

 s
tr

uc
tu

re

S
50

0
A

da
m

s
30

A
th

en
s

6

S
30

0
B

la
ke

30
P

ar
is

1
0

2
3

4

S
10

0
S

m
ith

20
Lo

nd
on

9

S
40

0
C

la
rk

20
Lo

nd
on

10

S
20

0
Jo

ne
s

10
P

ar
is

5

12

7
8

11

1008 Appendix D / Storage Structures and Access Methods

address. For example, suppose the supplier file (with suppliers S100, S200, and so on)
also includes a supplier with supplier number S1400. Given the hash function in our
example (“divide by 13 and take the remainder”), that supplier will collide with supplier
S100 at hash address 9. The hash function as it stands is thus clearly inadequate—it needs
to be extended somehow to deal with the collision problem.

In terms of our original example, one possible extension is to treat the remainder after
division by 13, not as the hash address per se, but rather as the start point for a sequential
scan. Thus, to insert supplier S1400 (assuming that suppliers S100–S500 already exist),
we go to page 9 and search forward from that position for the first free page. The new sup-
plier will be stored on page 11. To retrieve that supplier subsequently, we go through a
similar procedure. This linear search method might well be adequate if (as is likely in
practice) several records are stored on each page. Suppose each page can hold n records.
Then the first n collisions at some hash address p will all be stored on page p, and a linear
search through those collisions will be totally contained within that page. However, the
next—that is, (n+1)st—collision will of course have to be stored on some distinct over-
flow page, and another I/O will be needed.

Another approach to the collision problem, perhaps more frequently encountered in
real systems, is to treat the result from the hash function, a say, as the storage address, not
for a data record, but rather for an anchor point. The anchor point at storage address a is
then taken as the head of a chain of pointers (a collision chain) linking together all
records—or all pages of records—that collide at a. Within any given collision chain, the
collisions will typically be kept in hash field sequence, to simplify subsequent searching.

Extendable Hashing

Yet another disadvantage of hashing as described so far is that as the size of the hashed file
increases, so the number of collisions also tends to increase, and hence the average access
time increases correspondingly (because more and more time is spent searching through
sets of collisions). Eventually a point might be reached where it becomes desirable to reor-
ganize the file—in other words, to unload the existing file and reload it, using a new hash-
ing function.

Extendable hashing [D.28] is an elegant variation on the basic hashing idea that
alleviates the foregoing problems.3 In fact, extendable hashing guarantees that the number
of disk accesses needed to locate a specific record is never more than two, and will usually
be just one, no matter what the file size might be. (It therefore also guarantees that file
reorganization will never be required.) Note: Values of the hash field must be unique in
the extendable hashing scheme, which of course they will be if that field is in fact the pri-
mary key as suggested at the start of this section.

In outline, the scheme works as follows:

1. Let the basic hash function be h, and let the primary key value of some specific
record r be k. Hashing k—that is, evaluating h(k)—yields a value s called the pseudo-

3 Reference [D.28] spells “extendable” with an i, thus: extendible.

Appendix D / Storage Structures and Access Methods 1009

key of r. Pseudokeys are not interpreted directly as addresses but instead lead to stor-
age locations in an indirect fashion, as described in what follows.

2. The file has a directory associated with it, also stored on the disk. The directory con-
sists of a header, containing a value d (the depth of the directory), together with 2d

pointers. The pointers are pointers to data pages, which contain the actual records
(many records per page). A directory of depth d can thus handle a maximum file size
of 2d distinct data pages.

3. If we consider the leading d bits of a pseudokey as an unsigned binary integer b, then
the ith pointer in the directory (1 ≤ i ≤ 2d) points to a page that contains all records for
which b takes the value i–1. In other words, the first pointer points to the page con-
taining all records for which b is all zeros, the second pointer points to the page for
which b is 0 . . . 01, and so on. (These 2d pointers are typically not all distinct; that is,
there will typically be fewer than 2d distinct data pages. See Fig. D.15.) Thus, to find
the record having primary key value k, we hash k to find the pseudokey s and take the
first d bits of that pseudokey; if those bits have the numeric value i–1, we go to the ith
pointer in the directory (first disk access) and follow it to the page containing the re-
quired record (second disk access).

Note: In practice the directory will usually be sufficiently small that it can be kept
in main memory most of the time. The “two” disk accesses will thus usually reduce to
one in practice.

4. Each data page also has a header giving the local depth p of that page (p ≤ d). Sup-
pose, for example, that d is 3, and that the first pointer in the directory (the 000
pointer) points to a page for which the local depth p is 2. Local depth 2 here means
that, not only does this page contain all records with pseudokeys starting with 000, it
contains all records with pseudokeys starting with 00 (i.e., those starting with 000
and also those starting with 001). In other words, the 001 directory pointer also points
to this page. Again, see Fig. D.15.

5. Suppose now that the 000 data page is full and we wish to insert a new record having
a pseudokey that starts with 000 (or 001). At this point the page is split in two; that is,
a new, empty page is acquired, and all 001 records are moved out of the old page and
into the new one. The 001 pointer in the directory is changed to point to the new page
(the 000 pointer still points to the old one). The local depth p for each of the two
pages will now be 3, not 2.

6. Now suppose that the data page for 000 becomes full again and has to split again. The
existing directory cannot handle such a split, because the local depth of the page to be
split is already equal to the directory depth. Therefore we double the directory; that
is, we increase d by one and replace each pointer by a pair of adjacent, identical
pointers. The data page can now be split; 0000 records are left in the old page and
0001 records go in the new page, the first pointer in the directory is left unchanged
(i.e., it still points to the old page), and the second pointer is changed to point to the
new page. Note that doubling the directory is a fairly inexpensive operation, since it
does not involve access to any of the data pages.

1010 Appendix D / Storage Structures and Access Methods

So much for our discussion of extendable hashing. Numerous further variations on
the basic hashing idea have been devised; see, for example, references [D.29–D.36].

D.6 POINTER CHAINS

Suppose again, as at the beginning of Section D.4, that the query “Get all suppliers in city
c” is an important one. Another stored representation that can handle that query reasonably
well—possibly better than an index, though not necessarily so—uses pointer chains. Such
a representation is illustrated in Fig. D.16. As can be seen, it involves two files, a supplier

Fig. D.15 Example of extendable hashing

000 pointer

Depth

001 pointer

010 pointer

011 pointer

100 pointer

101 pointer

110 pointer

111 pointer

3 2 Local depth: First two bits of
pseudokey = 00

Data pages

3 Local depth: First three bits of
pseudokey = 010

3 Local depth: First three bits of
pseudokey = 011

1 Local depth: First bit of
pseudokey = 1

Directory

Appendix D / Storage Structures and Access Methods 1011

Fi
g.

 D
.1

6
E

xa
m

pl
e

of
 a

 p
ar

en
t/

ch
ild

 s
tr

uc
tu

re

S
1

S
m

ith
20

S
2

Jo
ne

s
10

S
3

B
la

ke
30

S
4

C
la

rk
20

S
5

A
da

m
s

30

A
th

en
s

Lo
nd

on
P

ar
is

C
IT

Y
fil

e

S
U

P
P

LI
E

R
fil

e

1012 Appendix D / Storage Structures and Access Methods

file and a city file, much as in the index representation of Fig. D.9 (this time both files are
probably in the same page set, for reasons to be explained in Section D.7). In the pointer-
chain representation of Fig. D.16, however, the city file is not an index but what is some-
times referred to as a parent file. The supplier file is accordingly referred to as the child
file, and the overall structure is an example of parent/child organization.

In the example, the parent/child structure is based on supplier city values. The parent
(city) file contains one record for each distinct supplier city, giving the city value and act-
ing as the head of a chain or ring of pointers linking together all child (supplier) records
for suppliers in that city. Note that the city field has been removed from the supplier file;
to get all suppliers in London (say), the DBMS can search the city file for the London
entry and then follow the corresponding pointer chain.

The principal advantage of the parent/child structure is that the insertion and deletion
algorithms are somewhat simpler, and might conceivably be more efficient, than the corre-
sponding algorithms for an index; also, the structure will probably occupy less storage
than the corresponding index structure, because each city value appears exactly once
instead of many times. The principal disadvantages are as follows:

� For a given city, the only way to access the nth supplier is to follow the chain and
access the 1st, 2nd, ..., (n–1)st supplier too. Unless the supplier records are appropri-
ately clustered, each access will involve a separate seek operation, and the time taken
to access the nth supplier could be considerable.

� Although the structure might be suitable for the query “Get suppliers in a given city,”
it is of no help—in fact, it is a positive hindrance—for the inverse query “Get the city
for a given supplier” (where the given supplier is identified by a given supplier num-
ber). For this latter query, either a hash or an index on the supplier file is probably
desirable; note that a parent/child structure based on supplier numbers would not
make much sense (why not?). And even when the given supplier record has been
located, it is still necessary to follow the chain to the parent record to discover the
desired city (the need for this extra step is our justification for claiming that the
parent/child structure is actually a hindrance for this class of query).

Note, moreover, that the parent (city) file will probably require index or hash ac-
cess too if it is of any significant size. Hence pointer chains alone are not really an ad-
equate basis for a storage structure—other mechanisms, such as indexes, will almost
certainly be needed as well.

� Because (a) the pointer chains actually run through the records—that is, the record
prefixes physically include the relevant pointers—and (b) values of the relevant field
are factored out of the child records and placed in the parent records instead, it is a
nontrivial task to create a parent/child structure over an existing set of records. In
fact, such an operation will typically require a database reorganization, at least for the
relevant portion of the database. By contrast, it is a comparatively straightforward
matter to create a new index over an existing set of records. Note: Creating a new
hash will also typically require a reorganization, incidentally, unless the hash is indi-
rect [D.24].

Appendix D / Storage Structures and Access Methods 1013

Several variations are possible on the basic parent/child structure. For example:

� The pointers could be made two-way. One advantage of this variation is that it simpli-
fies the process of pointer adjustment necessitated by the operation of deleting a child
record.

� Another extension would be to include a pointer (a “parent pointer”) from each child
record direct to the corresponding parent. This extension would reduce the amount of
chain traversing involved in answering the query “Get the city for a given supplier”
(note, however, that it does not eliminate the need for a hash or index to help with that
query).

� Yet another variation would be not to remove the city field from the supplier file but
to repeat the field in the supplier records (a simple form of controlled redundancy).
Certain retrievals—for example, “Get the city for supplier S4”—would then become
more efficient. Note, however, that that increased efficiency has nothing to do with
the pointer-chain structure as such; note too that a hash or index on supplier numbers
will probably still be required.

Finally, of course, just as it is possible to have any number of indexes over a given
file, so it is possible to have any number of pointer chains running through a given file. (It
is also possible, though perhaps unusual, to have both.) Fig. D.17 shows a representation

Fig. D.17 Another example of a parent/child structure

Athens London Paris

S1 Smith S2 Jones S3 Blake S4 Clark S5 Adams

10 20 30

1014 Appendix D / Storage Structures and Access Methods

for the supplier file that involves two distinct pointer chains, and therefore two distinct
parent/child structures, one with a city file as parent (as in Fig. D.16) and one with a status
file as parent. The supplier file is the child file for both of these structures.

D.7 COMPRESSION TECHNIQUES

Compression techniques are ways of reducing the amount of storage required for a given
collection of data. Quite frequently the result of such compression will be not only to save
on storage space but also (and probably more significantly) to save on disk I/O; for if the
data occupies less space, then fewer I/O operations will be needed to access it. On the
other hand, extra processing will be needed to decompress the data after it has been
retrieved. On balance, however, the I/O savings will probably outweigh the disadvantage
of that additional processing.

Compression techniques are designed to exploit the fact that data values are almost
never completely random but instead display a certain amount of predictability. As a triv-
ial example, if a given person’s name in a name-and-address file starts with the letter R,
then it is extremely likely that the next person’s name will start with the letter R also—
assuming, of course, that the file is in alphabetic order by name.

A common compression technique is thus to replace each individual data value by
some representation of the difference between it and the value that immediately precedes
it: differential compression. Note, however, that such a technique requires that the data
in question be accessed sequentially, because to decompress any given stored value
requires knowledge of the immediately preceding stored value. Differential compression
thus has its main applicability in situations in which the data must be accessed sequen-
tially anyway, as in the case of (for example) the entries in a single-level index. Note,
however, that in the case of an index specifically, the pointers can be compressed as well
as the data—for if the logical data ordering imposed by the index is the same as, or close
to, the physical ordering of the underlying file, then successive pointer values in the index
will be quite similar to one another, and pointer compression is likely to be beneficial. In
fact, indexes almost always stand to gain from the use of compression, at least for the data
if not for the pointers.

To illustrate differential compression, we depart for a moment from suppliers and
parts and consider a page of entries from an “employee name” index. Suppose the first
four entries on that page are for the following employees:

Roberton
Robertson
Robertstone
Robinson

Suppose also that employee names are 12 characters long, so that each of these names
should be considered (in its uncompressed form) as padded at the right with an appropri-
ate number of blanks. One way to apply differential compression to this set of values is by
replacing those characters at the front of each entry that are the same as those in the previ-
ous entry by a corresponding count: front compression. This approach yields:

Appendix D / Storage Structures and Access Methods 1015

0 – Roberton++++
6 – son+++
7 – tone+
3 – inson++++

(trailing blanks now shown explicitly as “+”).
Another possible compression technique for this set of data is simply to eliminate all

trailing blanks (again, replacing them by an appropriate count): an example of rear com-
pression. Further rear compression can be achieved by dropping all characters to the right
of the one required to distinguish the entry in question from its two immediate neighbors,
as follows:

0 – 7 – Roberto
6 – 2 – so
7 – 1 – t
3 – 1 – i

The first of the two counts in each entry here is as in the previous example, the second is a
count of the number of characters recorded (we have assumed that the next entry does not
have “Robi” as its first four characters when decompressed). Note, however, that we have
actually lost some information from this index. That is, when decompressed, it looks like
this:

Roberto?????
Robertso????
Robertst????
Robi????????

(where “?” represents an unknown character). Such a loss of information is obviously per-
missible only if the data is recorded in full somewhere: in the example, in the underlying
employee file.

Hierarchic Compression

Suppose a given file is physically sequenced—that is, clustered—by values of some field
F, and suppose also that each distinct value of F occurs in several consecutive records of
that file. For example, the supplier file might be clustered by values of the city field, in
which case all London suppliers would be stored together, all Paris suppliers would be
stored together, and so on. In such a situation, the set of all supplier records for a given city
might profitably be compressed into a single hierarchic record, in which the city value in
question appears exactly once, followed by supplier number, name, and status information
for each supplier that happens to be located in that city. See Fig. D.18.

The records in Fig. D.18 consist of two parts: a fixed part (namely, the city field) and
a varying part (namely, the set of supplier entries). Note: The latter part is varying in the
sense that the number of entries it contains—i.e., the number of suppliers in the city in
question—varies from one occurrence of the record to another. As mentioned in Chapter
6, such a varying set of entries within a record is sometimes referred to as a repeating
group. Thus, we might say that the hierarchic records of Fig. D.18 consist of a single city

1016 Appendix D / Storage Structures and Access Methods

field and a repeating group of supplier information, and the supplier information in turn
consists of a supplier number field, a supplier name field, and a supplier status field (one
such group of fields for each supplier in the relevant city).

Hierarchic compression of the type just described is often particularly appropriate in
an index, where it is commonly the case that several successive entries all have the same
data value (but of course different pointer values).

It follows from the foregoing that hierarchic compression of the kind illustrated is
feasible only if intra-file clustering is in effect. As you might already have realized, how-
ever, a similar kind of compression can be applied with inter-file clustering also. Suppose
that suppliers and shipments are clustered as suggested at the end of Section D.2—that is,
shipments for supplier S1 immediately follow the supplier record for S1, shipments for
supplier S2 immediately follow the supplier record for S2, and so on. More specifically,
suppose that supplier S1 and the shipments for supplier S1 are stored on page p1, supplier
S2 and the shipments for supplier S2 are stored on page p2, and so on. Then an inter-file
compression technique can be applied as shown in Fig. D.19.

Fig. D.18 Example of hierarchic compression (intra-file)

Fig. D.19 Example of hierarchic compression (inter-file)

Paris JonesS2 10 BlakeS3 30

London SmithS1 20 ClarkS4 20

Athens AdamsS5 30

P2 200

P6 100

P3 400 P4 200 P5 100

P1 300London20SmithS1

P2 400

P1 300Paris10JonesS2

Page p1

(and similarly for pages p3, p4, p5)

Page p2

Appendix D / Storage Structures and Access Methods 1017

Note: Although we describe this example as “inter-file,” it really amounts to combin-
ing the supplier and shipment files into a single file and then applying intra-file compres-
sion to that single file. Thus, this case is not really different in kind from the case already
illustrated in Fig. D.18.

We conclude this subsection by remarking that the pointer-chain structure of Fig.
D.16 can be regarded as a kind of inter-file compression that does not require any corre-
sponding inter-file clustering (or, rather, the pointers provide the logical effect of such a
clustering—so that compression is possible—but do not necessarily provide the corre-
sponding physical performance advantage at the same time—so that compression, though
possible, might not be a good idea).

Huffman Coding

“Huffman coding” [D.39] is a character-coding technique that, though little used in cur-
rent systems, can in principle result in significant data compression if different characters
occur in the data with different frequencies (which is the normal situation, of course). The
basic idea is as follows: Bit-string codings are assigned to represent characters in such a
way that different characters are represented by bit strings of different lengths, and the
most commonly occurring characters are represented by the shortest strings. Also, no
character has a coding (of n bits, say) such that those n bits are identical to the first n bits
of some other character coding.

As a simple example, suppose the data to be represented involves only the characters
A, B, C, D, and E, and suppose also that the relative frequency of occurrence of those five
characters is as indicated in the following table:

Character E has the highest frequency and is therefore assigned the shortest code, a single
bit, say a 1-bit. All other codes must then start with a 0-bit and must be at least 2 bits long
(a lone 0-bit would not be valid, since it would be indistinguishable from the leading por-
tion of other codes). Character A is assigned the next shortest code, say 01; all other codes
must therefore start with 00. Similarly, characters D, C, and B are assigned codes 001,
0001, and 0000, respectively. Exercise: What English words do the following strings rep-
resent?

00110001010011

010001000110011

Character Frequency Code

E 35% 1
A 30% 01
D 20% 001
C 10% 0001
B 5% 0000

1018 Appendix D / Storage Structures and Access Methods

Given the codings shown, the expected average length of a coded character, in bits, is

0.35 * 1 + 0.30 * 2 + 0.20 * 3 + 0.10 * 4 + 0.05 * 4 = 2.15 bits,

whereas if every character were assigned the same number of bits, as in a conventional
character-coding scheme, we would need 3 bits per character (to allow for the five possibil-
ities).

D.8 SUMMARY

In this appendix we have taken a lengthy—by no means exhaustive!—look at some of the
storage structures most commonly encountered in current practice. We have also described
in outline how the data access software typically functions, and have sketched the ways in
which responsibility is divided among the DBMS, the file manager, and the disk man-
ager. Our purpose throughout has been to explain overall concepts, not to describe in fine
detail how the various system components and storage structures actually work; indeed,
we have tried hard not to get bogged down in too much detail, though of course a certain
amount of detail is unavoidable.

By way of summary, here is a brief review of some of the major topics we have
touched on. We described clustering, the basic idea of which is that records that are used
together should be stored physically close together. We also explained how records are
identified internally by record IDs (RIDs). Then we considered some of the most impor-
tant storage structures encountered in practice:

� Indexes (several variations thereof, including in particular B-trees) and their use for
both sequential and direct access

� Hashing (including in particular extendable hashing) and its use for direct access
� Pointer chains (also known as parent/child structures) and numerous variations

thereof

We also examined a variety of compression techniques.
We conclude by stressing the point that most users are (or should be) unconcerned

with most of this material most of the time. The only “user” who needs to understand
these ideas in detail is the DBA, who is responsible for the physical design of the database
and for performance monitoring and tuning. For other users, such considerations should
preferably all be under the covers, though it is probably true to say that those users will
perform their job better if they have some idea of the way the system functions internally.
For DBMS implementers, on the other hand, a working knowledge of this material
(indeed, an understanding that goes much deeper than this introductory survey does) is
clearly desirable, if not mandatory.

Appendix D / Storage Structures and Access Methods 1019

EXERCISES

Exercises D.1–D.8 might prove suitable as a basis for group discussion; they are intended to lead to
a deeper understanding of various physical database design considerations. Exercises D.9 and D.10
have rather a mathematical flavor.

D.1 Investigate any database systems (the larger the better) that might be available to you. For each
such system, identify the components that perform the functions ascribed in the body of this appen-
dix to, respectively, the disk manager, the file manager, and the DBMS proper. What kind of disks or
other storage media does the system support? What page sizes? What are the disk capacities, both
theoretical (in bytes) and actual (in pages)? What are the data rates? The access times? How do those
access times compare with the speed of main memory? Are there any limits on file size or database
size? If so, what are they? Which of the storage structures described in this appendix does the system
support? Does it support any others? If so, what are they?

D.2 A company’s personnel database is to contain information about the divisions, departments,
and employees of that company. Each employee works in one department; each department is part of
one division. Invent some sample data and sketch some possible corresponding storage structures.
Where possible, state the relative advantages of each of those structures—that is, consider how typi-
cal retrieval and update operations would be handled in each case. Hint: The constraints “each
employee works in one department” and “each department is part of one division” are structurally
similar to the constraint “each supplier is located in one city” (they are all examples of many-to-one
relationships). A difference is that we would probably like to record more information in the data-
base for departments and divisions than we did for cities.

D.3 Repeat Exercise D.2 for a database that is to contain information about customers and items.
Each customer can order any number of items; each item can be ordered by any number of custom-
ers. Hint: There is a many-to-many relationship here between customers and items. One way to rep-
resent such a relationship is by means of a double index. A double index is an index that is used to
index two data files simultaneously; a given entry in such an index corresponds to a pair of related
data records, one from each of the two files, and contains two data values and two pointers. Can you
think of any other ways of representing many-to-many(-to-many- . . .) relationships?

D.4 Repeat Exercise D.2 for a database that is to contain information about parts and components,
where a component is itself a part and can have lower-level components. Hint: How does this prob-
lem differ from that of Exercise D.3?

D.5 A file of data records with no additional access structure is sometimes called a heap. New
records are inserted into a heap wherever there happens to be room. For small files—certainly for
any file not requiring more than (say) nine or ten pages of storage—a heap is probably the most effi-
cient structure of all. Most files are bigger than that, however, and in practice all but the smallest files
should have some additional access structure, say (at least) an index on the primary key. State the rel-
ative advantages and disadvantages of an indexed structure compared with a heap structure.

D.6 We referred several times in the body of this appendix to physical clustering. For example, it
might be advantageous to store the supplier records such that their physical sequence is the same as
or close to their logical sequence as defined by values of the supplier number field (the clustering
field). How can the DBMS provide such physical clustering?

D.7 In Section D.5 we suggested that one method of handling hash collisions would be to treat the
output from the hash function as the start point for a sequential scan (the linear search technique).
Can you see any difficulties with that scheme?

1020 Appendix D / Storage Structures and Access Methods

D.8 What are the relative advantages and disadvantages of the multiple parent/child organization?
(See the end of Section D.6. It might help to review the advantages and disadvantages of the multiple
index organization. What are the similarities? What are the differences?)

D.9 Let us define “complete indexing” to mean that an index exists for every distinct (and dis-
tinctly ordered) field combination in the indexed file. For example, complete indexing for a file with
two fields A and B would require two indexes: one on the combination AB (in that order) and one on
the combination BA (in that order). How many indexes are needed to provide complete indexing for
a file defined on (a) 3 fields, (b) 4 fields, (c) N fields?

D.10 Consider a simplified B-tree (index set plus sequence set) in which the sequence set contains
a pointer to each of N data records, and each level above the sequence set (i.e., each level of the
index set) contains a pointer to every page in the level below. At the top (root) level, of course, there
is a single page. Suppose also that each page of the index set contains n index entries. Derive expres-
sions for the number of levels and the number of pages in the entire B-tree.

D.11 The first 10 values of the indexed field in a particular indexed file are as follows:

Abrahams,GK
Ackermann,LZ
Ackroyd,S
Adams,T
Adams,TR
Adamson,CR
Allen,S
Ayres,ST
Bailey,TE
Baileyman,D

Each is padded with blanks at the right to a total length of 15 characters. Show the values actually
recorded in the index if the front and rear compression techniques described in Section D.7 are
applied. What is the percentage savings in space? Show the steps involved in retrieving (or attempt-
ing to retrieve) the records for “Ackroyd,S” and “Adams,V”. Show also the steps involved in insert-
ing a new record for “Allingham,M”.

REFERENCES AND BIBLIOGRAPHY

The following references are organized into groups, as follows. References [D.1–D.10] are text-
books that are devoted entirely to the topic of this appendix or at least include a detailed treatment of
it. References [D.11–D.15] describe some formal approaches to the subject. References [D.16–D.23]
are concerned specifically with indexing, especially B-trees; references [D.24–D.38] represent a
selection from the very extensive literature on hashing; references [D.39–D.40] discuss compression
techniques; and, finally, references [D.41–D.59] address some miscellaneous storage structures and
related issues (in particular, references [D.48–D.59] discuss certain newer storage media and newer
kinds of applications, and storage structures for such media and applications).

D.1 Donald E. Knuth: The Art of Computer Programming. Volume III: Sorting and Searching (2d
ed.). Reading, Mass.: Addison-Wesley (1998).

Volume III of Knuth’s classic series of volumes contains a comprehensive analysis of search
algorithms. For database searching, where the data resides in secondary storage, the most
directly applicable sections are 6.2.4 (Multi-way Trees), 6.4 (Hashing), and 6.5 (Retrieval on
Secondary Keys).

Appendix D / Storage Structures and Access Methods 1021

D.2 James Martin: Computer Data-Base Organization (2d ed.). Englewood Cliffs, N.J.: Prentice-
Hall (1977).

This book is divided into two major parts, “Logical Organization” and “Physical Organiza-
tion.” The latter part consists of an extensive description (well over 300 pages) of storage struc-
tures and corresponding access techniques.

D.3 (Same as reference [14.45].) Toby J. Teorey and James P. Fry: Design of Database Structures.
Englewood Cliffs, N.J.: Prentice-Hall (1982).

A tutorial and handbook on database design, both physical and logical. Over 200 pages are
devoted to physical design.

D.4 Gio Wiederhold: Database Design (2d ed.). New York, N.Y.: McGraw-Hill (1983).

This book of 15 chapters includes a good survey of secondary storage devices and their perfor-
mance parameters (one chapter, nearly 50 pages), and an extensive analysis of secondary stor-
age structures (four chapters, over 250 pages).

D.5 T. H. Merrett: Relational Information Systems. Reston, Va.: Reston Publishing Company, Inc.
(1984).

Includes a lengthy introduction to, and analysis of, a variety of storage structures (about 100
pages), covering not only the structures described in the present appendix but several others as
well.

D.6 Jeffrey D. Ullman: Principles of Database and Knowledge-Base Systems: Volume I. Rockville,
Md.: Computer Science Press (1988).

Includes a treatment of storage structures that is rather more theoretical than that of the present
appendix.

D.7 (Same as reference [16.21].) Abraham Silberschatz, Henry F. Korth, and S. Sudarshan: Data-
base System Concepts (4th ed.). New York, N.Y.: McGraw-Hill (2002).

D.8 Peter D. Smith and G. Michael Barnes: Files and Databases: An Introduction. Reading, Mass.:
Addison-Wesley (1987).

D.9 (Same as reference [14.18].) Ramez Elmasri and Shamkant B. Navathe: Fundamentals of Data-
base Systems (3d ed.). Redwood City, Calif.: Benjamin/Cummings (2000).

References [D.7], [D.8], and [D.9] are all textbooks on database systems. Each includes mate-
rial on storage structures that goes beyond the treatment in the present appendix in certain
respects (extensively so, in the case of reference [D.8]).

D.10 Sakti P. Ghosh: Data Base Organization for Data Management (2d ed.). Orlando, Fla.: Aca-
demic Press (1986).

The primary emphasis of this book is on storage structures and associated access methods (of
the book’s ten chapters, at least six are devoted to these topics). The treatment is fairly abstract.

D.11 David K. Hsiao and Frank Harary: “A Formal System for Information Retrieval from Files,”
CACM 13, No. 2 (February 1970).

This paper represents what was probably the earliest attempt to unify the ideas of different stor-
age structures—principally indexes and pointer chains—into a general model, thereby provid-
ing a basis for a formal theory of such structures. A generalized retrieval algorithm is presented
for retrieving records from the general structure that satisfy an arbitrary boolean combination
of “field = value” conditions.

1022 Appendix D / Storage Structures and Access Methods

D.12 Dennis G. Severance: “Identifier Search Mechanisms: A Survey and Generalized Model,”
ACM Comp. Surv. 6, No. 3 (September 1974).

This paper falls into two parts. The first part provides a tutorial on certain storage structures
(basically hashing and indexing). The second part has points in common with reference [D.11];
like that paper, it defines a unified structure, here called a trie-tree structure, that combines and
generalizes ideas from the structures discussed in the first part. (The term trie, pronounced try,
derives from a paper by Fredkin [D.42].) The resulting structure provides a general model that
can represent a wide variety of different structures in terms of a small number of parameters; it
can therefore be used (and in fact has been used) to help in choosing a particular structure dur-
ing the process of physical database design.

A difference between this paper and reference [D.11] is that the trie-tree structure handles
hashes but not pointer chains, whereas the proposal of reference [D.11] handles pointer chains
but not hashes.

D.13 M. E. Senko, E. B. Altman, M. M. Astrahan, and P. L. Fehder: “Data Structures and Accessing
in Data-Base Systems,” IBM Sys. J. 12, No. 1 (1973).

This paper is in three parts:

1. Evolution of Information Systems

2. Information Organization

3. Data Representations and the Data Independent Accessing Model

The first part consists of a short historical survey of the development of database systems prior
to 1973. The second part describes “the entity set model,” which provides a basis for describing
a given enterprise in terms of entities and entity sets (it corresponds to the conceptual level of
the ANSI/SPARC architecture). The third part is the most original and significant part of the
paper; it forms an introduction to the Data Independent Accessing Model (DIAM), which is an
attempt to describe a database in terms of four successive levels of abstraction: the entity set
(highest), string, encoding, and physical device levels. These four levels can be thought of as a
more detailed, but still abstract, definition of the conceptual and internal portions of the
ANSI/SPARC architecture. They can be briefly described as follows:

� Entity set level: Analogous to the ANSI/SPARC conceptual level.
� String level: Access paths to data are defined as ordered sets or “strings” of data objects.

Three types of strings are described: atomic strings (e.g., a string connecting field occur-
rences to form a part record occurrence), entity strings (e.g., a string connecting part record
occurrences for red parts), and link strings (e.g., a string connecting a supplier record occur-
rence to part record occurrences for parts supplied by that supplier).

� Encoding level: Data objects and strings are mapped into linear address spaces, using a sim-
ple representation primitive known as a basic encoding unit.

� Physical device level: Linear address spaces are allocated to formatted physical subdivi-
sions of real recording media.

The aim of DIAM, like that of references [D.11–D.12], is (in part) to provide a basis for a
systematic theory of storage structures and access methods. One criticism—which applies to
the formalisms of references [D.11] and [D.12] also, incidentally—is that sometimes the best
method of dealing with some given access request is simply to sort the data, and sorting is of
course dynamic, whereas the structures described by DIAM (and the models of references
[D.11] and [D.12]) are by definition always static.

Appendix D / Storage Structures and Access Methods 1023

D.14 S. B. Yao: “An Attribute Based Model for Database Access Cost Analysis,” ACM TODS 2, No.
1 (March 1977).

The purpose of this paper is similar to that of references [D.11] and [D.12]; in some respects, in
fact, it can be regarded as a sequel to those earlier papers, in that it presents a generalized
model of storage structures that can be seen as a combination and extension of the proposals of
those papers. It also presents a set of generalized access algorithms and cost equations for that
generalized model. References are given to a number of other papers that report on experiments
with an implemented physical file design analyzer based on the ideas of this paper.

D.15 D. S. Batory: “Modeling the Storage Architectures of Commercial Database Systems,” ACM
TODS 10, No. 4 (December 1985).

Presents a set of primitive operations, called elementary transformations, by which the map-
ping from the conceptual schema to the corresponding internal schema (i.e., the conceptual/
internal mapping—see Chapter 2) can be made explicit, and hence properly studied. The ele-
mentary transformations include augmentation (extending a record by the inclusion of prefix
data as well as user data), encoding (converting data to an internal form by, e.g., compression),
segmentation (splitting a record into several pieces for storage purposes), and several others.
The paper claims that any conceptual/internal mapping can be represented by an appropriate
sequence of such elementary transformations, and hence that the transformations could form
the basis of an approach to automating the development of data management software. By way
of illustration, the paper applies the ideas to the analysis of three commercial systems:
INQUIRE, ADABAS, and System 2000. Note: Compare and contrast the (much later) GMAP
proposals of reference [2.5]. See also Appendix A for some possible counterexamples.

D.16 R. Bayer and C. McCreight: “Organization and Maintenance of Large Ordered Indexes,” Acta
Informatica 1, No. 3 (1972).

D.17 Douglas Comer: “The Ubiquitous B-Tree,” ACM Comp. Surv. 11, No. 2 (June 1979).

A good tutorial on B-trees.

D.18 R. E. Wagner: “Indexing Design Considerations,” IBM Sys. J. 12, No. 4 (1973).

Describes basic indexing concepts, with details of the techniques—including compression
techniques—used in IBM’s Virtual Storage Access Method (VSAM).

D.19 H. K. Chang: “Compressed Indexing Method,” IBM Technical Disclosure Bulletin II, No. 11
(April 1969).

D.20 Gopal K. Gupta: “A Self-Assessment Procedure Dealing with Binary Search Trees and B-
Trees,” CACM 27, No. 5 (May 1984).

D.21 Vincent Y. Lum: “Multi-attribute Retrieval with Combined Indexes,” CACM 13, No. 11
(November 1970).

The paper that introduced the technique of indexing on field combinations.

D.22 James K. Mullin: “Retrieval-Update Speed Tradeoffs Using Combined Indices,” CACM 14,
No. 12 (December 1971).

A sequel to reference [D.21] that gives performance statistics for the combined index scheme
for various retrieval/update ratios.

D.23 Ben Shneiderman: “Reduced Combined Indexes for Efficient Multiple Attribute Retrieval,”
Information Systems 2, No. 4 (1976).

Proposes a refinement of Lum’s combined indexing technique [D.21] that considerably reduces
the storage space and search time overheads. For example, the index combination ABCD,

1024 Appendix D / Storage Structures and Access Methods

BCDA, CDAB, DABC, ACBD, BDAC—see the answer to Exercise D.9(b)—could be replaced
by the combination ABCD, BCD, CDA, DAB, AC, BD. If each of A, B, C, D can assume 10 dis-
tinct values, then in the worst case the original combination would involve 60,000 index
entries, the reduced combination only 13,200 entries.

D.24 R. Morris: “Scatter Storage Techniques,” CACM 11, No. 1 (January 1968).

This paper is concerned primarily with hashing as it applies to the symbol table of an assembler
or compiler. Its main purpose is to describe an indirect hashing scheme based on scatter
tables. A scatter table is a table of record addresses, somewhat akin to the directory used in
extendable hashing [D.28]. As with extendable hashing, the hash function hashes into the scat-
ter table, not directly to the records themselves; the records themselves can be stored anywhere
that seems convenient. The scatter table can thus be thought of as a single-level index to the
underlying data, but an index that can be accessed directly via a hash instead of having to be
sequentially searched. Note that a given data file could conceivably have several distinct scatter
tables, thus in effect providing hash access to the data on several distinct hash fields (at the cost
of an extra I/O for any given hash access).

Despite its programming language orientation, the paper provides a good introduction to
hashing techniques in general, and most of the material is applicable to database hashing also.

D.25 W. D. Maurer and T. G. Lewis: “Hash Table Methods,” ACM Comp. Surv. 7, No. 1 (March
1975).

A good tutorial, though now somewhat dated (it does not discuss any of the newer approaches,
such as extendable hashing). The topics covered include basic hashing techniques (not just
division/remainder but also random, midsquare, radix, algebraic coding, folding, and digit
analysis techniques); collision and bucket-overflow handling; some theoretical analysis of the
various techniques; and alternatives to hashing (techniques to be used when hashing either can-
not or should not be used). Note: A bucket in hashing terminology is the unit of storage—typi-
cally a page—whose address is computed by the hash function. A bucket normally contains
several records.

D.26 V. Y. Lum, P.S.T. Yuen, and M. Dodd: “Key-to-Address Transform Techniques: A Fundamen-
tal Performance Study on Large Existing Formatted Files,” CACM 14, No. 4 (April 1971).

An investigation into the performance of several different “basic” (i.e., nonextendable) hashing
algorithms. The conclusion is that the division/remainder method seems to be the best all-
around performer.

D.27 M. V. Ramakrishna: “Hashing in Practice: Analysis of Hashing and Universal Hashing,” Proc.
1988 ACM SIGMOD Int. Conf. on Management of Data, Chicago, Ill. (June 1988).

As this paper points out (following Knuth [D.1]), any system that implements hashing has to
solve two problems that are almost independent of one another: It has to choose, out of the
wide variety of hash functions available, one that is effective, and it also has to provide an
effective technique for dealing with collisions. The author claims that while much research has
been devoted to the second of these problems, very little has been done on the first, and few
attempts have been made to compare the performance of hashing in practice with the perfor-
mance that is theoretically achievable (reference [D.26] is an exception). How then does a sys-
tem implementer choose an appropriate hash function? This paper claims that it is possible to
choose a hash function that in practice does yield performance close to that predicted by theory,
and presents a set of theoretical results in support of this claim.

D.28 Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H. Raymond Strong: “Extendible
Hashing—A Fast Access Method for Dynamic Files,” ACM TODS 4, No. 3 (September 1979).

Appendix D / Storage Structures and Access Methods 1025

D.29 G. D. Knott: “Expandable Open Addressing Hash Table Storage and Retrieval,” Proc. 1971
ACM SIGFIDET Workshop on Data Description, Access, and Control, San Diego, Calif. (November
1971).

D.30 P.-Å. Larson: “Dynamic Hashing,” BIT 18 (1978).

D.31 Witold Litwin: “Virtual Hashing: A Dynamically Changing Hashing,” Proc. 4th Int. Conf. on
Very Large Data Bases, Berlin, FDR (September 1978).

D.32 Witold Litwin: “Linear Hashing: A New Tool for File and Table Addressing,” Proc. 6th Int.
Conf. on Very Large Data Bases, Montreal, Canada (October 1980).

D.33 Per-Åke Larson: “Linear Hashing with Overflow-Handling by Linear Probing,” ACM TODS
10, No. 1 (March 1985).

D.34 Per-Åke Larson: “Linear Hashing with Separators—A Dynamic Hashing Scheme Achieving
One-Access Retrieval,” ACM TODS 13, No. 3 (September 1988).

References [D.28–D.34] all present extendable hashing schemes of one kind or another. The
proposals of [D.29] for “expandable” hashing are earlier than (and therefore of course quite
independent of) all of the others. Nevertheless, expandable hashing is fairly similar to extend-
able hashing as defined in reference [D.28], and so too is “dynamic” hashing [D.30], except
that both schemes use a tree-structured directory instead of the simple contiguous directory
proposed in reference [D.28]. “Virtual” hashing [D.31] is somewhat different; see the paper for
details. “Linear” hashing, introduced in [D.32] and refined in [D.33] and [D.34], is an improve-
ment on virtual hashing.

D.35 Witold Litwin: “Trie Hashing,” Proc. 1981 ACM SIGMOD Int. Conf. on Management of
Data, Ann Arbor, Mich. (April 1981).

Presents an extendable hashing scheme with a number of desirable properties:
� It is order-preserving (that is, the “physical” sequence of records corresponds to the logical

sequence of those records as defined by values of the hash field).
� It avoids the problems of complexity and so on usually encountered with order-preserving

hashes.
� An arbitrary record can be accessed (or shown not to exist) in a single disk access, even if

the file contains many millions of records.
� The file can be arbitrarily volatile (by contrast, many hash schemes, at least of the nonex-

tendable variety, tend to work rather poorly in the face of high insert volumes).

The hash function itself (which changes with time, as in all extendable hashing algo-
rithms) is represented by a trie structure [D.42], which is kept in main memory whenever the
file is in use and grows gracefully as the data file grows. The data file itself is, as already men-
tioned, kept in “physical” sequence on values of the hash field; and the logical sequence of leaf
entries in the trie structure corresponds, precisely, to that “physical” sequence of the data
records. Overflow in the data file is handled via a page-splitting technique, basically like the
page-splitting technique used in a B-tree.

Trie hashing looks very interesting. Like other hash schemes, it provides better perfor-
mance than indexing for direct access (one I/O vs. typically two or three for a B-tree); and it is
preferable to most other hash schemes in that it is order-preserving, which means that sequen-
tial access will also be fast. No B-tree or other additional structure is required to provide that
fast sequential access. However, note the assumption that the trie will fit into main memory
(probably realistic enough). If that assumption is invalid—that is, if the data file is too large—

1026 Appendix D / Storage Structures and Access Methods

or if the order-preserving property is not required, then linear hashing [D.32] or some other
technique might provide a preferable alternative.

D.36 David B. Lomet: “Bounded Index Exponential Hashing,” ACM TODS 8, No. 1 (March 1983).

Another extendable hashing scheme. The paper claims that:

� The scheme provides direct access to any record in close to one I/O on average (and never
more than two).

� It yields performance that is independent of the file size. (By contrast, most extendable
hashing schemes suffer from temporary performance degradation at the time a directory
page split occurs, because typically all such pages need to be split at approximately the
same time.)

� It makes efficient use of the available disk space (i.e., space utilization can be very good).
� It is straightforward to implement.

D.37 Anil K. Garg and C. C. Gotlieb: “Order-Preserving Key Transformations,” ACM TODS 11,
No. 2 (June 1986).

As explained in the annotation to reference [D.35], an order-preserving hash function (or “key
transformation”) is one in which the physical sequence of records corresponds to the logical
sequence of those records as defined by values of the hash field. Order-preserving hashes are
desirable for obvious reasons. One simple function that is clearly order-preserving is the fol-
lowing:

hash address = quotient after dividing hash field value
 by some constant (say 10,000)

However, an obvious problem with a function such as this one is that it performs very poorly if
values of the hash field are nonuniformly distributed (which is the usual case, of course). Hence
some researchers have proposed the idea of distribution-dependent (but order-preserving) hash
functions, or in other words functions that transform nonuniformly distributed hash field values
into uniformly distributed hash addresses while maintaining the order-preserving property.
(Note: Trie hashing [D.35] is an example of such an approach.) The present paper gives a
method for constructing such hash functions for real-world data files and demonstrates the
practical feasibility of those functions.

D.38 M. V. Ramakrishna and Per-Åke Larson: “File Organization Using Composite Perfect Hash-
ing,” ACM TODS 14, No. 2 (June 1989).

A hash function is called perfect if it produces no overflows. (Note: “No overflows” does not
mean “no collisions.” For example, if we assume that the hash function generates page
addresses, not record addresses—see the remark on “buckets” in the annotation to reference
[D.25]—and if each page can hold n records, then the hash function will be perfect if it never
maps more than n records to the same page.) A perfect hash function has the property that any
record can be retrieved in a single disk I/O. This paper presents a practical method for finding
and using such perfect functions.

D.39 D. A. Huffman: “A Method for the Construction of Minimum Redundancy Codes,” Proc. IRE
40 (September 1952).

D.40 B. A. Marron and P. A. D. de Maine: “Automatic Data Compression,” CACM 10, No. 11
(November 1967).

Gives two compression/decompression algorithms: NUPAK, which operates on numeric data,
and ANPAK, which operates on alphanumeric or “any” data (i.e., any string of bits).

Appendix D / Storage Structures and Access Methods 1027

D.41 Dennis G. Severance and Guy M. Lohman: “Differential Files: Their Application to the Main-
tenance of Large Databases,” ACM TODS 1, No. 3 (September 1976).

Discusses “differential files” and their advantages. The basic idea is that updates are not made
directly to the database itself, but instead are recorded in a physically distinct file—the differ-
ential file—and are merged with the actual database at some suitable subsequent time. The fol-
lowing advantages are claimed for such an approach:

� Database dumping costs are reduced.
� Incremental dumping is facilitated.
� Dumping and reorganization can both be performed concurrently with updating operations.
� Recovery after an application program failure is fast.
� Recovery after a hardware failure is fast.
� The risk of a serious data loss is reduced.
� Memo files are supported efficiently (see subsequent explanation).
� Software development is simplified.
� The main file software is simplified.
� Future storage costs might be reduced.

Note: A “memo file” is a kind of scratchpad copy of some portion of the database, used to pro-
vide quick access to data that is probably up to date and correct but is not guaranteed to be so.
See the discussion of snapshots in Chapter 10.

One problem not discussed is that of supporting efficient sequential access to the data—
for example, via an index—when some of the records are in the real database and some are in
the differential file.

D.42 E. Fredkin: “TRIE Memory,” CACM 3, No. 9 (September 1960).

A trie is a tree-structured data file (rather than a tree-structured access path to such a file; that
is, the data is represented by the tree, it is not pointed to from the tree—unless the “data file” is
really an index to some other file, as it effectively is in trie hashing [D.35]). Each node in a trie
logically consists of n entries, where n is the number of distinct symbols available for repre-
senting data values. For example, if each data item is a decimal integer, then each node will
have exactly 10 entries, corresponding to the decimal digits 0, 1, 2, ..., 9. Consider the data item
“4285.” The (unique) node at the top of the tree will include a pointer in the “4” entry. That
pointer will point to a node corresponding to all existing data items having “4” as their first
digit. That node in turn (the “4 node”) will include a pointer in its “2” entry to a node corre-
sponding to all data items having “42” as their first two digits (the “42 node”). The “42” node
will have a pointer in its “8” entry to the “428” node, and so on. And if (for example) there are
no data items beginning “429,” then the “9” entry in the “42” node will be empty (there will be
no pointer); in other words, the tree is pruned to contain only nodes that are nonempty. (A trie
is thus generally not a balanced tree.)

Note: The term trie derives from “retrieval,” but is nevertheless usually pronounced try.
Tries are also known as radix search trees or digital search trees.

D.43 Eugene Wong and T. C. Chiang: “Canonical Structure in Attribute Based File Organization,”
CACM 14, No. 9 (September 1971).

Proposes a novel storage structure based on boolean algebra. It is assumed that all access
requests are expressed as a boolean combination of elementary “field = value” conditions, and

1028 Appendix D / Storage Structures and Access Methods

that those elementary conditions are all known. Then the file can be partitioned into disjoint
subsets for storage purposes. The subsets are the “atoms” of the boolean algebra consisting of
the set of all sets of records retrievable via the original boolean access requests. The advantages
of such an arrangement include the following:

� Set intersection of atoms is never necessary.
� An arbitrary boolean request can easily be converted into a request for the union of one or

more atoms.
� Such a union never requires the elimination of duplicates.

D.44 Michael Stonebraker: “Operating System Support for Database Management,” CACM 24, No.
7 (July 1981).

Discusses reasons why various operating system facilities—in particular, the operating system
file management services—frequently do not provide the kind of services required by the
DBMS, and suggests some improvements to those facilities.

D.45 M. Schkolnick: “A Survey of Physical Database Design Methodology and Techniques,” Proc.
4th Int. Conf. on Very Large Data Bases, Berlin, FDR (September 1978).

D.46 S. Finkelstein, M. Schkolnick, and P. Tiberio: “Physical Database Design for Relational Data-
bases,” ACM TODS 13, No. 1 (March 1988).

In some respects, the problem of physical database design is more difficult in relational sys-
tems than it is in other kinds. This is because it is the system, not the user, that decides how to
“navigate” through the storage structure; thus, the system will only have a chance of perform-
ing well if the storage structures chosen by the database designer are a good fit with what the
system actually needs—which implies that the designer has to understand in some detail how
the system works internally. And designers typically will not have such knowledge (nor is it
desirable that they should, or should have to). Hence some kind of automated physical design
tool is highly desirable. This paper reports on such a tool, called DBDSGN, which was devel-
oped to work with System R [4.1–4.3, 4.12–4.14]. DBDSGN takes as input a workload defini-
tion (i.e., a set of user requests and their corresponding execution frequencies) and produces as
output a suggested physical design (i.e., a set of indexes for each file, typically including a
“clustering index”—see Exercise D.6—in each case). It interacts with the system optimizer
(see Chapter 18) to obtain information such as the optimizer’s understanding of the database
(with respect to file sizes, for example) and the cost formulas the optimizer uses.

DBDSGN was used as the basis for an IBM product called RDT, which was a design tool
for SQL/DS [4.14].

D.47 Kenneth C. Sevcik: “Data Base System Performance Prediction Using an Analytical Model,”
Proc. 7th Int. Conf. on Very Large Data Bases, Cannes, France (September 1981).

As its title implies, the scope of this paper is broader than that of the present appendix—it is
concerned with overall system performance issues, not just with storage structures as such. The
author proposes a layered framework in which various design decisions, and the interactions
among those decisions, can be systematically studied. The layers of the framework represent
the system at increasingly detailed levels of description; thus, each layer is more specific (i.e.,
at a lower level of abstraction) than the previous one. The names of the layers give some idea of
the corresponding levels of detail: abstract world, logical database, physical database, data unit
access, physical I/O access, and device loadings. The author claims that an analytical model
based on this framework could be used to predict numerous performance characteristics,
including device utilization, transaction throughput, and response times.

Appendix D / Storage Structures and Access Methods 1029

The paper includes an extensive annotated bibliography on system performance. In partic-
ular, it includes a brief survey of work on the performance of different storage structures.

D.48 Hanan Samet: “The Quadtree and Related Hierarchical Data Structures,” ACM Comp. Surv.
16, No. 2 (June 1984).

The storage structures described in the present appendix work well enough for traditional com-
mercial databases. However, as the field of database technology expands to include new kinds
of data—for example, spatial data, such as might be found in image-processing or cartographic
applications—so new methods of data representation at the storage level are needed also. This
paper is a tutorial introduction to some of those new methods. See Samet’s book [D.49] for fur-
ther discussion, also references [D.50–D.59].

D.49 (Same as reference [26.37].) Hanan Samet: The Design and Analysis of Spatial Data Struc-
tures. Reading, Mass.: Addison-Wesley (1990).

See the annotation to the previous reference.

D.50 Stavros Christodoulakis and Daniel Alexander Ford: “Retrieval Performance Versus Disc
Space Utilization on WORM Optical Discs,” Proc. 1989 ACM SIGMOD Int. Conf. on Management
of Data, Portland, Ore. (May/June 1989).

See the annotation to reference [D.51].

D.51 David Lomet and Betty Salzberg: “Access Methods for Multiversion Data,” Proc. 1989 ACM
SIGMOD Int. Conf. on Management of Data, Portland, Ore. (May/June 1989).

A WORM disk is an optical disk with the property that once a record has been written to the
disk, it can never be rewritten—that is, it cannot be updated in place (WORM is an acronym,
standing for “Write Once, Read Many times”). Such disks have obvious advantages for certain
applications, particularly those involving some kind of archival requirement. Traditional stor-
age structures such as B-trees are not adequate for such disks, however, precisely because of
the fact that rewriting is impossible. Hence (as explained in the annotation to reference [D.48],
though for different reasons), new storage structures are needed. References [D.50] and [D.51]
propose and analyze some such structures; reference [D.51] in particular concerns itself with
structures that are appropriate for applications in which a complete historical record is to be
kept—that is, applications in which data is only added to the database, never deleted (see Chap-
ter 23).

D.52 J. Encarnaçao and F.-L. Krause (eds.): File Structures and Data Bases for CAD. New York,
N.Y.: North-Holland (1982).

Computer-aided design (CAD) applications are a major driving force behind the research into
new storage structures. This book consists of the proceedings of a workshop on the subject,
with major sections as follows:

1. Data modeling for CAD

2. Data models for geometric modeling

3. Databases for geometric modeling

4. Hardware structures

5. CAD database research issues

6. Implementation problems in CAD database systems

7. Industrial applications

1030 Appendix D / Storage Structures and Access Methods

D.53 R. A. Finkel and J. L. Bentley: “Quad-Trees—A Data Structure for Retrieval on Composite
Keys,” Acta Informatica 4 (1974).

D.54 J. Nievergelt, H. Hinterberger, and K. C. Sevcik: “The Grid File: An Adaptable, Symmetric,
Multikey File Structure,” ACM TODS 9, No. 1 (March 1984).

D.55 Antonin Guttman: “R-Trees: A Dynamic Index Structure for Spatial Searching,” Proc. ACM
SIGMOD Int. Conf. on Management of Data, Boston, Mass. (June 1984).

D.56 Nick Roussopoulos and Daniel Leifker: “Direct Spatial Search on Pictorial Databases Using
Packed R-Trees,” Proc. ACM SIGMOD Int. Conf. on Management of Data, Austin, Tex. (May
1985).

D.57 D. A. Beckley, M. W. Evens, and V. K. Raman: “Multikey Retrieval from K-D Trees and
Quad-Trees,” Proc. ACM SIGMOD Int. Conf. on Management of Data, Austin, Tex. (May 1985).

D.58 Michael Freeston: “The BANG File: A New Kind of Grid File,” Proc. ACM SIGMOD Int.
Conf. on Management of Data, San Francisco, Calif. (May 1987).

D.59 Michael F. Barnsley and Alan D. Sloan: “A Better Way to Compress Images,” BYTE 13, No. 1
(January 1988).

Describes a novel compression technique for images called fractal compression. The technique
works by not storing the image itself at all, but rather storing code values that can be used to re-
create the desired image as and when needed by means of appropriate fractal equations. In this
way, “compression ratios of 10,000 to 1—or even higher” can be achieved.

