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Galois Field Algebra and RAID6

By David Jacob
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Overview
• Galois Field

– Definitions
– Addition/Subtraction
– Multiplication
– Division
– Hardware Implementation

• RAID6
– Definitions
– Encoding 
– Error Detection
– Error Correction
– Hardware Implementations
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Galois Field (GF)

• A finite field with integer elements
• All GF operations are closed
 – Operations on a element give another element in the 

field

• The field is generated using a generating 
polynomial, F

 – All math is done modulo F
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GF Notation

• GF(pn) 
 – p = prime that defines number of numbers per digit
 • Ex. GF(2) = binary

 – n = highest order of generating polynomial; also the 
number of digits for each number in the field

 • E.g. GF(28) = 8-bit binary field  (aka: every element is a 
byte) This is the field that will be used throughout the 
rest of this discussion

 • For GF(28), F = x8+x4+x3+x2+1
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Addition/Subtraction

• Defined as addition/subtraction modulo p.
– In GF(2), this is the XOR operation

X Y X+Y
0 0 0
0 1 1
1 0 1
1 1 0



 6

Multiplication

• Multiplication modulo F
• Ex.
 – F = 100011101, A = 10101010, B = 00000010
 – AxB = (A*B) mod F 
 = (101010100) mod 100011101
 = 01001001
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Multiplication by 2x

• As shown before, this is equivalent to a 
LFSR with a feedback of F that is shifted x 
times.

• Since fields are also mathematical rings, 
all elements are a power of 2, so this can 
be used to multiply any numbers A and B 
if you know what log2(B) is

• If you are multiplying by a constant, this 
LFSR can be unrolled and combined to 
reduce time and logic

2B7⇐ B6

2B6⇐ B5

2B5⇐B4

2B4⇐B3⊕B7

2B3⇐ B2⊕B7

2B2⇐B1⊕B7

2B1⇐B0

2B0⇐ B7
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Multiplication by 2x

X0 X1 X2 X3 X4 X5 X6 X7

X7 X0 X1+X7 X2+X7 X3+X7 X4 X5 X6

X6 X7 X0+X6 X1+X6+
X7

X2+X6+
X7

X3+X7 X4 X5

X5 X6 X5+X7 X0+X5+
X6

X1+X5+
X6+X7

X2+X6+
X7

X3+X7 X4

X4 X5 X4+X6 X4+X5+
X7

X0+X4+
X5+X6

X1+X5+
X6+X7

X2+X6+
X7

X3+X7

X3+X7 X4 X3+X5+
X7

X3+X4+
X6+X7

X3+X4+
X5

X0+X4+
X5+X6

X1+X5+
X6+X7

X2+X6+X7

X2+X6+
X7

X3+X7 X2+X4+
X6+X7

X2+X3+
X5+X6

X2+X3+
X4

X3+X4+
X5

X0+X4+
X5+X6

X1+X5+X6

+X7

X1+X5+
X6+X7

X2+X6

+X7
X1+X3+
X5+X6

X1+X2+
X4+X5

X1+X2+
X3+X7

X2+X3+
X4

X3+X4+
X5

X0+X4+X5

+X6
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Fast General-Purpose Multiplication

• If you want to multiply by a number that isn’t a power of 
2, use Distributive property.

 – Multiplying 2ixB can be done using unrolled LFSRs

 – A(i)x(2ixB) is done with AND gates

 – Addition is XOR gates

• This results in general purpose multiplication being 
done in combinational time

A×B=∑
i=0

n

Ai×2i×B
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GF Division

• Defined as multiplication by the multiplicative 
inverse

– A/B = AxB-1

• The multiplicative inverse is unique for every 
element in the field

• Multiplicative inverse defined as:
 – AxA-1 = 1
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Multiplicative Inverse
 There are 3 ways of finding multiplicative 

inverse: Brute Force, Fermat's Little Theorem, 
and Extended Euclidean Algorithm

 Brute Force method of multiplying by each 
possible element until one of the products is 1 is 
obviously very expensive in either time or 
hardware
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Fermat's Little Theorem
 Fermat's little theorem involves math modulo F, 

and can be used like this:

 Therefore, in GF(28): A254 = A-1

Apn

=Amod F
Apn−1

=1mod F
A⋅Apn−2

=1mod F
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Fermat's Little Theorem
(Tom Wada, 2003)

 Using some “tricks” this can be calculated much 
easier than it would seem
 This still requires the equivalent of 11 general-

purpose multipliers

`
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Euclidean Algorithm
 The Euclidean Algorithm is used to find the Greatest 

Common Denominator (GCD) of two numbers.
 If you are trying to find the GCD(A,B), and assuming 

A>=B
 Q = A/B (integer division), R = A mod B

 So, R is also a multiple of the GCD(A,B), so GCD(A,B) 
= GCD(B,R)

 This can be continued until there is no remainder, in 
which case, the last value divided by is the GCD(A,B)

A=Q⋅BR
R=A−Q⋅B
R=m⋅GCD A ,B−Q⋅n⋅GCDA , B
R=GCD A , B⋅m−Q⋅n
R=GCD A , B⋅p
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Euclidean Algorithm
GCD(A,B):
 // initialize
 Rn := A; R  := B;
 repeat
 // shift the values back for the next reduction
 Rm := Rn;
 Rn := R;
 // reduce
 Q := Rm/Rn; //this is integer division
 R := Rm - Q * Rn;
 until R = 1;
 return Rn;
end GCD(A,B);
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Extended Euclidean Algorithm

• Not only find GCD, but constants of 
multiplication

• Uses the quotients that are thrown away in the 
normal Euclidean Algorithm to find X and Y

GCDA , B=A⋅XB⋅Y
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Extended Euclidean Algorithm

• This is is found by assuming:

• So:

Ri=Ri−2−
Ri−2

Ri−1
⋅Ri−1

Ri=A⋅X i−2B⋅Y i−2−
Ri−2

Ri−1
⋅A⋅X i−1B⋅Y i−1

Ri=A⋅X i−2B⋅Y i−2−
Ri−2

Ri−1
⋅A⋅X i−1

Ri−2

Ri−1
⋅B⋅Y i−1

Ri=A⋅X i−2−
Ri−2

Ri−1
⋅X i−1B⋅Y i−2

Ri−2

Ri−1
⋅Y i−1

Ri=A⋅X iB⋅Y i



 18

Extended Euclidean Algorithm

• Since X and Y are defined recursively, starting 
points are needed

• Consider that the first two “remainders” are A 
and B

R−2=A=A⋅1B⋅0
R−1=B=A⋅0B⋅1
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Extended Euclidean Algorithm
Ext_GCD(A,B):
 //initialize
 Rn := A; R  := B; 
 Xn := 1; X  := 0; 
 Yn := 0; Y  := 1; 
 repeat
 // shift the values back for the next reduction
 Rm := Rn; Rn := R;
 Xm := Xn; Xn := X;
 Ym := Yn; Yn := Y;
 // reduce
 Q := Rm/Rn; //this is integer division
 R := Rm - Q * Rn;
 // update X and Y
 X := Xm - Q * Xn; Y := Ym - Q * Yn;
 until R = 1;
 return Rn,X,Y;
end Ext_GCD(A,B);
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How does Extended Euclidean 
Algorithm Help?

• In GF algebra, F is coprime with all elements 
in the field and multiplication is done modulo F 
so:

• So X is the multiplicative inverse of A

A×X⊕F×Y=GCD A , F 
A×X⊕F×Y=1
A×X=F×Y⊕1
A×X=0⊕1
A×X=1
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Improving Ext. Euclidean Algorithm 
for GF(2)

• First, the Y is not important, so don't keep 
track of it

• Second, since the point of finding the 
multiplicative inverse is to implement division, 
finding Q = Rn/Rm is impossible.

– Q isn't important either, just finding the 
remainder after the division
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Finding the GF(x) Remainder
(Brent et. al, 1984)

• Basically do binary “long division” until the 
remainder is found

MOD(A,B)

 delta := deg A - deg B;
 repeat
 // scale A and X
 Bs := xdelta * B; Xs := xdelta * X;
 // reduce 
 A := A – Bs; Y := Y - Xs;
 // recalculate degree
 delta := deg A - deg B;
 until delta < 0;
 return A, Y;
end MOD(A,B);
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Finding the GF(2) Remainder
(Brunner et. al, 1993)

• How to do “xdelta * B” efficiently?
– Could shift both values until the Msb are high
– Then when subtraction is done, the top bit of A 

is 0, so it can be shifted, and delta decremented
• Remember that the result must be in the Galois 

Field, so math on it should be GF Algebra!
– GFM2(A) = returns A times 2 (GF Multiplication)
– GFD2(A) = returns A divided by 2 (GF Division)
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Finding the GF(2) Remainder
(Brunner et. al, 1993)

MOD(A,B)
 delta := 0;
 repeat
 if R(N) = 0 then // scale up B and X and increment delta
 B := B << 1; X := GFM2(X); delta := delta + 1;
 else 
 if A(N) = 0 then // scale up A and scale down X
 A := A << 1; X := GFD2(X);
 else
 // if both MSb's are high, reduce B and Y and scale A and X
 A := A – B; Y := Y xor X;

A := A << 1; X := GFD2(X);
 end if;
 delta := delta - 1;
 end if;
 while delta >= 0;
 return A and Y;
end MOD(A,B);
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GF(2) Multiplicative Inverse
(Brunner et. al, 1993)

• Combining this method of finding the 
remainder with the original Extended 
Euclidean Algorithm gives a usable 
implementation

• Since the order of F is N, and worst case, the 
order of A can be of order N, the loop needs to 
be done 2*N times

• To save registers, X and A can be used as 
temporary registers, since the final value of 
them is unimportant anyway
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GF(2) Multiplicative Inverse
(Brunner et. al, 1993)

GF_Inversion(A)
 Rn := F; R  := A;
 Xn := 1; X  := 0;
 delta := 0;

 for i = 1 to 2*N
 if R(N) = 0 then // scale up B and X and increment delta
 Rn := Rn << 1; X := GFM2(X);
 delta := delta + 1;
 else
 if Rn(N) = 1 then
 R := R – Rn; X := X xor Xn;
 end if;
 R := R  << 1;
 if delta = 0 then // division is done, so swap variables for new division
 swap(R,Rn); swap(X,Xn);
 X := GFM2(X);
 else
 X := GFD2(X);
 delta := delta - 1;
 end if;
 end if;
 end loop;
 return R;
end GF_Inversion(B);
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GF(2) Multiplicative Inverse In 
Hardware

(Brunner et. al, 1993)
• To implement things in hardware, concurency 

can be taken advantage of
• To simplify hardware design, signals T and W 

are added
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GF(2) Multiplicative Inverse In 
Hardware

(Brunner et. al, 1993)
GF_Inversion(B)
 Rn := F; R  := B;
 Xn := 1; X  := 0;
 delta := 0;

 for i = 1 to 2*N
 if R(N) = 1 and Rn(N) = 1 then
 T := R xor Rn;
 W := X xor Xn;
 else
 T := R;
 W := X;
 end if;
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GF(2) Multiplicative Inverse In 
Hardware

(Brunner et. al, 1993)
 if R(N) = 0 then
 R := R << 1; Rn := T;
 X := GFM2(X); Xn := W;
 delta := delta + 1;
 else
 if delta = 0 then
 Rn := R; R := T << 1;
 Xn := X; X := GFM2(W);
 delta := delta + 1;
 else
 Rn := T << 1; R := R;
 Xn := W; X := GFD2(X);
 delta := delta - 1;
 end if;
 end if;
 end loop;
 return R;
GF_Inversion(A);
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Division by 2x

• Dividing by 2 is the 
inverse of 
multiplying by 2, so 
a LFSR which 
reverses the 
multiply by 2 LFSR 
would divide by 2.

• This can once 
again be expanded 
to multiply by any 
constant.

2B7⇐ B6

2B6⇐ B5

2B5⇐B4

2B4⇐B3⊕B7

2B3⇐ B2⊕B7

2B2⇐B1⊕B7

2B1⇐B0

2B0⇐ B7

B7⇐2B0

B6⇐2B7

B5⇐2B6

B4⇐2B5

B3⇐2B4⊕2B0

B2⇐2B3⊕2B0

B1⇐2B2⊕2B0

B0⇐2B1
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Multiplication/Division with Lookup 
Tables

• Multiplication and Division can also be done 
w/ lookup tables

• Requires 256X8 lookup tables
– Typically done in hard RAM blocks, so as not to 

use up fabric resources
– The lookup tables are at most dual ported, so 2 

RAM blocks are needed per pair of inputs

A×B=explogAlog B
A /B=explog A−logB
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RAID

• Redundant Array of Independent 
(Inexpensive) Drives

• RAID comes in 4 common “varieties”
– RAID0 - data striped across the array
– RAID1 - data mirrored across the array
– RAID5 - data striped across the array with one 

parity block
– RAID6 - data striped across the array with two 

parity blocks
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RAID 6

• RAID6 uses GF(28) Algebra to create 2 
redundant parity blocks 

– Data is striped in data blocks of 1 sector
– 2 blocks are used for parity information so 

usable array space is N – 2 drives
– Can detect 1 corrupt data bock
– Can recover 2 corrupt data blocks (assuming 

some other method of detecting the error exists)
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RAID6 Parity

• The P block is:

– This is the same as RAID5 parity
– Allows for easy generation and recovery

• The Q block is:

– More complicated generation, but allows for 
error detection

P=∑
i=0

n−2

Di

Q=∑
i=0

n−2

2i×Di
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RAID6 Error Detection

P=D0⊕...⊕DL−1⊕DL⊕DL1⊕...⊕Dn

P '=D0⊕...⊕DL−1⊕X⊕DL1⊕...⊕Dn

P⊕P '=Dl⊕X

Q=20×D0⊕...⊕2L−1×DL−1⊕2L×DL⊕2L1×DL1⊕...⊕2n×Dn

Q'=20×D0⊕...⊕2L−1×DL−1⊕2L×X⊕2L1×DL1⊕...⊕2n×Dn

Q⊕Q'=2L×DL⊕2L×X=2L×DL⊕X 

P⊕P ' /Q⊕Q' =2L

log P⊕P ' /Q⊕Q ' =L

• If the data at (unknown) location L is corrupted 
to X, then:



 36

RAID6 Error Correction

• If 2 errors exist, there are 4 options of what 
they could be:

– The two parity blocks
• If this is the case, just recompute them

– One data block and P
– One data block and Q
– Two data blocks
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One Corrupted Data Block 
• If only one data block is corrupted, and one of the parity is 

corrupted, then the data can be recreated from the good 
parity

– If P is good than:

– If Q is good than recompute Q (called Q') with the bad 
data as zeros:

P=D0⊕...⊕DL−1⊕DL⊕DL1⊕...⊕Dn

0=P⊕D0⊕...⊕DL−1⊕DL⊕DL1⊕...⊕Dn

DL=P⊕D0⊕...⊕DL−1⊕DL1⊕...⊕Dn

Q=20×D0⊕...⊕2L−1×DL−1⊕2L×DL⊕2L1×DL1⊕...⊕2n×Dn

Q'=20×D0⊕...⊕2L−1×DL−1⊕2L×0⊕2L1×DL1⊕...⊕2n×Dn

Q⊕Q'=2L×DL

Q⊕Q' /2L=DL
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Two Data Drives Corrupted

• Data is corrupted on drives L and K (assuming K<L), 
recalculate P and Q (P' and Q') with erroneous data 
blocks as zeros:

P=D0⊕...⊕DK−1⊕DK⊕DK1⊕...⊕DL−1⊕DL⊕DL1⊕...⊕Dn

P '=D0⊕...⊕DK−1⊕0⊕DK1⊕...⊕DL−1⊕0⊕DL1⊕...⊕Dn

P=P '⊕DK⊕DL

Q=20×D0⊕...⊕2K−1×DK−1⊕2K×DK⊕2K1×DK1⊕...
⊕2L−1×DL−1⊕2L×DL⊕2L1×DL1⊕...⊕2n×Dn

Q'=20×D0⊕...⊕2K−1×DK−1⊕2K×0⊕2K1×DK1⊕...
⊕2L−1×DL−1⊕2L×0⊕2L1×DL1⊕...⊕2n×Dn

Q=Q'⊕2K×DK⊕2L×DL
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Two Data Drives Corrupted

• Then solve the first equation for DL and the second for DK 
and plug the in for DK:
P=P '⊕DK⊕DL

DL=P⊕P '⊕DK

Q=Q'⊕2K×DK⊕2L×DL

DK=2K×Q⊕Q' ⊕2L−K×DL

DL=P⊕P '⊕2K×Q⊕Q' ⊕2L−K×DL

DL⊕2L−K×DL=P⊕P '⊕2K×Q⊕Q' 
2L−K⊕1×DL=P⊕P '⊕2K×Q⊕Q' 

DL=
P⊕P '⊕2K×Q⊕Q' 
2L−K⊕1
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Two Data Drives Corrupted

• Since K<L, it can be assumed that
– No division by zero possible

• After DL is found, plug back in for DK in the P 
equation solved for DK:

2L−K⊕11

Dk=P⊕P '⊕DL
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Cost of Implementing in FPGA
• FPGAs use 4 input lookup tables (LUT4) in 

the fabric to implement logic
– 2-input AND has same logic cost as 2-input 

XOR
– 2-input XOR has same logic cost as 4-input 

XOR
• If more than 4 inputs are needed, another 

LUT4 is cascaded to make a 7-input gate
– This can be repeated many times in a tree (with 

a branching factor of 4), until required number 
of inputs is supplied:

– Hardware cost is:
– Speed  cost is: delay=Depth of LUT4tree=⌈log4 N ⌉

LUT4 /N−input gate=⌈N−1/3⌉
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What is the Best way to do RAID6 in 
Hardware?

• With various ways, which is the best?
• 3 different things to be discussed

– Encoding
– Decoding to detect error
– Decoding to correct errors
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FPGA Hardware Encoding

• Can be done with 3 different methods:
– Lookup Tables

• Requires N 256x8 lookup tables to be done 
(assuming N is even)

• Good for when slice count becomes an issue and 
timing constraints are relaxed

– Hardware General-Purpose Multipliers
• Easily expandable and requires no block RAM

– Hardware Special-Purpose Multipliers
• Uses multiplication by 2x multipliers to multiply by 

the required constants
• Requires very few slices and no block RAM

Q=∑
i=0

N

2i×Di
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FPGA Error Detection

• Requires a log table, so only sensible way of 
doing it is with lookup tables

• This also allows for simplified logic

– Only requires one dual-ported log table, and no 
exponentiation table this way

logP⊕P ' /Q⊕Q' =L

logexp logP⊕P ' −log Q⊕Q' =L
logP⊕P ' −log Q⊕Q' =L



 45

FPGA 2 Error Correction

• Can be done 3 different ways:
– Lookup tables

• Requires 4 lookup tables, or 2 if no pipelining is 
required

– General-Purpose multiplication and Division
• Quite a lot of hardware required

– Special-Purpose Multiplication and Division
• Use multiply/divide by constant circuits w/ 

multiplexer to use the proper one for the desired 
values of L and K

• Need at most N-1 multiply by constants, and N-1 
Divide by constants and 2 (N-1)-input Muxes

DL=
P⊕P '⊕2K×Q⊕Q ' 
2L−K⊕1
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Conclusion

• Multiply/Divide by constant combinational 
circuits can be used to greatly reduce the 
complexity of RAID6 encoding and decoding
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Any Questions?
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