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Summary A Redundant Array of Independent Disks (RAID) array is a hard-disk drive (HDD) array where 
part of the physical storage capacity stores redundant information. Data is regenerated from 
the physical storage if one or more of the disks in the array (including a single failed disk sector) 
or the access path to it fails.

There are many different levels of RAID. The RAID level used depends on several factors:

• Overhead of reading and writing data

• Overhead of storing and maintaining parity

• Mean Time to Data Loss (MTDL)

The newest level of RAID is RAID6, which has two implementations (Reed-Solomon P+Q or 
Double Parity). RAID6 is the first RAID level that allows the simultaneous loss of two disks, 
resulting in an improved MTDL over RAID5.

Reference Design

This reference design incorporates advantages of immersed IP blocks of the Virtex™-4 
architecture including distributed memory, FIFO memory, Digital Clock Managers (DCM), 
18-Kbit Block Select RAMs (block RAM), PowerPC™ processor (PowerPC 405), and DSP48 
blocks in a hardware acceleration block that supports Reed-Solomon RAID6 and can support 
other RAID levels, when coupled with the appropriate storage array control firmware.

Introduction In pre-RAID6 levels, when a disk fails, system firmware uses the remaining disks to regenerate 
the data lost from the failed disk. If another disk fails before completion of the regeneration, the 
data is lost forever. At this point, increased MTDL is needed. Until now, the MTDL of RAID5 
satisfied the smaller size of HDDs, which due to their size have lower probability of disk failure.

With the rising popularity of inexpensive disks (such as Serial ATA (SATA) and Serial Attached 
SCSI (SAS)) and larger capacity disks, the Mean Time Between Failures (MTBF) of a disk has 
increased dramatically. 

Here is an example that highlights the increased MTBF (for each disk):

In the case of 50 disks, each with 300 GB capacity, an MTBF of 5 x 105 hours (a 10-14 read 
error rate) results in one array failure in less than eight years for RAID5. RAID6 improves this to 
one array failure in 80,000 years.

Achieving this large MTDL for the RAID system justifies the increased overhead for:

• disk space for additional parity data

• additional reads and writes to disk drives

• system complexity required for handling multiple disk failures
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To understand the Reed-Solomon RAID6, designers must have some familiarity with Galois 
Field (GF) mathematics. This application note only covers the GF equations and refers to the 
GF mathematical definitions. For detailed information on GF mathematics, see [Ref 1], [Ref 2], 
and [Ref 3].

In GF mathematics, a calculation continues to have the same number of bits as the two 
operands that generated it (i.e., , two 8-bit numbers result in an 8-bit number). Equation 1 and 
Equation 2 are the definitions of GF multiplication and division. The addition/subtraction in 
these equations is regular-integer addition/ subtraction, which can be done using the 
immersed DSP48 blocks in Virtex-4 FPGAs.

Equation 1

Equation 2

This reference design implements the gflog and gfilog values with the polynomial 
x8 + x4 + x3 + x2 = 1 and generates the following look-up tables (LUTs) (Table 1 and Table 2), 
which are stored in block RAM.

Notes: 
1. The GFLOG(00) is undefined and requires special treatment in the reference design.

Table  1:  GFLOG LUT, Stored in Block RAM

GFLOG 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 X(1) 0 1 19 2 32 1A C6 3 DF 33 EE 1B 68 C7 4B

1 4 64 E0 0E 34 8D EF 81 1C C1 69 F8 C8 8 4C 71

2 5 8A 65 2F E1 24 0F 21 35 93 8E DA F0 12 82 45

3 1D B5 C2 7D 6A 27 F9 B9 C9 9A 9 78 4D E4 72 A6

4 6 BF 8B 62 66 DD 30 FD E2 98 25 B3 10 91 22 88

5 36 D0 94 CE 8F 96 DB BD F1 D2 13 5C 83 38 46 40

6 1E 42 B6 A3 C3 48 7E 6E 6B 3A 28 54 FA 85 BA 3D

7 CA 5E 9B 9F 0A 15 79 2B 4E D4 E5 AC 73 F3 A7 57

8 7 70 C0 F7 8C 80 63 0D 67 4A DE ED 31 C5 FE 18

9 E3 A5 99 77 26 B8 B4 7C 11 44 92 D9 23 20 89 2E

A 37 3F D1 5B 95 BC CF CD 90 87 97 B2 DC FC BE 61

B F2 56 D3 AB 14 2A 5D 9E 84 3C 39 53 47 6D 41 A2

C 1F 2D 43 D8 B7 7B A4 76 C4 17 49 EC 7F 0C 6F F6

D 6C A1 3B 52 29 9D 55 AA FB 60 86 B1 BB CC 3E 5A

E CB 59 5F B0 9C A9 A0 51 0B F5 16 EB 7A 75 2C D7

F 4F AE D5 E9 E6 E7 AD E8 74 D6 F4 EA A8 50 58 AF

Table  2:  GFILOG LUT, Stored in Block RAM

GFILOG 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 4 8 10 20 40 80 1D 3A 74 E8 CD 87 13 26

1 4C 98 2D 5A B4 75 EA C9 8F 3 6 0C 18 30 60 C0

2 9D 27 4E 9C 25 4A 94 35 6A D4 B5 77 EE C1 9F 23

0x02 0x08 gfi gf 0x02( )log gf 0x08( )log+[ ] gfi 0x01 0x03+[ ]
gfi 0x04[ ] 0x10=log

=log=log=⊗

0x0d 0x11÷ gfi gf 0x0dlog[log= gf 0x11 ]
gfi 0x68 0x64 ]– gfi 0x04[ ] 0x10=log=[log

=log–

http://www.xilinx.com


Introduction

XAPP731(v1.1) March 20, 2007 www.xilinx.com  3

R

Notes: 
1. The GFILOG(FF) is undefined and requires special treatment in the reference design.

Another differentiator of RAID6 is the method that data and redundancy information is stored 
on multiple disks. Figure 1 shows an example of a 7-disk system with five active disks and two 
spare disks (used as hot spare backups for data recovery). Data and parity information is 
striped horizontally across the drives in blocks of data. Each block is typically a multiple of 512 
bytes, and data is physically stored on 512-byte sectors on the disk drives. To keep the parity 
drives from being a system bottleneck (which can occur in RAID4), the parity information 
rotates around the drives in integer increments of a block of data. The five-drive case has a 40 
percent storage overhead for parity, while larger disk arrays can reduce this overhead (e.g., the 
overhead in a 12-disk system is reduced to 16 percent).

3 46 8C 5 0A 14 28 50 A0 5D BA 69 D2 B9 6F DE A1

4 5F BE 61 C2 99 2F 5E BC 65 CA 89 0F 1E 3C 78 F0

5 FD E7 D3 BB 6B D6 B1 7F FE E1 DF A3 5B B6 71 E2

6 D9 AF 43 86 11 22 44 88 0D 1A 34 68 D0 BD 67 CE

7 81 1F 3E 7C F8 ED C7 93 3B 76 EC C5 97 33 66 CC

8 85 17 2E 5C B8 6D DA A9 4F 9E 21 42 84 15 2A 54

9 A8 4D 9A 29 52 A4 55 AA 49 92 39 72 E4 D5 B7 73

A E6 D1 BF 63 C6 91 3F 7E FC E5 D7 B3 7B F6 F1 FF

B E3 DB AB 4B 96 31 62 C4 95 37 6E DC A5 57 AE 41

C 82 19 32 64 C8 8D 7 0E 1C 38 70 E0 DD A7 53 A6

D 51 A2 59 B2 79 F2 F9 EF C3 9B 2B 56 AC 45 8A 9

E 12 24 48 90 3D 7A F4 F5 F7 F3 FB EB CB 8B 0B 16

F 2C 58 B0 7D FA E9 CF 83 1B 36 6C D8 AD 47 8E X(1)

Table  2:  GFILOG LUT, Stored in Block RAM (Continued)

GFILOG 0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 1:  RAID6 Disk Data Structure 
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RAID6 Parity (P and Q) Equations

To recover from two disk failures or two bad sectors on a horizontal stripe across the storage 
array, RAID6 stores two unique parity values, P and Q. These values, are associated with each 
horizontal data block stripe on the storage array. The stripes are numbered vertically starting 
with 0. The data within each stripe is numbered horizontally and vertically to identify data 
locations within a stripe as well as within a vertical stripe index. Horizontal stripes are made up 
of an integer number of disk sectors. The P parity block is created by logically XORing data 
blocks in a horizontal stripe together, as is done in RAID4 and RAID5 systems. The second 
parity, Q, creates a second equation (Equation 5), which solves for two unknowns (or data 
failure points). For a detailed discussion on the specific GF mathematics and equations 
required to implement a RAID6 system, see [Ref 1]. To simplify the discussion, the equations 
used in this section assume a RAID6 disk array that is composed of three data disks and two 
parity disks for each block of data. These equations extend up to 255 disks (including the two 
parity disks), the mathematical limit of the equations. However, most typical applications range 
from 12 to 16 disks.

P Parity Block

The first RAID 6 equation represents P parity (Equation 3), which is identical to RAID5 and 
RAID4. A simple XOR function generates the parity block from the data values in the same 
sector horizontally across the data drives in an array group. P0 XORs the D00, D10, and D20 
(Figure 1).

Equation 3

N = 0 to maximum number of blocks (sectors) on the disk drive 

M = number of data disks in the array group 

Equation 4 is the first equation for Sector 0 of a three data drive system. In the event of a single 
drive failure, any data block can be regenerated using this equation.

Equation 4

Q Parity Block

The RAID6 Q parity assigns a GF multiplier constant associated with each data disk drive 
(Equation 5). The constant applies only to the data blocks striped horizontally across the array, 
not to each drive in the array. Each data block is GF multiplied by a constant, before adding to 
the data elements of the next data drive. The g constants are determined from the GFILOG 
LUT (Table 2). If another drive is added to the array, then g3 = gfilog(3) = 0x8.

Equation 5

Equation 6 is the equation for the third sector of a three data drive system.

Equation 6

N = 0 to maximum number of blocks (sectors) on the disk drive 

M = number of data disks in the array group 

PN D0N D1N D2N … D M( 1 )N–⊕ ⊕ ⊕ ⊕=

P0 D00 D10 D20⊕ ⊕=

QN g0 D0N⊗( ) g1 D1N⊗( ) g2 D2N⊗( ) … g M 1–( ) D M( 1 )N–⊗⊕ ⊕ ⊕ ⊕=

Q2 0x01 D02⊗( ) 0x02 D12⊗( ) 0x04 D22⊗( )⊕ ⊕=

http://www.xilinx.com
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Updating Data, 
P, and Q Blocks

Whenever a host-write command occurs, the P and Q parities must be updated. For example, 
the data on Sector 0 of Disk 1 is being written. For this specific sector, the old data block along 
with the old P and Q parity must be read. Equation 7 through Equation 10 calculate the updated 
parities. This is commonly referred to as the write penalty, encountered in RAID storage 
systems. Prior to writing new data and new parity blocks to the array, the old data and old parity 
must first be read from the array and placed in the controller memory, so the new parity can be 
calculated from the old data and old parity information stored on disk.

Equation 7

Equation 8

Equation 9

Equation 10

Three Data 
Drive System
— Disk Failure 
Example

With P and Q parity generated and striped across the five-disk (three data) array, as shown in 
Figure 1, a single or dual-disk failure within the array does not cause loss of data to the host 
application. Any data block can be regenerated using the P and Q parity information stripped 
across the array. Double data block loss is more difficult to regenerate than single data block 
loss. The equations used to regenerate data blocks are discussed in this section.

Typically, arrays either contain hot spares (Figure 1), used when a disk failure occurs, or service 
personnel are rapidly dispatched to replace the failed disks. Another system implementation 
that ensures no data is lost is the use of an entire hot spare RAID6 array to facilitate transferring 
data, reconstructing data, and updating P and Q parity. The system operates in a degraded 
mode until the disks are replaced or the hot spares are switched. Data regenerated from the 
remaining information is striped horizontally on the remaining disks. Regenerated data is then 
sequentially transferred to the hot spare disk until all data (P and Q blocks) has been updated. 
At that time, the system is back in normal operating mode. Different regeneration algorithms 
are used depending upon whether a single or dual-disk failure occurs.

In any RAID system, there are different types of disk failure scenarios. Every data disk added 
to the Bunch of Disks (BOD) adds more variables to the parity generation or data regeneration 
equations that are discussed later in this section. A system with three data disks is used to 
facilitate understanding of data recovery equations that are used in the reference design. Array 
management firmware is responsible for managing the data reconstruction process. The 
algorithms to regenerate data depends on the number of data disks in the array. Assuming that 
the regeneration firmware starts at Sector 0 and works its way to the maximum sector on the 
disk, the equations used to regenerate data are repetitive.

• If a single disk failure occurs when the P block sector is not lost, data is regenerated from 
the remaining data and parity block.

• If the P block sector is lost, data does not have to be regenerated because the data is valid 
and stored on one of the remaining disks in the array. 

• If a hot spare has been activated and the array management software is rebuilding a 
replaced drive, then the P and Q values are regenerated and copied to the new drive.

For this example, assume that Disk 0 fails. Equation 11, Equation 12, and Equation 13 are 
used to regenerate data, sector by sector vertically through a disk (Figure 1), read, and 
returned to a host system.

Equation 11

Equation 12

Equation 13

PN_NEW PN_OLD D1N_OLD D1N_NEW⊕ ⊕=

QN_NEW QN_OLD g( 1 D( 1N_OLD D1N_NEW ) )⊕⊗⊕=

P0_NEW P0_OLD D10_OLD D10_NEW⊕ ⊕=

Q0_NEW Q0_OLD 0x02 D10_OLD D10_NEW⊗( )⊗[ ]⊕=

D00 D10 D20 P0⊕ ⊕=

D01 D11 P1 D21⊕ ⊕=

D02 P2 D12 D22⊕ ⊕=

http://www.xilinx.com
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P3 does not need to be regenerated for host read commands. Q4 does not need to be 
regenerated for host read commands.

The system cannot accept new write data, because there is no space to store the information 
unless hot spare drives are present or the failed disks have been replaced.The following 
discussion assumes that the hot spare drives are enabled and ready to accept regenerated 
data and parity blocks from the RAID controller.

In this example, if a dual disk fails, one of the eight equations (double data, P and Q, P and D0, 
P and D1, P and D2, Q and Do, Q and D1, Q and D2) must be used to regenerate data and 
parity blocks in a RAID6 system. Determining which equation to use depends upon the set of 
disks that fail and the sector of the disk that is currently being regenerated. Disk array 
management firmware is typically responsible for managing the disk interface and regeneration 
algorithms. Array management firmware is not part of this reference design. See Equation 16, 
Equation 17, Equation 20, Equation 21, Equation 26, Equation 27, Equation 34, and 
Equation 35.

P Parity Generation or Regeneration

P Parity Generation and P Parity Regeneration are the simplest regeneration possibilities 
described in this app note; in either case, the data is all that is needed. The simple XOR 
Equation 10 finds the P value. In this case, the third drive has failed and the parity is being 
regenerated. Regenerated parity is written to one of the hot spare drives under control of the 
array management firmware.

Equation 14

Q Parity Generation or Regeneration

Q Parity Generation or Regeneration requires GF mathematics, using the GFLOG and 
GFILOG LUTs (hard-coded into block RAM) (see Table 1 and Table 2) and the DSP48 block for 
integer addition. Equation 15 regenerates Sector 2 of Disk 2 shown in Figure 1. Q parity is 
written to one of the hot spare drives under control of the array management firmware.

Equation 15

P and Q Regeneration

P and Q Regeneration is a superset of the previous two cases (“P Parity Generation or 
Regeneration” and “Q Parity Generation or Regeneration”) because all of the data disks are still 
available. To save calculation time, Equation 16 and Equation 17 are run at the same time, 
using multiple datapaths. In this case, Sector 4 of Disk 0 and Disk 4 have failed. Regenerated 
P and Q parity blocks are written to the hot spare drives under control of the array management 
firmware.

Equation 16

Equation 17

Q and Data Regeneration

Q and Data Regeneration is the next level of complexity. Since the P parity is intact, the data 
can be recovered with the simple XOR equation. The Q parity regeneration is possible using 
the recovered data. The D1 and D2 GF multiplication of the Q parity is calculated in parallel to 
the D0 parity to reduce latency. Equation 18 through Equation 21 are first followed by the 
scenario of Disk 0 and Disk 1 failing and regenerating Sector 4 as shown in Figure 1. When a 
host read command is in progress, the regenerated data block is returned to the host. Q parity 
and regenerated data blocks are written to the hot spare drives under control of the array 
management firmware.

P1 D01 D11 D21⊕ ⊕=

Q2 0x01 D02⊗( ) 0( x02 D12 ) 0( x04 D22 )⊗⊕⊗⊕=

P4 D04 D14 D24⊕ ⊕=

Q4 0x01 D04⊗( ) 0( x02 D14 ) 0( x04 D24 )⊗⊕⊗⊕=

http://www.xilinx.com
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Equation 18

Equation 19

Equation 20

Equation 21

P and Data Regeneration

With P and data regeneration, lost data must be generated with the Q parity equations, creating 
an intermediate Q’ value. The P parity then uses the newly generated data to complete the 
XOR equation. The general case equations, Equation 22 through Equation 24 (assuming D0N 
is lost), are followed by the specific equations (Equation 25 through Equation 27) for the case 
where Sector 1 is lost for both Disk 1 and Disk 2 based on the example shown on Figure 1. 
When a host read command is in process, the regenerated data block is returned to the host. 
Regenerated data and parity blocks are written to the hot spare drives under control of the array 
management firmware.

Equation 22

Equation 23

Equation 24

Equation 25

Equation 26

Equation 27

Double Data Regeneration

Double data regeneration is the most complicated case in RAID6 and in the reference design 
as well. Two intermediate calculations (P' and Q') are required. The general equations 
(Equation 28 through Equation 31) are lengthy. The assumption is that D0N and D1N are lost in 
the example shown in Figure 1. Since there are only three data disks in this example, and two 
disks are missing Sector 0 of Disk 0 and Disk 1, the intermediate equations (Equation 32 
through Equation 35) represent the remaining data Disk 2. When a host read command is in 
progress, the regenerated data blocks are returned to the host. Regenerated data blocks are 
written to the hot spare drives under control of the array management firmware.

Equation 28

Equation 29

Equation 30

Equation 31

Equation 32

Equation 33

Equation 34

Equation 35

D0N D1N D2N … D M( 1 )N PN⊕–⊕ ⊕ ⊕=

QN 0x01 D0N⊗( ) 0( x02 D1N ) 0( x04 D2N ) …
g( M( 1 )– D M( 1 )N )–⊗

⊕
⊕

⊗⊕⊗⊕=

D04 D14 D24 P4⊕ ⊕=

Q4 0x01 D04⊗( ) 0( x02 D14 )⊗⊕ 0( x04 D24 )⊗⊕=

Q′
N 0x02 D1N⊗( ) 0( x04 D2N )⊗⊕ … g( M( 1 )– D M( 1 )N )–⊗⊕ ⊕=

D0N 0x01 Q( N Q′
N )⊕⊗=

PN D0N D1N D2N … D M( 1 )N–⊕ ⊕ ⊕ ⊕=

Q′
1 0x02 D11⊗( ) 0( x04 D21 )⊗⊕=

D01 0x01 Q1 Q′
1⊕( )⊗=

P1 D01 D11 D21⊕ ⊕=

Q′
N 0x04 D2N⊗( ) 0( x08 D3N ) … g( M( 1 )– D M( 1 )N )–⊗⊕ ⊕⊗⊕=

P′
N D2N … D M( 1 )N–⊕ ⊕=

D0N 0( x01 0x02 ) 1–⊕ 0(( x02 PN P′
N )⊕( ) QN Q′

N )⊕ ⊕⊗ ⊗=

D1N D0N P( N P′
N )⊕ ⊕=

Q′
0 0x04 D20⊗( )=

P′
0 D20=

D00 0x01 0x02⊕( ) 1– 0x02 P0 P′
0⊕( )⊗( )(⊗ Q0⊕ Q′

0 )⊕=

D10 D00 P( 0 P′
0 )⊕ ⊕=
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Reference 
Design

System Architecture

This application note assumes the system architecture shown in Figure 2.

The system contains a RAID host controller on an ML405 demonstration board. This board 
contains a Virtex-4 FPGA along with a DDR memory and Serial ATA (SATA) connectors 
attached to a port multiplier. The port multiplier connects to five SATA HDDs. A SATA protocol 
controller that interfaces with the memory controller and the PowerPC 405 processor can be 
implemented in the FPGA. Replacing the SATA protocol controller with Serial Attached SCSI 
(SAS), Fibre Channel (FC), or any other disk interface protocol is possible depending on the 
overall system requirements.

This application note concentrates on the hardware acceleration portion of a RAID6 system as 
shown in Figure 2: PowerPC 405 embedded controller, DDR memory controller, and RAID IP 
block. The shaded portions of Figure 2 are only there to show a possible system level 
implementation using the RAID-IP hardware connected in a Serial ATA system.

An embedded PowerPC 405 block:

• Controls the RAID6 hardware.

• Sets up pointers to the data and parity blocks of memory.

• Sets up the hardware.

The reference design does not include the disk array management firmware or the Serial ATA 
interface to the disk drives.

A microprocessor runs the RAID firmware and configures the RAID hardware accelerator 
block. Demonstration firmware included in the reference design generates data and parity 
blocks to emulate the data that would come from an HDD connection in a "real" system.  This 
emulation allows the reference design to run without an HDD connection. The PowerPC 405 
firmware generates data placed in the DDR memory that serves as a cache for the RAID 
hardware accelerator.

A Xilinx Multiple Port Memory Controller (MPMC) controls the DDR memory. The MPMC 
provides multiple memory masters to access a shared memory. The MPMC connects to each 
of the PowerPC 405 instruction and data side processor local bus interfaces. Two other ports 
provide system specific implementations for this reference design; one is used for the RAID 
hardware accelerator. For additional information on the MPMC, see [Ref 6].

http://www.xilinx.com
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Figure 2:  Possible RAID6 System Implementation
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Hardware Accelerator

A RAID6 hardware accelerator is mathematically intensive. The RAID6 calculations require 
each block of data to be stored in a memory buffer, and then read into a temporary data buffer 
while being XORed or added to other data elements.

A large amount of data manipulation is required. Data manipulation is time intensive, but 
hardware implementations are faster than processor-only register calculations because 
hardware provides parallel manipulation of data blocks, clock-rate LUT access, clock rate 
integer addition of two eight bit values, and multipliers much faster than a processor. The 
RAID6 calculations are a small portion of the overall time period used (including disk seek, disk 
access, data transfer (HDD to/from cache memory), and the RAID6 acceleration).

The RAID hardware accelerator memory interface is based on the topography of the ML405 
board (which is the verification platform). This determines the data flow block discussed in 
“Data Flow for Different Regeneration Cases,” page 12.

The hardware accelerator has four main blocks (Figure 3).

• Data Manipulation Block (DMB)

• RAID Finite State Machine (FSM)

• Device Control Register FSM (DCR FSM)

• MPMC_IF

Data Manipulation Block

The Data Manipulation Block (DMB) shown in Figure 4 is the modular block of logic that 
actually performs the mathematical operations on one byte of the data. (Depending on the 
system data width, more DMB logic blocks can be added to support larger data widths.) This 
reference design is set up for a four-byte implementation (four instantiations of the DMB). It can 
create parity and regenerate data of any case discussed in the RAID6 equations section. Since 
all of the equations involve GF addition (XOR) or GF multiplication (GFILOG, GFLOG, and 
integer addition), there are several main building blocks of the DMB:

• XOR_BRAM (BLUE)

• MUX_BRAM (GREEN)

• RAID_MULT_4 (YELLOW)

Figure 3:  RAID6 Hardware Accelerator Block Diagram
XAPP731_03_030807

RAID FSM MPMC_IF

Data Manipulation Block

DCR FSM
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The XOR_BRAM block completes the simple XOR function for calculating the P parity. The 
XOR_BRAM block contains a 32-bit register and a 2:1 MUX for use in several other 
regeneration scenarios.

The MUX_BRAM block(s) holds calculated data blocks until other data blocks are either 
retrieved from the MPMC or calculated in other blocks of the DMB. The 2:1 MUXs are used for 
many regeneration possibilities that the DMB covers.

The RAID_MULT_4 block completes the GF multiplication portion of the equations (see 
Equation 1). This is done in three steps. 

1. The GFLOG is calculated. This is implemented with a block RAM used as a LUT (one dual 
port block RAM is used for two LUTs). The GFLOG table (Table 1) is hard-coded into the 
block RAM and is addressed by the data coming into the RAID_MULT_4 block. 

2. The result of the GFLOG table (Table 1) is added to the GFLOG of the g constant (the 
GFLOG result is hard-coded for the small number of possible outcomes with the reference 
design using a 3 data disk system. For systems with a large number of disk drives in an 
array, this could be implemented as a LUT with the input controlled through a processor 
DCR register to select the Gn constant) by a portion of one DSP48 block. Only one DSP48 
block is used for the four GF multiplication functions in the RAID_MULT_4 block of a one-
byte data width system.

3. The sum enters the GFILOG LUT implemented in another block RAM, implemented 
similarly to the GFLOG. If the input to the RAID_MULT_4 block is zero, the result of this 
special GF multiplication case is zero.

Several other XOR and MUXs tie these building blocks together, as shown in Figure 4. Detailed 
analysis of the data flow through the DMB blocks, covering all of the logic equations 
implemented in the reference design, is covered in the “Data Flow for Different Regeneration 
Cases” section that follows.

http://www.xilinx.com


Reference Design

XAPP731(v1.1) March 20, 2007 www.xilinx.com  12

R

Data Flow for Different Regeneration Cases

This section summarizes data flow through Data Manipulation Blocks for the different 
regeneration scenarios for the five disk drive example. Detailed analysis of the data flow 
through the DMB blocks, covering all of the logic equations implemented in the reference 
design, is covered in the Data Flow for Different Regeneration Cases section that follows. The 
actual hardware has many cycle-to-cycle dependencies that are not described here (to simplify 
readability and understanding).

Generate/Regenerate P Parity

1. Write the first data block from the MPMC into XOR_BRAM.

2. XOR the second data block from the MPMC with output of XOR_BRAM and write it back 
into XOR_BRAM.

Figure 4:  Data Manipulation Block Logic
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3. XOR the third data block from the MPMC with output of XOR_BRAM and write it back into 
XOR_BRAM.

4. When the MPMC is ready, read P parity out of the XOR_BRAM through the 4:1 MUX to the 
MPMC.

Generate/Regenerate Q Parity

1. Write the first data block from the MPMC into MUX_BRAM_0.

2. Read the data block out of MUX_BRAM_0 and run through RAID_MULT_4(b), then write 
the result back into MUX_BRAM_0.

3. Write second data block from the MPMC into MUX_BRAM_2, XOR the read data out of 
MUX_BRAM_0 with the data read from MUX_BRAM_2 passed through RAID_MULT_4(c), 
and then write the result into MUX_BRAM_1.

4. Write the third data block from the MPMC into MUX_BRAM_2, XOR the read data out of 
MUX_BRAM_2 passed through RAID_MULT_4(c) with read data out of MUX_BRAM_1 
through the MUX_BRAM_0, and then write the result into MUX_BRAM_1.

5. When the MPMC is ready, read the Q parity block out of the MUX_BRAM_1 through the 4:1 
MUX to the MPMC.

Regenerate Data

1. Write the P parity block from the MPMC into XOR_BRAM.

2. XOR a data block from the MPMC with output of XOR_BRAM and write it back into 
XOR_BRAM.

3. XOR another data block from the MPMC with output of XOR_BRAM and write it back into 
XOR_BRAM.

4. When the MPMC is ready, read reconstructed data out of the XOR_BRAM through the 4:1 
MUX to the MPMC.

Regenerate Q (a) and P (b) Parity

Letters (a) and (b) are used to distinguish simultaneous parallel calculations.

1. Write the first data block from the MPMC into MUX_BRAM_0 and XOR_BRAM memory. 
This step stores identical data into two block RAM elements in preparation for a parallel 
calculation in step 2.

2. (a) Write the second data block from the MPMC into MUX_BRAM_2, XOR read data out of 
MUX_BRAM_0 with the data read from MUX_BRAM_2 passed through RAID_MULT_4(c), 
and then write the result into MUX_BRAM_1.

(b) XOR the second data block from MPMC with output of XOR_BRAM and write it back 
into XOR_BRAM.

3. (a) Write the third data block from the MPMC into MUX_BRAM_2, XOR read data of 
MUX_BRAM_2 passed through RAID_MULT_4(c) with read data out of MUX_BRAM_1 
passed through the MUX_BRAM_0, and then write the result into MUX_BRAM_1.

(b) XOR the third data block from the MPMC with output of XOR_BRAM and write it back 
into XOR_BRAM.

4. (b) When the MPMC is ready, read the P parity block out of the XOR_BRAM through the 
4:1 MUX to the MPMC.

5. (a) When MPMC is ready, read Q parity block out of the MUX_BRAM_1 through the 4:1 
MUX to the MPMC. Writes to the MPMC must be single threaded as the destination 
addresses are different for the P and Q parity block information.
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Regenerate Q (a) Parity and Data (b)

Letters (a) and (b) are used to distinguish simultaneous parallel calculations.

1. (b) Write the P parity block from the MPMC into XOR_BRAM.

2. (a) Write the first data block from the MPMC into MUX_BRAM_0, read data out of 
MUX_BRAM_0 and pass through RAID_MULT_4(b), and then write back into 
MUX_BRAM_0.

(b) XOR first data block from the MPMC with the parity block output of XOR_BRAM and 
write it back into XOR_BRAM.

3. (a) Write another data block from the MPMC into MUX_BRAM_2, XOR the read data out of 
MUX_BRAM_2 passed through RAID_MULT_4(c) with read data out of MUX_BRAM_0, 
and then write into MUX_BRAM_1.

(b) XOR the second data block from the MPMC with output of XOR_BRAM and write it 
back into XOR_BRAM, which now contains the regenerated data block.

4. (b) When MPMC is ready, read lost data block out of XOR_BRAM through the 4:1 MUX to 
the MPMC, plus write lost data block into MUX_BRAM_2.

5. (a) Read data block from MUX_BRAM_2 and run through RAID_MULT_4(c), read data out 
of MUX_BRAM_0 and XOR these data blocks, and write the result into MUX_BRAM_1.

6. (a) When the MPMC is ready, read the Q parity block out of the MUX_BRAM_1 through the 
4:1 MUX to the MPMC.

Regenerate P (a) Parity and Data (b)

1. (a) Write the first data block from the MPMC into XOR_BRAM.

(b) Write the first data block from the MPMC into MUX_BRAM_0 read data out of 
MUX_BRAM_0 and pass through RAID_MULT_4(b), then write back into MUX_BRAM_0.

2. (a) XOR the second data block from the MPMC with output of XOR_BRAM and write it 
back into XOR_BRAM.

(b) Write the second data block from the MPMC into MUX_BRAM_2, XOR read data out of 
MUX_BRAM_2 passed through RAID_MULT_4(c) with read data out of MUX_BRAM_0, 
and then write into MUX_BRAM_1.

3. (b) XOR the read Q' value from MUX_BRAM_1 with registered Q parity, pass that result 
through RAID_MULT_4(d), and then write lost data into MUX_BRAM_3.

4. (b) When the MPMC is ready, read the lost data block from MUX_BRAM_3 through the 4:1 
MUX to the MPMC. If a host read command is in process, and this data block is the target 
of the read command, the array management firmware can return the regenerated data to 
the host once the data has been written to the DDR memory. 

(a) XOR the data block from (b) with the output of the XOR_BRAM, and write the P parity 
block into the XOR_BRAM.

5. (a) When the MPMC is ready, read the P parity block from the XOR_BRAM through the 4:1 
MUX to the MPMC.

Regenerate Double Data

1. Write only known good data blocks from the MPMC into XOR_BRAM and MUX_BRAM_0.

2. Read the data block out of MUX_BRAM_0, pass it through RAID_MULT_4(b), and then 
write the value back into MUX_BRAM_0.

3. XOR the P parity block from the MPMC with the output of the XOR_BRAM, and write it 
back into the XOR_BRAM.

4. Write the Q parity block from the MPMC into MUX_BRAM_2, and XOR the read data block 
out of MUX_BRAM_2 passed through RAID_MULT_4(c) with read data out of 
MUX_BRAM_0, and then write the result into MUX_BRAM_1. MUX_BRAM_0 contains the 
only known good data block at this point of the calculation for this data stripe.
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5. XOR the read value out of XOR_BRAM, which is passed through RAID_MULT_4(a) with 
the read value output of MUX_BRAM_1, then pass this result through RAID_MULT_4(d), 
and finally write the lost data value into MUX_BRAM_3.

6. When MPMC is ready, read the first data block from MUX_BRAM_3 through the 4:1 MUX 
to the MPMC, XOR this lost data block with the output of the XOR_BRAM, and write the 
result back into the XOR_BRAM.

7. When the MPMC is ready, read the second data block out of the XOR_BRAM through the 
4:1 MUX to the MPMC. Two single-threaded writes to the MPMC are required because the 
two regenerated data blocks must be written into two different memory locations in DDR 
memory.

Update P and Q Parity

These calculations are only required when a host write command is issued to the array and new 
parity blocks must be generated to replace old parity blocks. Array management firmware is 
responsible for retrieving data and parity information from the disk array and placing the 
contents in the DDR memory. Writing to an array that is being constructed can be permitted, 
depending on the system specific implementations (that are beyond the scope of this 
application note). 

1. Write the old data block from the MPMC into XOR_BRAM and MUX_BRAM_0.

2. Write the new data block from the MPMC into MUX_BRAM_2, XOR the new data block 
from the MPMC with output of XOR_BRAM, and then write the result back into 
XOR_BRAM.

3. XOR the values out of MUX_BRAM_0 with the value read out of MUX_BRAM_2, which are 
passed through (g=1 so data is not modified) RAID_MULT_4(c), and then write the value 
into MUX_BRAM_1.

4. XOR the old P parity block from the MPMC with the output of the XOR_BRAM, and write 
the result back into XOR_BRAM.

5. XOR the registered old Q parity block with the output of the MUX_BRAM_1, then write the 
result in MUX_BRAM_3

6. When the MPMC is ready, read the new P parity out of the XOR_BRAM through the 4:1 
MUX to the MPMC.

7. When MPMC is ready, read the new Q parity out of the MUX_BRAM_3 through the 4:1 
MUX to the MPMC. At this point in the calculation, array management firmware can write to 
the disk array and update the new data, P parity, and Q parity blocks from information 
contained in the DDR memory.

RAID FSM

The RAID Finite State Machine (FSM) is the main control logic of the reference design. It 
controls the MPMC_IF block along with all the DMB signals, including the block RAM address, 
read, write control, and MUX select lines. This FSM maintains all of the data pipelining and 
efficiently passes the data through the DMB.

DCR and DCR FSM

The hardware accelerator depends on firmware to place disk data into the DDR memory and to 
manage the memory buffer. PowerPC 405 firmware controls the hardware accelerator with a 
set of registers implemented on the PowerPC 405 DCR bus. Hardware status is provided to the 
PowerPC 405 processor on DCR status registers. DCR control registers are provided to point 
to data and parity block starting addresses in the external DDR memory as well as control 
registers to define the type of regeneration calculation to be performed. Another register sets 
the size of the data block calculated; the default is 512 bytes. Status registers indicate when the 
calculation, on a block basis, is finished.
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Twelve DCR registers are provided to interface to the accelerator hardware. Table 3 contains 
the DCR address and a description of the register function. The PP405 processor reads and 
writes to all of these registers. All registers are readable by the hardware accelerator except the 
RAID_LED, and only RAID_RECON is writable. Also in Table 3 are the registers that control the 
CDMAC interface and the SATA controller.

Table  3:  DCR Register Descriptions

DCR Address Register Name Description

0x180 RAID_RECON

Bit[0] indicates to the RAID IP a regenerate request when 1. 
All other DCR registers should be configured for the RAID6 
calculation to be performed prior to asserting this bit. 

Bit[0] indicates to the processor a regenerate is complete 
when 0. The processor polls this register to determine when 
the RAID6 hardware has completed the requested operation.

0x181 RAID_LOST

Indicates to the RAID IP which type of disks has failed:
0x01 Q regenerate
0x02 P regenerate
0x03 P &Q regenerate
0x04 D0 regenerate(1)

0x05 D0 & Q regenerate
0x06 D0 & P regenerate
0x08 D1 regenerate(1)

0x09 D1 & Q regenerate
0x0A D1 & P regenerate
0x0C D0 & D1 regenerate
0x10 D2 regenerate(1)

0x11 D2 & Q regenerate
0x12 D2 & P regenerate
0x14 D2 & D0 regenerate
0x18 D1 & D2 regenerate

0x182 RAID_1 Memory base address pointer to first data block stored in DDR 
memory(2).

0x183 RAID_2 Memory base address pointer to second data block stored in 
DDR memory(3).

0x184 RAID_3 Memory base address pointer to third data block stored in 
DDR memory.

0x185 RAID_4 Memory base address pointer reserved for a fourth data block 
stored in DDR memory.

0x186 RAID_P Memory base address pointer to the P parity block stored in 
DDR memory.

0x187 RAID_Q Memory base address pointer to Q parity block stored in DDR 
memory.
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Table 4 shows other DCR registers that are associated with the PowerPC 405 processor. There 
are the internal registers for the embedded Tri-mode EMACs and the DCR registers that control 
the DSOCM and ISOCM controllers.

0x188 RAID_M

Bits [31:29] indicates to the RAID IP which type of 
regeneration is requested:

000 indicates a single D regeneration
001 indicates a single P regeneration
010 indicates a single Q regeneration
011 indicates updating P & Q for a Data write
100 indicates a double D & D regeneration
101 indicates a double D & Q regeneration
110 indicates a double D & P regeneration
111 indicates a double Q & P regeneration

0x189 Reserved.

0x18A RAID_LED
Indicates to the system or user if RAID test is in progress or 
completed. Controls diode DS11 on the ML405 hardware 
platform.

0x18B RAID_SIZE

Bits [27:31] indicate to the RAID IP the horizontal size of the 
data and parity blocks:

00000 512 byte (default)
00001 1 Kbyte
00010 2 Kbyte
00100 4 Kbyte
01000 8 Kbyte
10000 16 Kbyte

0X140-0x16F CDMAC Initiates transactions through the CDMAC. See [Ref 6] for 
details. Not used in this reference design.

0x200-0x2FF
SATA

Controller
Not used in this reference design. 

Notes: 
1. Also indicates data to be written when the RAID_MODE = ‘011’
2. Indicates old data when RAID_MODE = ‘011’
3. Indicates new data when RAID_MODE = ‘011’

Table  4:  Other Internal DCR Register Descriptions

DCR Address Register Name Description

0x412–0x416(1) EMAC0 Internal registers that are unused in this design.

0x412–0x412(1) EMAC1 Internal registers that are unused in this design.

0x406–0x407 DSOCM(2) Settings for the Data Side OCM.

0x000–0x403 ISOCM(2) Settings for the Instruction Side OCM.

0x404–0x405 APU Settings for the Auxiliary Processor Unit (APU) (not used).

Notes: 
1. Both EMACs share a host interface of an internal bus.
2. Application firmware for the reference design is stored in the instruction OCM block RAM memory (data 

side OCM block RAM is also available if the designer chooses to use this resource). The DDR memory is 
used exclusively by the RAID-IP hardware.

Table  3:  DCR Register Descriptions (Continued)

DCR Address Register Name Description
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MPMC and MPMC_IF

The DDR memory controlled by the MPMC is memory mapped into two locations, as shown in 
Table 5. Also in the memory map are the two OCM memories, where the processor runs the 
software code instructions.

The MPMC [Ref 6] is a 4-port DDR memory controller. These four ports are time multiplexed to 
allow shared access to the memory device by four different bus masters:

• Two of the four ports are allocated to the PowerPC 405 instruction and data cache 
processor local bus (PLB) interfaces. In the reference design, these ports are active only 
when the processor is generating blocks of data and parity to emulate data stored on a 
disk array, or when checking that regenerated data is correct.

• The third port is for the RAID6 hardware engine.

• The fourth port is reserved for a disk interface controller.

The MPMC contains an internal arbiter that dictates how the memory bandwidth is prioritized. 
Time-sharing of the memory bus adds some uncertainty as to how quickly the hardware 
accelerator can receive data from the cache memory; however, after the memory bus is 
granted to the RAID6 engine, the memory controller transmits or receives bursts of 128 bytes of 
data. Since default data blocks are multiples of 512 bytes, the RAID6 hardware requests an 
additional three memory cycles to process a complete 512-byte sector (if other ports of the 
MPMC have requested access, these other requests are fulfilled between the multiple RAID 
requests).

The CDMAC and Local Link interface block connections to the RAID-IP memory port are 
intentionally not used for one main reason (shown in Figure 2, note that the SATA link does 
contain these blocks and connections). The CDMAC uses DCR writes from the PowerPC 405 
processor to set up the DMA transactions to the MPMC. The CDMAC and Local Link interface 
adds unnecessary overhead for the software to oversee. The software can handle this extra 
housekeeping for a handful of regenerations. However, when 400 GB of HDD space needs to 
be regenerated, keeping track of how, where, and when each cache memory is accessed 
becomes a burden that software needs to pass onto hardware. Now the software can continue 
to focus on the data structure on the HDDs and the continuous read and write requests from the 
host.

The MPMC_IF is the substitute for the CDMAC and Local Link. This block handles several 
functions:

• First, it handles several functions, such as staged memory requests, that would not be 
efficient in the software based structure of the CDMAC.

• Second, it contains logic that allows for a clock domain crossing of the MPMC and the 
RAID circuitry. This allows the RAID/MPMC clock ratio to range from 3:2 (the MPMC 
running 64 bits at 100 MHz while the RAID hardware accelerator manipulates 32 bits at 
150 MHz).

The waveform that shows how the MPMC_IF requests a read is shown in Figure 5. The 
waveform that shows how the MPMC_IF requests a write is shown in Figure 6. The signals with 
the raid prefix interface with other portions of the RAID hardware accelerator logic; the mp 

Table  5:  PowerPC 405 Memory Addressing

Memory Name Origin Size Description

plb_mpmc_if_0 0x00000000 0x0FFFFFFF Used for RAID data and parity block 
storage space

iocm_cntlr 0xFFFC000 0x00003FFF Used for SW instructions

plb_mpmc_if_1 0x00000000 0x0FFFFFFF Used for cache memory space

docm_cntlr 0xFE004000 0x000007FF Used for SW instructions and data
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prefixed signals interface with the MPMC block; and all other signals are signals for the two 
CORE Generator™ asynchronous FIFO/data width converters. Settings for the 
CORE Generator FIFOs are covered in “CORE Generator FIFO Settings,” page 28.
 

PowerPC 405 Firmware

In any RAID system, there is a large amount of firmware. This firmware controls where specific 
data is stored and how it is stored. This is true for the HDD and the DDR memory. This 
reference design has minimal firmware to indicate to the RAID hardware accelerator where the 
different data, P parity, and Q parity blocks are located in the DDR memory.

Figure 5:  MPMC Read Waveform
XAPP731_05_021406

Figure 6:  MPMC Write Waveform
XAPP731_06_021406
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The hardware accelerator does not need to know the location or arrangement of data on the 
HDD; therefore, this type of firmware is not part of this reference design.

Below is a code snippet from gf_gen.c that shows a P and Q regeneration case:

int request_reconstruct_p_q(void) {
//setting up the DCR registers for the RAID system
//for regenerating P and Q

//set up memory base address pointer for DATA1 data block
mtdcr(RAID_1, 0x00010001);
//set up memory base address pointer for DATA2 data block
mtdcr(RAID_2, 0x00020001);
//set up memory base address pointer for DATA3 data block
mtdcr(RAID_3, 0x00030001);
//set up memory base address pointer for DATA4 data block (reserved)
mtdcr(RAID_4, 0x00040001); 
//set up memory base address pointer for Parity block result 
//to be stored by RAID6 hardware
mtdcr(RAID_P, 0x00050001);
//set up memory base address pointer for Q parity block result 
//to be stored by RAID6 hardware
mtdcr(RAID_Q, 0x00060001);
//indicate which mode (which disks are missing)
mtdcr(RAID_M, 0x00000007);//find P&Q
//indicate what is lost
mtdcr(RAID_LOST, 0x00000003);// P and Q is lost
//indicate that a reconstruction is needed
mtdcr(RAID_RECON, 0x00000001);

return 0;
}

Four software files used to communicate with the hardware accelerator: 

♦ raid_sim.c – is the main program that request different regeneration cases

♦ gf_gen.c – defines the subroutines for the different data losses like the one shown 
above for P and Q regeneration

♦ ddr_mpmc_access.c – defines subroutines to access the cache memory

♦ raid_sim.h – defines variables for different DCR registers

Performance 
and Utilization

Time to Complete Regeneration Calculations

Table 6 shows the regeneration time for the RAID hardware to complete different regeneration 
calculations. The time for the PowerPC 405 processor to setup the DCR registers is not 
included in these regeneration times. Time is measured from the point the PowerPC 405 
processor sets the RAID_RECON DCR control register bit to the time the hardware resets the 
RAID_RECON status bit. All measurements are for the default 512-byte blocks. Because of the 
three data drive topography, the update P and Q process takes a longer processing time than 
double P and Q generations; this longer processing time is due to the requirement of the 
equation to read four blocks from the DDR memory in the update P and Q process versus only 
three blocks in the double P and Q mode. In a structure with more data drives, the update 
improves its latency over the double P and Q generation.
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The hardware accelerator is added to a modified Gigabit System Reference Design (GSRD) 
reference design that uses the MPMC of Xilinx application note XAPP535: High Performance 
Multi-Port Memory Controller. This configuration contains the PowerPC 405 processor, DCR, 
PLB bus, MPMC, OCM and the 32-bit data bus version of the RAID hardware accelerator that 
includes four instantiations of the DMB logic block. The performance and utilization of this real 
world system is shown in Table 7. The reference design can be implemented on the slowest 
speed grade device.

The hardware accelerator-only metrics are shown in Table 8.

Ports Most ports of the hardware accelerator interface directly to the MPMC and several others hook 
up to DCR raid block. Additional I/O pins can be allocated for the two clocks and the system 
reset. These ports are described in Table 9.

Table  6:  Block Regeneration Time for a Three Data Drive Structure

Type of Request Time for 512 bytes Number of DDR 
Memory Reads

Number of DDR 
Memory Writes

single P 8.6 µs 3 1

single Q 11.4 µs 3 1

single Data 8.7 µs 3 1

double P & Q 14.0 µs 3 2

double Q & D 13.1 µs 3 2

double P & D 13.1 µs 3 2

double D & D 14.2 µs 3 2

update P & Q 15.0(1) 3 3

Notes: 
1. Improved vs. double P and Q because more data drives are added.

Table  7:  System Performance and Utilization in XC4VFX20-FF672 FPGAs

Slices Block RAM I/O DCM DSP48 
Block

PowerPC 405 
Processor RAID MPMC

3900 57 76 3 4 300 MHz 150 MHz 100 MHz

45% 83% 10% 75% 12% – – –

Table  8:  RAID Performance and Utilization(1)

Slices Block RAM DCM DSP48 Block

1252 36 1(2) 4

14% 52% 25% 12%

Notes: 
1. 4-byte data manipulation. 
2. The design shares a system DCM, so an additional one is not needed for this block.

Table  9:  List of Hardware Accelerator Ports

Port I/O Signal Width Interface Description

clk I
CLK

RAID logic clock

clk_half I MPMC interface clock

rst I RST RAID logic reset
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start I

DCR

Start the regeneration process when High

DCR_sel O [1:0] Selects which DCR registers to read

DCR_reg0 I [31:0] First DCR register input

DCR_reg1 I [31:0] Second DCR register input

mem_dataout O [7:0] MPMC Write data to the MPMC

done O

DCR

Indicates regeneration complete when 
High

gfc_done O Reserved

mp_addr O [31:0]

MPMC

Cache memory address

mp_addrreq O Request access to cache memory

mp_RNW O Read or write to cache memory

mp_size O [1:0] Size of cache memory burst (set to 32)

mp_addrack I MPMC acknowledge cache memory 
request

mp_rddataack_pos O
Unused in burst mode

mp_rddataack_neg O

mp_rdcomp O Indicates the cache memory read is 
complete

mp_rd_rst O Reset the read of cache memory

mp_rddata_pos I [31:0] Cache memory read data positive edge

mp_rddata_neg I [31:0] Cache memory read data negative edge

mp_rdwdaddr_pos I [4:0]
Unused in burst mode

mp_rdwdaddr_neg I [4:0]

mp_rddatardy I Indicates the cache memory read data is 
ready

mp_rdfifoempty I Indicates the MPMC read FIFO is empty

mp_wrdataack_pos O
Unused in burst mode

mp_wrdataack_neg O

mp_wrdata_pos O [31:0] Cache memory write data positive edge

mp_wrdata_neg O [31:0] Cache memory write data negative edge

mp_wrcomp O Indicates the cache memory write is 
complete

mp_wr_rst O Resets the write of cache memory

mp_wrfifobusy I Indicates the MPMC write to the cache 
memory

mp_wrfifofull_pos I Indicates the MPMC write FIFO is full for 
positive edge clock

mp_wrfifofull_neg I Indicates the MPMC write FIFO is full for 
negative edge clock

Table  9:  List of Hardware Accelerator Ports (Continued)

Port I/O Signal Width Interface Description
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The DCR raid block is a DCR register implementation for hardware accelerator. Table 10 lists 
the ports that can connect to a PowerPC 405 DCR system.

Expanding 
Design for 
Larger Arrays

This reference design is designed for a three data drive system (five total drives). Because of 
the redundancy of the calculations, the datapath has the ability to support larger arrays. The 
state machines need modifications to loop multiple times in certain states to calculate values 
for larger arrays. The DCR registers must be expanded to provide additional pointers to data 
blocks as well as control functions for data recovery operations. Also, the software must 
manage more base memory address pointers.

Other Uses of 
the Hardware 
Accelerator

As mentioned earlier in “Reference Design,” page 8, firmware plays a major role in all RAID 
systems. Because the hardware changes little for the different RAID levels, the hardware 
accelerator can remain the same, and the firmware changes to incorporate the different ways 
the data is organized on the HDD and how the parity is generated.

Table  10:  List of DCR RAID Block Ports

Port I/O Data Width Interface Description

RST_I I RST DCR reset

CLK_I I CLK DCR clock

DCR_Abus I [9:0] PPC DCR address bus from the PowerPC 405 
processor

DCR_DBusIn I [31:0] DCR data bus from the PowerPC 405 
processor or other DCR register blocks

DCR_Read I Read signal from the PowerPC 405 
processor

DCR_Write I Write signal from PowerPC 405

DCR_Ack O DCR register acknowledge to the 
PowerPC 405 processor or other DCR 
register blocks

DCR_DBusOut O [31:0] DCR data bus from registers to the 
PowerPC 405 processor or other DCR 
register blocks

RAID_clear I RAID Register output for RAID Hardware 
Accelerator 

RAID_lost O [31:0]

RAID_reconstruct O

RAID_D1 O [31:0]

RAID_D2 O [31:0]

RAID_D3 O [31:0]

RAID_D4 O [31:0]

RAID_P O [31:0]

RAID_Q O [31:0]

RAID_M O [31:0]

LED O [3:0]

GFC_DONE I RAIDGEN Reserved

http://www.xilinx.com
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The hardware accelerator can support other RAID levels beyond RAID6 with minimal (if any) 
modifications. RAID Double Parity (DP), RAID5, RAID4, and RAID3 are among the supportable 
levels.

A brief discussion of these RAID levels and how the hardware accelerator can support them is 
described in “RAID DP,” “RAID5,” and “RAID4 and RAID3.”

RAID DP

RAID DP can support two simultaneous disk failures and has the advantage of generating both 
parities with simple XOR function. RAID DP performs a horizontal parity calculation as used in 
RAID3 and RAID4 systems. In addition, RAID DP performs a diagonal parity calculation. The 
parity information is not rotated across the drives as done in RAID5. See [Ref 5] for a detailed 
discussion on RAID Double Parity. While the diagonal parity calculation simplifies the hardware 
parity calculation, the disadvantage is the need for more disk accesses to read additional disk 
sectors for the diagonal parity calculation. For example, for RAID DP in Figure 7, seven 
different blocks are accessed to regenerate the loss of two blocks.

The reference design has the ability to cover all of these levels with the appropriate firmware 
(not included in the reference design). The firmware passes the data to the hardware 
accelerator and always assumes either a P generation/regeneration, one data regeneration, or 
in the case of two data regenerations, two subsequent single data regenerations with the data 
to be XORed. In the example shown in Figure 7, if D00 and D10 are lost, the firmware must first 
request a single data regeneration for D00 using D11, D22, P3, and P20 (highlighted in red). 
After regenerating D00, D10 is regenerated by using D00, D20, P00, and P20.

RAID5

RAID5, shown in Figure 8, handles just one disk failure at a time. It rotates the parity 
information on multiple drives to improve the read/write latency associated with accessing the 
HDDs in the same way as RAID6. However, in this case, there is only one set of parities. 
Regenerating single data blocks is identical to RAID6, except one more data block needs to 
XORed for the same five-disk system. There is only 20 percent storage overhead for parity and 
20 percent more storage capacity in the RAID5 five-disk array than in an equivalent RAID6 
five-disk array system.

Figure 7:  RAID DP Data Structure
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RAID5 systems only utilize the XOR_BRAM block shown in the DMB datapath logic (see 
Figure 4). 

RAID4 and RAID3

RAID4 and RAID3 are identical from a parity generation and data regeneration perspective. 
The only difference is the organization of the congruent data. RAID3 and RAID4 have a fixed 
parity disk and RAID5 and RAID6 both use rotating parity disks. Systems with fixed parity disks 
can experience bottlenecks, if there is a large write-to-read ratio, because the parity disk must 
be accessed twice for each block-write access. A RAID4 configuration is shown in Figure 9.

Figure 8:  RAID 5 Data Structure
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Figure 9:  RAID4 Data Structure
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Reference 
Design 
Simulation 

The reference design is based on a Platform Studio (or EDK) 7.1i system. To simulate this 
design, downloading the GSRD reference design is required. This design can be downloaded 
from http://www.xilinx.com/esp/wired/optical/xlnx_net/gsrd_download

The GSRD design does require registration. Once registered, the useer can download ZIP files 
for EKD 7.1 SP2 (requires ISE 7.1 SP4). After the GSRD design has been successfully 
simulated to verify that the EDK simulation libraries work properly, modification of the design 
can begin. The design file from can be downloaded from: 
http://www.xilinx.com/bvdocs/appnotes/xapp731.zip

1. Replace the system.mhs in the top directory (same level as the Platform Studio Project is 
at) with the one in the ZIP file.

2. Load the RAID6_block_ip and DCR_raid6 folders from the ZIP file into the pcore 
directory.

3. Create a /sw/standalone/raid_sim directory. Copy the three .c files and the .h files 
from the ZIP file into this directory.

4. Setup a new software project in Platform Studio and add the source and header files as 
shown in Figure 10. See the EDK documentation for more details on step-by-step 
procedures.

Figure 10:  Structure of the RAID Software Project
XAPP731_10_030807
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5. Clean all generated files (Figure 11).

Figure 11:  Cleaning All EDK Generated Files
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6. Re-scan the IP (Figure 12).

7. Generate the simulation files.

8. Run the simulation.

9. Copy files from the sim directory of the ZIP file into behavioral directory of the EDK design.

10. Modify system_init.v by replacing every instance of system. with tb.system.

11. Type do run_me.do in MTI window (Modelsim SE 6.0C was used for simulation).

This testbench has the software request regeneration types for data of 0x00–0xFF.

A UCF file for the ML405 demo board is also included (in the reference design ZIP file) for 
running the design through the implementation tools. Replace the original system.ucf with 
the file from the reference design ZIP file. A download.bit file is also included in the ZIP file 
for implementing the design on the ML405 demo board.

CORE Generator 
FIFO Settings

Two CORE Generator FIFOs are part of the MPMC_IF block, providing clock domain crossing 
between the 100 MHz MPMC memory controller and the 150 MHz RAID clock domains. It is 
possible that they will need regeneration in the future releases of the Xilinx implementation 
tools. To regenerate these FIFOs, use the process shown under “async_read_fifo,” 
“async_write_fifo,” and “handshake_fifo” by opening the CORE Generator project in 
pcores/raid6_block/hdl/verilog/fifo_coregen directory, which is supplied in the 
ZIP file.

async_read_fifo

Figure 12:  Rescanning all IP Directories

XAPP731_12_021706
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• Select Independent Clocks – Block RAM

• Select Register Outputs

• Write width and Depth is 64

• Read width is 32

• Select almost full and almost empty flags

• No programmable full or empty thresholds

async_write_fifo

• Select Independent Clocks - Block Ram

• Select Register Outputs

• Write width is 32

• Write Depth is 64

• Read width is 64

• Select almost full and almost empty flags

• No programmable full or empty thresholds

handshake_fifo

• Select Independent Clocks - Distributed RAM

• Select Register Outputs

• Write width is 36

• Write depth is 16 

• Select almost full and almost empty flags 

• No programmable full or empty thresholds

Then place the wrapper files (async_read_fifo.v, async_write_fifo.v, and 
handshake_fifo.v) and ngc files (async_read_fifo.ngc, async_write_fifo.ngc, 
and handshake_fifo.ngc) in the pcores/raid6_block/hdl/verilog directory.

Reimplementation 
of the Design

If reimplementation of this design is required, please see readme.txt in the ZIP file: 
http://www.xilinx.com/bvdocs/appnotes/xapp731.zip.

Conclusions This reference design supports calculating Reed-Solomon RAID6 parity generation and data 
regeneration on 512- to 4096-byte blocks of data from a DDR memory. This design takes 
advantage of multiple immersed IP blocks of the Virtex-4 FPGA to improve performance and 
decrease fabric utilization. The block RAMs are used for the GF mathematical LUTs, the 
DSP48 blocks perform fast integer addition, and the PowerPC 405 processor handles the 
memory/address management, plus the potential to handle the RAID level data structure in the 
HDDs. Other Xilinx solutions also increase the performance of calculating RAID6 in a Virtex-4 
FPGA, among them is using the MPMC memory controller to allow shared memory bandwidth 
and the RocketIO™ transceivers to allow serial interfaces to many different available HDDs.

This generation/regeneration is time intensive, but it still takes less time than the equivalent 
firmware application. As in all systems, hardware and firmware trade-offs are evaluated. This 
application note covers all of the equations for a small three data drive array and shows how 
one type of system can be implemented on a Xilinx ML405 demonstration board.

http://www.xilinx.com
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