

Cavity Parameter Effects On Piezoelectric Synthetic Jets

Poorna Mane¹, Karla Mossi¹, Nicolas Castro¹, Ali Rostami¹, Robert Bryant² ¹Virginia Commonwealth University ²NASA Langley Research Center

ABSTRACT

A synthetic jet that utilizes piezoelectric composites is studied both numerically and experimentally. Two piezoelectric composite actuators, Bimorph and Thunder[®], are modeled using a moving boundary model with a mesh generated using a tri-pave unstructured scheme. The effects of dimensional cavity parameters such as height, and orifice diameter, on the jet maximum velocity are described numerically and experimentally.

BACKGROUND

Synthetic Jets

Zero Net Mass Flux Jets that are formed at the edge of an orifice by the periodic motion of a diaphragm mounted in a sealed cavity.

Bimorph

Thunder[®]

· Top layer of perforated copper, thickness 0.0254mm diameter 63.5mm • Middle layer of PZT 5A, thickness 0.254mm, diameter 63.5mm Bottom layer of steel, thickness 0.254mm, diameter 68.5mm • Displacement up to

- 0.06mm at 400Vpp
- Capacitance 110nF

EXPERIMENTAL SETUP

NUMERICAL MODELING

Geometry & Mesh

Synthetic Jet boundary conditions • Surface 1: *u* described by the moving diaphragm boundary, v = 0• Surfaces 2, 3, 4, and 5: u = v = 0• Surface 6 (at large radial distance): constant ambient pressure (inlet to domain)

• Surface 7 (at large axial distance) : constant ambient pressure (outlet from domain)

Diaphragm Moving Boundary Conditions

≻Bimorph Logarithmic Profile

Bimorph Logarithmic Profile

Thunder[®] Parabolic Profile

RESULTS

Diaphraon Cavity

Orifies

- * Bimorph simulations in good agreement with experimental data
- * Thunder[®] simulations under-predicted experimental results due to the
- complex shape and the pressure developed inside the cavity
- * For the Bimorph, both cavity height and orifice diameter are significant, but the orifice diameter has a larger effect
- ✤ In case of Thunder[®], only orifice diameter is significant

• Two PZT 5A disks

• Displacement up to

Capacitance 130nF

0.3mm at 180Vpp

bonded at opposite

polarities

· During manufacturing the layers are glued with a polyimide and cured at 320°C

• Due to a difference in the coefficients of thermal expansion among the layers the final diaphragm is prestressed