Probabilistic Operations Research Models

Paul Brooks Jill Hardin

Department of Statistical Sciences and Operations Research
Virginia Commonwealth University

BNFO 691 December 5, 2006
Outline

1. Operations Research Models
2. Axioms of Probability
 - Definition
 - Interpretations of Probability
 - Probability Rules
 - Example: Blood Types
 - Random Variables
3. Markov Chains
 - Markov Property
 - Blood Types II
4. Simulation
 - The Nature of Simulation Modeling
 - An Example of a Discrete-Event Simulation
Operations Research Models

Deterministic OR
- Continuous Variables
 - Linear Functions
 - Nonlinear Functions
- Discrete Variables
 - Linear Functions
 - Nonlinear Functions

Probabilistic OR
- Discrete Time
 - Discrete Space
 - Continuous Space
- Continuous Time
 - Discrete Space
 - Continuous Space
Markov Chains

Operations Research Models
- Axioms of Probability
- Markov Chains
- Simulation

Markov Chains

Deterministic OR
- Continuous Variables
 - Linear Functions
 - Nonlinear Functions

Discrete Variables
- Linear Functions
- Nonlinear Functions

Probabilistic OR
- Discrete Time
 - Discrete Space
- Continuous Time
 - Continuous Space
 - Discrete Space
 - Continuous Space

Discrete Time
- Linear Functions
- Nonlinear Functions

Continuous Space
- Linear Functions
- Nonlinear Functions
Discrete vs. Continuous Models

Discrete
- means “space between”
- countable, e.g., integers, binary numbers
- attributes, variables, time, space

Continuous
- uncountable, e.g., real numbers, intervals of real numbers
- attributes, variables, time, space
Linear vs. Nonlinear Models

Linear
- additivity - every function is the sum of the individual contributions of activities
- proportionality - the contribution of an activity to a function is proportional to the level of the activity.

Nonlinear
Additivity or proportionality (or both) are violated
Probabilistic vs. Deterministic Models

Probabilistic
Probability is used to model behaviors that are uncertain or unknown

Deterministic
Randomness is not considered; systems are assumed to be totally determined. Sensitivity analysis can help incorporate uncertainty into models.
What is Probability?

- Simply speaking **probabilities** are numbers between 0 and 1 that reflect the chances of “something” happening.
- Synonymous with **chance, likelihood, odds**.
- Has different interpretations.
Cards and Dice

- What is the probability
 - that I draw a black card?
 - that I roll a 7?
 - that I roll doubles?

 These are called events

- Are you sure? What assumptions did you make?
- Were they correct?
- How can I correct these assumptions?
- How can I determine a more accurate probability?
Cards and Dice

What is the probability

- that I draw a black card?
- that I roll a 7?
- that I roll doubles?

These are called events

Are you sure? What assumptions did you make?
Were they correct?
How can I correct these assumptions?
How can I determine a more accurate probability?
Cards and Dice

What is the probability

- that I draw a black card?
- that I roll a 7?
- that I roll doubles?

These are called **events**

Are you sure? What assumptions did you make?

Were they correct?

How can I correct these assumptions?

How can I determine a more accurate probability?
Cards and Dice

What is the probability
- that I draw a black card?
- that I roll a 7?
- that I roll doubles?

These are called events

Are you sure? What assumptions did you make?
Were they correct?
How can I correct these assumptions?
How can I determine a more accurate probability?
Cards and Dice

What is the probability
- that I draw a black card?
- that I roll a 7?
- that I roll doubles?

These are called **events**

Are you sure? What assumptions did you make?
Were they correct?
How can I correct these assumptions?
How can I determine a more accurate probability?
What is the probability

- that I draw a black card?
- that I roll a 7?
- that I roll doubles?

These are called **events**

Are you sure? What assumptions did you make?

Were they correct?

How can I correct these assumptions?

How can I determine a more accurate probability?
What is the probability
- that I draw a black card?
- that I roll a 7?
- that I roll doubles?

These are called **events**

Are you sure? What assumptions did you make?
- Were they correct?
- How can I correct these assumptions?
- How can I determine a more accurate probability?
Cards and Dice

- What is the probability
 - that I draw a black card?
 - that I roll a 7?
 - that I roll doubles?

 These are called events

- Are you sure? What assumptions did you make?
- Were they correct?
 - How can I correct these assumptions?
 - How can I determine a more accurate probability?
Cards and Dice

- What is the probability
 - that I draw a black card?
 - that I roll a 7?
 - that I roll doubles?

 These are called **events**

- Are you sure? What assumptions did you make?
- Were they correct?
- How can I correct these assumptions?
- How can I determine a more accurate probability?
Cards and Dice

- What is the probability
 - that I draw a black card?
 - that I roll a 7?
 - that I roll doubles?

These are called events

- Are you sure? What assumptions did you make?
- Were they correct?
- How can I correct these assumptions?
- How can I determine a more accurate probability?
Interpretations of Probability

Classical/Analytical

- Theoretically determined probabilities
 - Probability of rolling a 3 on a fair (normally marked) die: 1/6
 - Probability of drawing a black card in a standard deck: 1/2

- Advantages
 - Probabilities are accurate
 - No experimentation required
 - Objective

- Disadvantage: only possible to compute under the best of circumstances (e.g., we know that the die is fair)
Interpretations of Probability

Classical/Analytical

- Theoretically determined probabilities
 - Probability of rolling a 3 on a fair (normally marked) die: 1/6
 - Probability of drawing a black card in a standard deck: 1/2

- Advantages
 - probabilities are accurate
 - no experimentation required
 - objective

- Disadvantage: only possible to compute under the best of circumstances (e.g., we know that the die is fair)
Interpretations of Probability

Classical/Analytical

- Theoretically determined probabilities
 - Probability of rolling a 3 on a fair (normally marked) die: 1/6
 - Probability of drawing a black card in a standard deck: 1/2

Advantages
- probabilities are accurate
- no experimentation required
- objective

Disadvantage: only possible to compute under the best of circumstances (e.g., we know that the die is fair)
Classical/Analytical

- Theoretically determined probabilities
 - Probability of rolling a 3 on a fair (normally marked) die: 1/6
 - Probability of drawing a black card in a standard deck: 1/2

- Advantages
 - probabilities are accurate
 - no experimentation required
 - objective

- Disadvantage: only possible to compute under the best of circumstances (e.g., we know that the die is fair)
Interpretations of Probability

Classical/Analytical

- Theoretically determined probabilities
 - Probability of rolling a 3 on a fair (normally marked) die: 1/6
 - Probability of drawing a black card in a standard deck: 1/2

- Advantages
 - probabilities are accurate
 - no experimentation required
 - objective

- Disadvantage: only possible to compute under the best of circumstances (e.g., we know that the die is fair)
Interpretations of Probability

Relative Frequency/Empirical

- Observed proportion of successful events
 - 10 cards selected, 6 of them black \rightarrow probability of selecting a black card is 0.6
 - Minnesota has had snowfall of at least 60 inches in 95 of the last 100 years \rightarrow probability of having at least 60 inches of snow this year is 0.95.

- Advantages
 - can collect empirical data to estimate probabilities when they can’t be determined analytically
 - objective

- Disadvantage: situation must be replicable
Interpretations of Probability

Relative Frequency/Empirical

- Observed proportion of successful events
 - 10 cards selected, 6 of them black → probability of selecting a black card is 0.6
 - Minnesota has had snowfall of at least 60 inches in 95 of the last 100 years → probability of having at least 60 inches of snow this year is 0.95.

- Advantages
 - can collect empirical data to estimate probabilities when they can’t be determined analytically
 - objective

- Disadvantage: situation must be replicable
Interpretations of Probability

Relative Frequency/Empirical

- Observed proportion of successful events
 - 10 cards selected, 6 of them black → probability of selecting a black card is 0.6
 - Minnesota has had snowfall of at least 60 inches in 95 of the last 100 years → probability of having at least 60 inches of snow this year is 0.95.

- Advantages
 - can collect empirical data to estimate probabilities when they can’t be determined analytically
 - objective

- Disadvantage: situation must be replicable
Interpretations of Probability

Relative Frequency/Empirical

- Observed proportion of successful events
 - 10 cards selected, 6 of them black → probability of selecting a black card is 0.6
 - Minnesota has had snowfall of at least 60 inches in 95 of the last 100 years → probability of having at least 60 inches of snow this year is 0.95.

- Advantages
 - can collect empirical data to estimate probabilities when they can’t be determined analytically
 - objective

- Disadvantage: situation must be replicable
Interpretations of Probability

Relative Frequency/Empirical

- Observed proportion of successful events
 - 10 cards selected, 6 of them black → probability of selecting a black card is 0.6
 - Minnesota has had snowfall of at least 60 inches in 95 of the last 100 years → probability of having at least 60 inches of snow this year is 0.95.

- Advantages
 - can collect empirical data to estimate probabilities when they can’t be determined analytically
- Objective

- Disadvantage: situation must be replicable
Interpretations of Probability

Relative Frequency/Empirical

- Observed proportion of successful events
 - 10 cards selected, 6 of them black → probability of selecting a black card is 0.6
 - Minnesota has had snowfall of at least 60 inches in 95 of the last 100 years → probability of having at least 60 inches of snow this year is 0.95.

- Advantages
 - can collect empirical data to estimate probabilities when they can’t be determined analytically
 - objective

- Disadvantage: situation must be replicable
Interpretations of Probability

Relative Frequency/Empirical

- Observed proportion of successful events
 - 10 cards selected, 6 of them black → probability of selecting a black card is 0.6
 - Minnesota has had snowfall of at least 60 inches in 95 of the last 100 years → probability of having at least 60 inches of snow this year is 0.95.

- Advantages
 - can collect empirical data to estimate probabilities when they can’t be determined analytically
 - objective

- Disadvantage: situation must be replicable
Interpretations of Probability

Personal/Subjective

- “What do you think are the odds?”
 - What’s the chance of Florida repeating as NCAA basketball champion?
 - What’s the probability that a nuclear bomb will be deployed in your lifetime?

- Relies on expert information (definition of “expert” is fluid).

- Advantage:
 - always applicable - *everybody* has an opinion
 - useful in risk analysis

- Disadvantage: difficult (sometimes impossible?) to determine accuracy.
Interpretations of Probability

Personal/Subjective

- “What do you think are the odds?”
 - What’s the chance of Florida repeating as NCAA basketball champion?
 - What’s the probability that a nuclear bomb will be deployed in your lifetime?

- Relies on expert information (definition of “expert” is fluid).

- Advantage:
 - always applicable - *everybody* has an opinion
 - useful in risk analysis

- Disadvantage: difficult (sometimes impossible?) to determine accuracy.
Interpretations of Probability

Personal/Subjective

“What do you think are the odds?”

- What’s the chance of Florida repeating as NCAA basketball champion?
- What’s the probability that a nuclear bomb will be deployed in your lifetime?

Relies on expert information (definition of “expert” is fluid).

Advantage:

- always applicable - everybody has an opinion
- useful in risk analysis

Disadvantage: difficult (sometimes impossible?) to determine accuracy.

Paul Brooks, Jill Hardin
Interpretations of Probability

Personal/Subjective

- “What do you think are the odds?”
 - What’s the chance of Florida repeating as NCAA basketball champion?
 - What’s the probability that a nuclear bomb will be deployed in your lifetime?

- Relies on expert information (definition of “expert” is fluid).

 - **Advantage:**
 - always applicable - *everybody* has an opinion
 - useful in risk analysis

 - **Disadvantage:** difficult (sometimes impossible?) to determine accuracy.
Interpretations of Probability

Personal/Subjective

“What do you think are the odds?”
- What’s the chance of Florida repeating as NCAA basketball champion?
- What’s the probability that a nuclear bomb will be deployed in your lifetime?

Relies on expert information (definition of “expert” is fluid).

Advantage:
- always applicable - everybody has an opinion
- useful in risk analysis

Disadvantage: difficult (sometimes impossible?) to determine accuracy.
Interpretations of Probability

Personal/Subjective

“What do you think are the odds?”
- What’s the chance of Florida repeating as NCAA basketball champion?
- What’s the probability that a nuclear bomb will be deployed in your lifetime?

Relies on expert information (definition of “expert” is fluid).

Advantage:
- always applicable - everybody has an opinion
- useful in risk analysis

Disadvantage: difficult (sometimes impossible?) to determine accuracy.
Outline

1. Operations Research Models
2. Axioms of Probability
 - Definition
 - Interpretations of Probability
 - Probability Rules
 - Example: Blood Types
 - Random Variables
3. Markov Chains
 - Markov Property
 - Blood Types II
4. Simulation
 - The Nature of Simulation Modeling
 - An Example of a Discrete-Event Simulation
Probability Rules

1. Probability is always between 0 and 1.
 - probability of an event E is written $P(E)$

2. If event E cannot occur then $P(E) = 0$.
 - $E = \text{“Jill will grow to be 6 feet tall”}$, $P(E) = 0$

3. If an event is certain, then $P(E) = 1$.
 - $E = \text{“Class will end before midnight.”}$, $P(E) = 1$

4. The sum of the probabilities of all possible outcomes is 1.
1. Probability is always between 0 and 1.

 - probability of an event \(E \) is written \(P(E) \)

2. If event \(E \) cannot occur then \(P(E) = 0 \).

 - \(E = \) “Jill will grow to be 6 feet tall”. \(P(E) = 0 \).

3. If an event is certain, then \(P(E) = 1 \).

 - \(E = \) “Class will end before midnight.” \(P(E) = 1 \).

4. The sum of the probabilities of all possible outcomes is 1.
1. Probability is always between 0 and 1.
 - probability of an event E is written $P(E)$
2. If event E cannot occur then $P(E) = 0$.
 - $E = \text{“Jill will grow to be 6 feet tall”}. \quad P(E) = 0$
3. If an event is certain, then $P(E) = 1$.
 - $E = \text{“Class will end before midnight.”}. \quad P(E) = 1$
4. The sum of the probabilities of all possible outcomes is 1.
Probability Rules

1. Probability is always between 0 and 1.
 - probability of an event E is written $P(E)$

2. If event E cannot occur then $P(E) = 0$.
 - $E = \text{“Jill will grow to be 6 feet tall”}. P(E) = 0$.

3. If an event is certain, then $P(E) = 1$.
 - $E = \text{“Class will end before midnight.”}. P(E) = 1$.

4. The sum of the probabilities of all possible outcomes is 1.
Probability Rules

1. Probability is always between 0 and 1.
 - probability of an event E is written $P(E)$
2. If event E cannot occur then $P(E) = 0$.
 - $E = \text{“Jill will grow to be 6 feet tall”}. \quad P(E) = 0$
3. If an event is certain, then $P(E) = 1$.
 - $E = \text{“Class will end before midnight.”} \quad P(E) = 1$
4. The sum of the probabilities of all possible outcomes is 1.
Probability Rules

1. Probability is always between 0 and 1.
 - probability of an event E is written $P(E)$
2. If event E cannot occur then $P(E) = 0$.
 - $E = “Jill will grow to be 6 feet tall”. P(E) = 0$
3. If an event is certain, then $P(E) = 1$.
 - $E = “Class will end before midnight.” P(E) = 1$
4. The sum of the probabilities of all possible outcomes is 1.
Probability Rules

1. Probability is always between 0 and 1.
 - Probability of an event E is written $P(E)$
2. If event E cannot occur then $P(E) = 0$.
 - $E = \text{“Jill will grow to be 6 feet tall”}$. $P(E) = 0$.
3. If an event is certain, then $P(E) = 1$.
 - $E = \text{“Class will end before midnight.”}$. $P(E) = 1$.
4. The sum of the probabilities of all possible outcomes is 1.
Probability Rules

1. Probability is always between 0 and 1.
 - probability of an event E is written $P(E)$
2. If event E cannot occur then $P(E) = 0$.
 - $E =$ “Jill will grow to be 6 feet tall”. $P(E) = 0$.
3. If an event is certain, then $P(E) = 1$.
 - $E =$ “Class will end before midnight.” $P(E) = 1$.
4. The sum of the probabilities of all possible outcomes is 1.
5. For two events A and B:

- $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$
- $P(A \text{ and } B) = P(A) + P(B) - P(A \text{ or } B)$
6. For two events A and B

- $P(B \text{ occurs given that } A \text{ occurs})$

 $= P(B|A) = P(A \text{ and } B)/P(A)$

 $\Rightarrow P(A \text{ and } B) = P(B|A)P(A)$

- If $P(B|A) = P(B)$ and $P(A|B) = P(A)$ then A and B are said to be independent.

 That is, knowing that one event will occur doesn’t give us any information about the other.

- If A and B are independent, then $P(A \text{ and } B) = P(A)P(B)$.

Paul Brooks, Jill Hardin
6. For two events A and B

- $P(B$ occurs given that A occurs)
 $= P(B|A) = P(A$ and $B)/P(A)$
 $\Rightarrow P(A$ and $B) = P(B|A)P(A)$

- If $P(B|A) = P(B)$ and $P(A|B) = P(A)$ then A and B are said to be independent.

 That is, knowing that one event will occur doesn’t give us any information about the other.

- If A and B are independent, then $P(A$ and $B) = P(A)P(B)$.

Paul Brooks, Jill Hardin
6. For two events A and B

- $P(B \text{ occurs given that } A \text{ occurs})$

 $= P(B|A) = P(A \text{ and } B)/P(A)$

 $\Rightarrow P(A \text{ and } B) = P(B|A)P(A)$

- If $P(B|A) = P(B)$ and $P(A|B) = P(A)$ then A and B are said to be independent.

 That is, knowing that one event will occur doesn’t give us any information about the other.

- If A and B are independent, then $P(A \text{ and } B) = P(A)P(B)$.
6. For two events A and B

- $P(B \text{ occurs given that } A \text{ occurs})$

 $= P(B|A) = P(A \text{ and } B)/P(A)$

 $\Rightarrow P(A \text{ and } B) = P(B|A)P(A)$

- If $P(B|A) = P(B)$ and $P(A|B) = P(A)$ then A and B are said to be independent.

 That is, knowing that one event will occur doesn’t give us any information about the other.

- If A and B are independent, then $P(A \text{ and } B) = P(A)P(B)$.
Definition

Mutually exclusive events are non-overlapping—that is, they cannot happen at the same time.

- $A =$ randomly chosen person is male
 $B =$ randomly chosen person if female
 These events are mutually exclusive.

- $A =$ randomly chosen person has blue eyes
 $B =$ randomly chosen person has brown hair
 These events are not mutually exclusive.
Bayes’ Rule

- Suppose A_1, A_2, \ldots, A_k are mutually exclusive events so that
 - $P(A_i) > 0, \ i = 1, \ldots, k$
 - $P(A_1) + P(A_2) + \cdots + P(A_k) = 1$ (i.e., they are exhaustive).
- Let B be another event with $P(B) > 0$. Then

$$P(A_i | B) = \frac{P(A_i \text{ and } B)}{P(B)} = \frac{P(B | A_i) P(A_i)}{\sum_{i=1}^{k} P(B | A_i) P(A_i)}$$
Bayes’ Rule

\[P(A_i | B) = \frac{P(A_i \text{ and } B)}{P(B)} = \frac{P(B | A_i)P(A_i)}{\sum_{i=1}^{k} P(B | A_i)P(A_i)} \]
Bayes’ Rule: Example

Suppose that 5% of all athletes use performance-enhancing drugs. Suppose further that for the drug test in use, the false positive rate is 3% and the false negative rate is 7%.

An athlete is tested, and her results are positive. What is the probability that she uses drugs?

- 5%?
- 97%
- something else?
Bayes’ Rule: Example

- We want to find \(P(\text{drug use}|\text{positive test}) \). What we have are
 - \(P(\text{positive test}|\text{no drug use}) = P(\text{false positive}) \)
 - \(P(\text{negative test}|\text{drug use}) = P(\text{false negative}) \)

- Bayes’ Rule says that

\[
P(\text{drugs}|\text{positive}) = \frac{P(\text{positive}|\text{drugs})P(\text{drugs})}{P(\text{positive}|\text{drugs})P(\text{drugs}) + P(\text{positive}|\text{no drugs})P(\text{no drugs})}
\]
Bayes’ Rule: Example

\[P(\text{drugs}|\text{positive}) = \frac{P(\text{positive}|\text{drugs})P(\text{drugs})}{P(\text{positive}|\text{drugs})P(\text{drugs}) + P(\text{positive}|\text{no drugs})P(\text{no drugs})} \]

\[= \frac{(0.93)(0.05)}{(0.93)(0.05) + (0.03)(0.95)} \]

\[= 0.62 \]

When we first met the athlete, we thought the chance of her being a drug user was 5%. We were able to use Bayes’ Rule, along with the test results, to update our “expert” information.
Outline

1 Operations Research Models
2 Axioms of Probability
 - Definition
 - Interpretations of Probability
 - Probability Rules
 - Example: Blood Types
 - Random Variables
3 Markov Chains
 - Markov Property
 - Blood Types II
4 Simulation
 - The Nature of Simulation Modeling
 - An Example of a Discrete-Event Simulation

Paul Brooks, Jill Hardin
Example: Blood Types

Suppose the distribution of blood types (and genotypes) in a population is as follows:

<table>
<thead>
<tr>
<th>Blood Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>40%</td>
</tr>
<tr>
<td>AA</td>
<td>20%</td>
</tr>
<tr>
<td>AO</td>
<td>20%</td>
</tr>
<tr>
<td>B</td>
<td>12%</td>
</tr>
<tr>
<td>BB</td>
<td>6%</td>
</tr>
<tr>
<td>BO</td>
<td>6%</td>
</tr>
<tr>
<td>AB</td>
<td>5%</td>
</tr>
<tr>
<td>AB</td>
<td>5%</td>
</tr>
<tr>
<td>O</td>
<td>43%</td>
</tr>
<tr>
<td>OO</td>
<td>43%</td>
</tr>
</tbody>
</table>
What is the probability of producing a child with type O blood if your genotype is
Example: Blood Types

What is the probability of producing a child with type O blood if your genotype is AO?

\[P(OO_{\text{child}}) = P(\text{mate with AO or BO, you contribute O, mate contributes O}) + P(\text{mate with OO, you contribute O}) \]

\[= (0.26)(0.5)(0.5) + (0.43)(0.5) \]

\[= 0.28 \]
What is the probability of producing a child with type O blood if your genotype is OO?

\[
P(OO_{child}) = P(\text{mate with AO or BO, and mate contributes O}) + P(\text{mate with OO})
\]

\[
= (0.26)(0.5) + 0.43
\]

\[
= 0.56
\]
What is the probability of producing a child with type O blood if your genotype is BB?

$P(OO_{\text{child}})$ is zero! (impossible event)
Outline

1. Operations Research Models
2. Axioms of Probability
 - Definition
 - Interpretations of Probability
 - Probability Rules
 - Example: Blood Types
 - Random Variables
3. Markov Chains
 - Markov Property
 - Blood Types II
4. Simulation
 - The Nature of Simulation Modeling
 - An Example of a Discrete-Event Simulation
Random Variables

- Sometimes we’re more interested in some function of an outcome, rather than the outcome itself.
 - If I flip a coin 5 times, how many are heads? This is a function of the outcomes on five separate flips.
 - How long will it be before Jill and Paul stop talking?

- This function of the outcome is called a random variable.

- Observed value is determined by chance.
Random Variables

- Need to know what values are possible— discrete or continuous?
- Need to know what values are probable— how likely are each of these values?
- Probabilities defined by the probability density function (or probability mass function)
pmf’s and pdf’s

Probability Mass Function

For a discrete random variable X, $f(x) = P(X = x)$ for each possible value of x.

Probability Density Function

- $f(x) \geq 0$ for all x
- $P(a \leq X \leq b) =$ area under $f(x)$ between a and b
- Total area under f is 1
- $P(X = x) = 0$
Probability Density Functions

- Uniform
- Normal
- Triangular
- Exponential
Outline

1. Operations Research Models
2. Axioms of Probability
 - Definition
 - Interpretations of Probability
 - Probability Rules
 - Example: Blood Types
 - Random Variables
3. Markov Chains
 - Markov Property
 - Blood Types II
4. Simulation
 - The Nature of Simulation Modeling
 - An Example of a Discrete-Event Simulation

Paul Brooks, Jill Hardin
A stochastic process with state variable X_t is said to possess the **Markov Property** if

$$P(X_{t+1} = i_{t+1} | X_0 = i_0, X_1 = i_1, \ldots, X_t = i_t) = P(X_{t+1} = i_{t+1} | X_t = i_t)$$

Translation: “The probabilities that a stochastic process moves to a new state depends only on the current state; the probabilities are independent of all past events.”
Definition

A stochastic process with state variable X_t is said to possess the **Markov Property** if

$$P(X_{t+1} = i_{t+1} | X_0 = i_0, X_1 = i_1, \ldots, X_t = i_t) = P(X_{t+1} = i_{t+1} | X_t = i_t)$$

Translation: “The probabilities that a stochastic process moves to a new state depends only on the current state; the probabilities are independent of all past events.”
Illustrations of the Markov Property

Let $X_t =$ current position on the board after t rolls
Let $X_t =$ location of a unit of ingested lead at time t

Illustrations of the Markov Property

Paul Brooks, Jill Hardin
Illustrations of the Markov Property

Let $X_t =$ location of a unit of ingested lead at time t

Paul Brooks, Jill Hardin
Illustrations of the Markov Property

Let $X_t =$ political party of the U.S. Representative from Virginia’s 3rd district after election t
Outline

1. Operations Research Models
2. Axioms of Probability
 - Definition
 - Interpretations of Probability
 - Probability Rules
 - Example: Blood Types
 - Random Variables
3. Markov Chains
 - Markov Property
 - Blood Types II
4. Simulation
 - The Nature of Simulation Modeling
 - An Example of a Discrete-Event Simulation
Transition Matrix

<table>
<thead>
<tr>
<th>Parent</th>
<th>AA</th>
<th>AB</th>
<th>AO</th>
<th>BB</th>
<th>BO</th>
<th>OO</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>0.33</td>
<td>0.12</td>
<td>0.55</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AB</td>
<td>0.16</td>
<td>0.22</td>
<td>0.28</td>
<td>0.06</td>
<td>0.28</td>
<td>0</td>
</tr>
<tr>
<td>AO</td>
<td>0.16</td>
<td>0.06</td>
<td>0.44</td>
<td>0</td>
<td>0.06</td>
<td>0.28</td>
</tr>
<tr>
<td>BB</td>
<td>0</td>
<td>0.33</td>
<td>0</td>
<td>0.12</td>
<td>0.55</td>
<td>0</td>
</tr>
<tr>
<td>BO</td>
<td>0</td>
<td>0.16</td>
<td>0.16</td>
<td>0.06</td>
<td>0.34</td>
<td>0.28</td>
</tr>
<tr>
<td>OO</td>
<td>0</td>
<td>0</td>
<td>0.33</td>
<td>0</td>
<td>0.12</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Let X_t = the blood type of a person in generation t
Blood Types

Let X_t = the blood type of a person in generation t
Theorem

Let P be the transition matrix of a Markov Chain. Then $P(X_t = j | X_0 = i)$ is the ijth entry of P^t.

Corollary

The probability that a grandchild has genotype BB given that the grandparent has genotype AA is given in the appropriate entry of P^2 (in our model).
Steady-State Behavior

Theorem

If all states are accessible from one another, then

$$\lim_{t \to \infty} P(X_t = j | X_0 = i) = \pi_j$$

where π_j is the j^{th} element of the vector π such that $\pi = \pi P$ and $\sum_j \pi_j = 1$

This theorem gives us a means to calculate the steady state distribution of genotypes. The quantity π_j represents the probability that, after a long time, a descendant has genotype j. It also represents the proportion of descendants that have genotype j.

Paul Brooks, Jill Hardin
Outline

1. Operations Research Models
2. Axioms of Probability
 - Definition
 - Interpretations of Probability
 - Probability Rules
 - Example: Blood Types
 - Random Variables
3. Markov Chains
 - Markov Property
 - Blood Types II
4. Simulation
 - The Nature of Simulation Modeling
 - An Example of a Discrete-Event Simulation
A Flowchart for Simulation Modeling

State objective and design study

Collect Data

Construct/Program a Model

Model is Valid?

Yes

Design Experiments

Analyze Output Data

No

Probabilistic Modeling: Simulation vs. Analysis

Analysis
- **Advantage:** Produces exact values for the characteristics of a model given varied input. These values can easily be compared for determining optimal input values.

- **Disadvantage:** Often requires strict assumptions about the nature of the model for any hope of solving for exact values.

Simulation
- **Advantage:** Flexible in terms of assumptions required for model.

- **Disadvantage:** Produces estimates of characteristics of a model; simulations need to be run for a wide variety of inputs and for many replications in order to derive reasonable estimates.
Types of Simulation

Definition

A *discrete-event simulation* is a continuous-time, discrete-space simulation.

Definition

A *Monte Carlo simulation* is a static simulation.
Pitfalls of Simulation

- Failure to have a well-defined set of objectives at the beginning of the simulation study
- Inappropriate level of model detail
- Failure to collect good system data
- Obliviously using simulation software whose complex macro statements may not be well documented and may not implement the desired modeling logic

- Belief that easy-to-use simulation packages require a lower level of technical competence
- Failure to account correctly for sources of randomness in the actual system
- Using arbitrary distributions as input
- Making a single replication of a particular system design
- Comparing alternative system designs on the basis of one replication
Outline

1. Operations Research Models
2. Axioms of Probability
 - Definition
 - Interpretations of Probability
 - Probability Rules
 - Example: Blood Types
 - Random Variables
3. Markov Chains
 - Markov Property
 - Blood Types II
4. Simulation
 - The Nature of Simulation Modeling
 - An Example of a Discrete-Event Simulation

Paul Brooks, Jill Hardin