Galois Field Algebra and RAID6

By David Jacob

Overview

- Galois Field
- Definitions
- Addition/Subtraction
- Multiplication
- Division
- Hardware Implementation
- RAID6
- Definitions
- Encoding
- Error Detection
- Error Correction
- Hardware Implementations

Galois Field (GF)

- A finite field with integer elements
- All GF operations are closed
- Operations on a element give another element in the field
- The field is generated using a generating polynomial, F
- All math is done modulo F

GF Notation

- GF(pr$)$
- $p=$ prime that defines number of numbers per digit
- Ex. GF(2) = binary
- $\mathrm{n}=$ highest order of generating polynomial; also the number of digits for each number in the field
- E.g. $\mathrm{GF}\left(2^{8}\right)=8$-bit binary field (aka: every element is a byte) This is the field that will be used throughout the rest of this discussion
- For GF $\left(2^{8}\right), F=x^{8}+x^{4}+x^{3}+x^{2}+1$

Addition/Subtraction

- Defined as addition/subtraction modulo p.
- In GF(2), this is the XOR operation

X	Y	$X+Y$
0	0	0
0	1	1
1	0	1
1	1	0

Multiplication

- Multiplication modulo F
- Ex.

$$
\begin{aligned}
& -F=100011101, A=10101010, B=00000010 \\
& -A x B=\left(A^{*} B\right) \bmod F \\
& =(101010100) \bmod 100011101 \\
& =01001001
\end{aligned}
$$

Multiplication by 2^{x}

- As shown before, this is equivalent to a LFSR with a feedback of F that is shifted x times.
- Since fields are also mathematical rings, all elements are a power of 2 , so this can be used to multiply any numbers A and B if you know what $\log _{2}(B)$ is
- If you are multiplying by a constant, this LFSR can be unrolled and combined to reduce time and logic

$$
\begin{aligned}
& 2 B_{7} \Leftarrow B_{6} \\
& 2 B_{6} \Leftarrow B_{5} \\
& 2 B_{5} \Leftarrow B_{4} \\
& 2 B_{4} \Leftarrow B_{3} \oplus B_{7} \\
& 2 B_{3} \Leftarrow B_{2} \oplus B_{7} \\
& 2 B_{2} \Leftarrow B_{1} \oplus B_{7} \\
& 2 B_{1} \Leftarrow B_{0} \\
& 2 B_{0} \Leftarrow B_{7}
\end{aligned}
$$

Multiplication by 2^{x}

X^{0}	X^{1}	X^{2}	X^{3}	χ^{4}	χ^{5}	X^{6}	X^{7}
X^{7}	X^{0}	$\mathrm{X}^{1}+\mathrm{X}^{7}$	$\mathrm{X}^{2}+\mathrm{X}^{7}$	$\mathrm{X}^{3}+\mathrm{X}^{7}$	χ^{4}	X^{5}	X^{6}
X^{6}	X^{7}	$\mathrm{X}^{0}+\mathrm{X}^{6}$	$\mathrm{X}^{1}+\mathrm{X}^{7}{ }^{7}+$	$\underset{X^{7}}{ } \mathrm{X}^{2}+\mathrm{X}^{6}+$	$X^{3}+X^{7}$	X^{4}	X^{5}
X^{5}	X^{6}	$X^{5}+X^{7}$	$\underset{X^{6}}{X^{0}}+$	$\begin{gathered} X^{1}+X^{5}+ \\ X^{6}+X^{7} \end{gathered}$	$\underset{X^{7}}{X^{2}}+$	$X^{3}+X^{7}$	X^{4}
X^{4}	χ^{5}	$X^{4}+X^{6}$	$\underset{X^{7}}{X^{4}+X^{5}+}$	$\begin{gathered} X^{0}+X^{4}+ \\ X^{5}+X^{6} \end{gathered}$	$\begin{gathered} X^{1}+X^{5}+ \\ X^{6}+X^{7} \end{gathered}$	$X_{X^{7}}+X^{6}+$	$X^{3}+X^{7}$
$X^{3}+X^{7}$	X^{4}	$\underset{X^{7}}{X^{3}+X^{5}+}$	$\begin{aligned} & X^{3}+X^{4}+ \\ & X^{6}+X^{7} \end{aligned}$	$\underset{X^{5}}{X^{3}+X^{4}+}$	$\begin{gathered} X^{0}+X^{4}+ \\ X^{5}+X^{6} \end{gathered}$	$\begin{gathered} X^{1}+X^{5}+ \\ X^{6}+X^{7} \end{gathered}$	$X^{2}+X^{6}+X^{7}$
$X_{X^{7}}+X^{6}+$	$X^{3}+X^{7}$	$\begin{aligned} & X^{2}+X^{4}+ \\ & X^{6}+X^{7} \end{aligned}$	$\begin{gathered} X^{2}+X^{3}+ \\ X^{5}+X^{6} \end{gathered}$	$\underset{X^{2}+X^{3}+}{ }$	$\underset{X^{5}}{X^{3}+X^{4}+}$	$\begin{gathered} X^{0}+X^{4}+ \\ X^{5}+X^{6} \end{gathered}$	$\begin{gathered} X^{1}+X^{5}+X^{6} \\ +X^{7} \end{gathered}$
$\begin{gathered} X^{1}+X^{5}+ \\ X^{6}+X^{7} \end{gathered}$	$\begin{gathered} X^{2}+X^{6} \\ +X^{7} \end{gathered}$	$\begin{aligned} & X^{1}+X^{3}+ \\ & X^{5}+X^{6} \end{aligned}$	$\begin{gathered} X^{1}+X^{2}+ \\ X^{4}+X^{5} \end{gathered}$	$\begin{gathered} X^{1}+X^{2}+ \\ X^{3}+X^{7} \end{gathered}$	$\underset{X^{4}}{X^{2}+X^{3}+}$	$\underset{X^{5}}{X^{3}+X^{4}+}$	$\begin{gathered} X^{0}+X^{4}+X^{5} \\ +X^{6} \end{gathered}$

Fast General-Purpose Multiplication

- If you want to multiply by a number that isn't a power of 2, use Distributive property.

$$
A \times B=\sum_{i=0}^{n}\left(A_{i} \times 2^{i} \times B\right)
$$

- Multiplying 2xB can be done using unrolled LFSRs
- $A(i) \times(2 \times B)$ is done with AND gates
- Addition is XOR gates
- This results in general purpose multiplication being done in combinational time

GF Division

- Defined as multiplication by the multiplicative inverse
$-A / B=A x B^{-1}$
- The multiplicative inverse is unique for every element in the field
- Multiplicative inverse defined as:
$-\mathrm{AxA}^{-1}=1$

Multiplicative Inverse

- There are 3 ways of finding multiplicative inverse: Brute Force, Fermat's Little Theorem, and Extended Euclidean Algorithm
- Brute Force method of multiplying by each possible element until one of the products is 1 is obviously very expensive in either time or hardware

Fermat's Little Theorem

- Fermat's little theorem involves math modulo F, and can be used like this:

$$
\begin{gathered}
A^{p^{n}}=A \bmod F \\
A^{p^{n-1}}=1 \bmod F \\
A \cdot A^{p^{n-2}}=1 \bmod F
\end{gathered}
$$

- Therefore, in GF $\left(2^{8}\right): A^{254}=A^{-1}$

Fermat's Little Theorem (Tom Wada, 2003)

- Using some "tricks" this can be calculated much easier than it would seem
- This still requires the equivalent of 11 generalpurpose multipliers

Euclidean Algorithm

- The Euclidean Algorithm is used to find the Greatest Common Denominator (GCD) of two numbers.
- If you are trying to find the $\operatorname{GCD}(\mathrm{A}, \mathrm{B})$, and assuming $A>=B$
- $\mathrm{Q}=\mathrm{A} / \mathrm{B}$ (integer division), $\mathrm{R}=\mathrm{A} \bmod \mathrm{B}$

$$
\begin{aligned}
& A=Q \cdot B+R \\
& R=A-Q \cdot B \\
& R=m \cdot G C D(A, B)-Q \cdot n \cdot G C D(A, B) \\
& R=G C D(A, B) \cdot(m-Q \cdot n) \\
& R=G C D(A, B) \cdot p
\end{aligned}
$$

- So, R is also a multiple of the $\operatorname{GCD}(A, B)$, so $G C D(A, B)$ $=\operatorname{GCD}(\mathrm{B}, \mathrm{R})$
- This can be continued until there is no remainder, in which case, the last value divided by is the $\operatorname{GCD}(\mathrm{A}, \mathrm{B})$

Euclidean Algorithm

```
GCD (A,B):
    // initialize
    \(\mathrm{Rn}:=\mathrm{A} ; \quad \mathrm{R}:=\mathrm{B}\);
    repeat
    // shift the values back for the next reduction
    Rm := Rn;
    Rn := R;
    // reduce
    \(\mathrm{Q}:=\mathrm{Rm} / \mathrm{Rn}\); \(\quad\) //this is integer division
    \(\mathrm{R}:=\mathrm{Rm}-\mathrm{Q}\) * Rn ;
    until \(\mathrm{R}=1\);
    return Rn ;
end \(\operatorname{GCD}(\mathrm{A}, \mathrm{B})\);
```


Extended Euclidean Algorithm

- Not only find GCD, but constants of multiplication

$$
G C D(A, B)=A \cdot X+B \cdot Y
$$

Uses the quotients that are thrown away in the normal Euclidean Algorithm to find X and Y

Extended Euclidean Algorithm

This is is found by assuming:

$$
R_{i}=A \cdot X_{i}+B \cdot Y_{i}
$$

So:

$$
\begin{aligned}
& R_{i}=R_{i-2}-\frac{R_{i-2}}{R_{i-1}} \cdot R_{i-1} \\
& R_{i}=\left(A \cdot X_{i-2}+B \cdot Y_{i-2}\right)-\frac{R_{i-2}}{R_{i-1}} \cdot\left(A \cdot X_{i-1}+B \cdot Y_{i-1}\right) \\
& R_{i}=A \cdot X_{i-2}+B \cdot Y_{i-2}-\frac{R_{i-2}}{R_{i-1}} \cdot A \cdot X_{i-1}+\frac{R_{i-2}}{R_{i-1}} \cdot B \cdot Y_{i-1} \\
& R_{i}=A \cdot\left(X_{i-2}-\frac{R_{i-2}}{R_{i-1}} \cdot X_{i-1}\right)+B \cdot\left(Y_{i-2}+\frac{R_{i-2}}{R_{i-1}} \cdot Y_{i-1}\right)
\end{aligned}
$$

Extended Euclidean Algorithm

- \quad Since X and Y are defined recursively, starting points are needed
Consider that the first two "remainders" are A and B

$$
\begin{aligned}
& R_{-2}=A=A \cdot 1+B \cdot 0 \\
& R_{-1}=B=A \cdot 0+B \cdot 1
\end{aligned}
$$

Extended Euclidean Algorithm

> Ext_GCD(A,B): $\begin{array}{ll}\text { //initialize } & \\ R n:=A ; & R:=B ; \\ X n:=1 ; & X:=0 ; \\ \text { Yn :=0; } & Y:=1 ; \\ \text { repeat } & \end{array}$
// shift the values back for the next reduction

$\mathrm{Rm}:=\mathrm{Rn} ;$	$\mathrm{Rn}:=\mathrm{R} ;$
$\mathrm{Xm}:=\mathrm{Xn} ;$	$\mathrm{Xn}:=\mathrm{X} ;$
$\mathrm{Ym}:=\mathrm{Yn} ;$	$\mathrm{Yn}:=\mathrm{Y} ;$

// reduce
$\mathrm{Q}:=\mathrm{Rm} / \mathrm{Rn} ; \quad / /$ this is integer division
R := Rm-Q *Rn;
// update X and Y
$X:=X m-Q$ * $\mathrm{Xn} ; \quad \mathrm{Y}:=\mathrm{Ym}-\mathrm{Q}$ * Yn ;
until $\mathrm{R}=1$;
return Rn,X,Y;
end Ext_GCD(A,B);

How does Extended Euclidean Algorithm Help?

- In GF algebra, F is coprime with all elements in the field and multiplication is done modulo F so:

$$
\begin{aligned}
& A \times X \oplus F \times Y=G C D(A, F) \\
& A \times X \oplus F \times Y=1 \\
& A \times X=F \times Y \oplus 1 \\
& A \times X=0 \oplus 1 \\
& A \times X=1
\end{aligned}
$$

- So X is the multiplicative inverse of A

Improving Ext. Euclidean Algorithm for GF(2)

- First, the Y is not important, so don't keep track of it
- Second, since the point of finding the multiplicative inverse is to implement division, finding $Q=R n / R m$ is impossible.
- Q isn't important either, just finding the remainder after the division

Finding the GF(x) Remainder (Brent et. al, 1984)

- Basically do binary "long division" until the remainder is found
$\operatorname{MOD}(A, B)$
delta := $\operatorname{deg} A-\operatorname{deg} B ;$
repeat
// scale A and X

$$
\begin{array}{ll}
\text { Bs }:=x^{\text {delta } ~ * ~} B ; & X s:=x^{\text {delta }} \mathrm{X} ; \\
\text { // reduce } & \mathrm{A}:=\mathrm{A}-\mathrm{Bs} ;
\end{array}
$$

// recalculate degree
delta := deg A - deg B;
until delta < 0; return A, Y;
end $\operatorname{MOD}(A, B)$;

Finding the GF(2) Remainder (Brunner et. al, 1993)

- How to do "x delta * B" efficiently?
- Could shift both values until the Msb are high
- Then when subtraction is done, the top bit of A is 0 , so it can be shifted, and delta decremented
- Remember that the result must be in the Galois Field, so math on it should be GF Algebra!
- GFM2(A) = returns A times 2 (GF Multiplication)
- GFD2(A) = returns A divided by 2 (GF Division)

Finding the GF(2) Remainder (Brunner et. al, 1993)

```
MOD(A,B)
    delta := 0;
    repeat
    if R(N)=0 then
            B:= B << 1;
    else
        if A(N)=0 then // scale up A and scale down X
            A := A << 1; X := GFD2(X);
            else
            // if both MSb's are high, reduce B and Y and scale A and X
                A := A - B; 
            end if;
            delta := delta - 1;
        end if;
    while delta >= 0;
    return A and Y;
end MOD(A,B);
```


GF(2) Multiplicative Inverse (Brunner et. al, 1993)

- Combining this method of finding the remainder with the original Extended Euclidean Algorithm gives a usable implementation
- Since the order of F is N , and worst case, the order of A can be of order N, the loop needs to be done $2^{*} \mathrm{~N}$ times
- To save registers, X and A can be used as temporary registers, since the final value of them is unimportant anyway

GF(2) Multiplicative Inverse (Brunner et. al, 1993)

```
GF_Inversion(A)
    \(\mathrm{Rn}:=\mathrm{F} ; \quad \mathrm{R}:=\mathrm{A} ;\)
    \(X n:=1 ; \quad X:=0 ;\)
    delta := 0;
    for \(\mathrm{i}=1\) to \(2^{*} \mathrm{~N}\)
        if \(R(N)=0\) then // scale up \(B\) and \(X\) and increment delta
            \(\mathrm{Rn}:=\mathrm{Rn} \ll 1 ; \quad \mathrm{X}:=\mathrm{GFM} 2(\mathrm{X})\);
            delta := delta +1 ;
    else
        if \(R n(N)=1\) then
            \(R:=R-R n ; \quad X:=X\) xor \(X n ;\)
        end if;
        \(\mathrm{R}:=\mathrm{R} \ll 1\);
        if delta \(=0\) then
            swap(R,Rn);
                            // division is done, so swap variables for new division
                            swap(X,Xn);
            X := GFM2(X);
        else
            X := GFD2(X);
            delta := delta -1 ;
        end if;
        end if;
    end loop;
    return R ;

GF(2) Multiplicative Inverse In Hardware (Brunner et. al, 1993)
- To implement things in hardware, concurency can be taken advantage of
- To simplify hardware design, signals T and W are added

\section*{GF(2) Multiplicative Inverse In Hardware (Brunner et. al, 1993)}
```

GF_Inversion(B)
$\overline{\mathrm{R}} \mathrm{n}:=\mathrm{F} ; \quad \mathrm{R}:=\mathrm{B}$;
$X n:=1 ; X:=0 ;$
delta := 0;
for $\mathrm{i}=1$ to 2* $^{\mathrm{N}}$
if $R(N)=1$ and $R n(N)=1$ then
T:= R xor Rn;
W := X xor Xn;
else
T := R;
W := X;
end if;

```

\section*{GF(2) Multiplicative Inverse In Hardware}
(Brunner et. al, 1993)
if \(R(N)=0\) then
\[
\begin{array}{lr}
\mathrm{R}:=\mathrm{R} \ll 1 ; & \mathrm{Rn}:=\mathrm{T} ; \\
\mathrm{X}:=\mathrm{GFM} 2(\mathrm{X}) ; & \mathrm{Xn}:=\mathrm{W} ;
\end{array}
\]
\[
\text { delta := delta }+1
\]
else
if delta \(=0\) then
\[
\begin{aligned}
& \mathrm{Rn}:=\mathrm{R} ; \quad \mathrm{R}:=\mathrm{T} \ll 1 ; \\
& \mathrm{Xn}:=\mathrm{X} ; \quad \mathrm{X}:=\mathrm{GFM} 2(\mathrm{~W}) ; \\
& \text { delta }:=\text { delta + 1; }
\end{aligned}
\]
else
\[
\begin{array}{ll}
\mathrm{Rn}:=\mathrm{T} \ll 1 ; & \mathrm{R}:=\mathrm{R} ; \\
\mathrm{Xn}:=\mathrm{W} ; & \mathrm{X}:=\mathrm{GFD} 2(\mathrm{X}) ; \\
\text { delta }:=\text { delta }-1 ; &
\end{array}
\]
end if;
end if;
end loop;
return R;
GF_Inversion(A);

\section*{Division by \(2^{\mathrm{x}}\)}
- Dividing by 2 is the inverse of
multiplying by 2 , so
\[
\begin{array}{ll}
2 B_{7} \Leftarrow B_{6} & B_{7} \Leftarrow 2 \mathrm{~B}_{0} \\
2 B_{6} \Leftarrow B_{5} & B_{6} \Leftarrow 2 \mathrm{~B}_{7} \\
2 B_{5} \Leftarrow B_{4} & B_{5} \Leftarrow 2 \mathrm{~B}_{6} \\
2 B_{4} \Leftarrow B_{3} \oplus B_{7} \Rightarrow & B_{4} \Leftarrow 2 \mathrm{~B}_{5} \\
2 B_{3} \Leftarrow B_{2} \oplus B_{7} & B_{3} \Leftarrow 2 \mathrm{~B}_{4} \oplus 2 \mathrm{~B}_{0} \\
2 B_{2} \Leftarrow B_{1} \oplus B_{7} & B_{2} \Leftarrow 2 \mathrm{~B}_{3} \oplus 2 \mathrm{~B}_{0} \\
2 B_{1} \Leftarrow B_{0} & B_{1} \Leftarrow 2 \mathrm{~B}_{2} \oplus 2 \mathrm{~B}_{0} \\
2 B_{0} \Leftarrow B_{7} & B_{0} \Leftarrow 2 \mathrm{~B}_{1}
\end{array}
\]

\section*{Multiplication/Division with Lookup Tables}
- Multiplication and Division can also be done w/ lookup tables
\[
\begin{gathered}
A \times B=\exp (\log (A)+\log (B)) \\
A / B=\exp (\log (A)-\log (B))
\end{gathered}
\]
- Requires 256X8 lookup tables
- Typically done in hard RAM blocks, so as not to use up fabric resources
- The lookup tables are at most dual ported, so 2 RAM blocks are needed per pair of inputs

\section*{RAID}
- Redundant Array of Independent (Inexpensive) Drives
- RAID comes in 4 common "varieties"
- RAID0 - data striped across the array
- RAID1 - data mirrored across the array
- RAID5 - data striped across the array with one parity block
- RAID6 - data striped across the array with two parity blocks

\section*{RAID 6}
- RAID6 uses GF \(\left(2^{8}\right)\) Algebra to create 2 redundant parity blocks
- Data is striped in data blocks of 1 sector
- 2 blocks are used for parity information so usable array space is \(\mathrm{N}-2\) drives
- Can detect 1 corrupt data bock
- Can recover 2 corrupt data blocks (assuming some other method of detecting the error exists)

\section*{RAID6 Parity}

The P block is: \(P=\sum_{i=0}^{n-2}\left(D_{i}\right)\)
- This is the same as RAID5 parity
- Allows for easy generation and recovery
- The Q block is: \(Q=\sum_{i=0}^{n-2}\left(2^{i} \times D_{i}\right)\)
- More complicated generation, but allows for error detection

\section*{RAID6 Error Detection}
- If the data at (unknown) location \(L\) is corrupted to \(X\), then:
\[
\begin{aligned}
& P=D_{0} \oplus \ldots \oplus D_{L-1} \oplus D_{L} \oplus D_{L+1} \oplus \ldots \oplus D_{n} \\
& P^{\prime}=D_{0} \oplus \ldots \oplus D_{L-1} \oplus X \oplus D_{L+1} \oplus \ldots \oplus D_{n} \\
& P \oplus P^{\prime}=D_{l} \oplus X \\
& Q=2^{0} \times D_{0} \oplus \ldots \oplus 2^{L-1} \times D_{L-1} \oplus 2^{L} \times D_{L} \oplus 2^{L+1} \times D_{L+1} \oplus \ldots \oplus 2^{n} \times D_{n} \\
& Q^{\prime}=2^{0} \times D_{0} \oplus \ldots \oplus 2^{L-1} \times D_{L-1} \oplus 2^{L} \times X \oplus 2^{L+1} \times D_{L+1} \oplus \ldots \oplus 2^{n} \times D_{n} \\
& Q \oplus Q^{\prime}=2^{L} \times D_{L} \oplus 2^{L} \times X=2^{L} \times\left(D_{L} \oplus X\right) \\
& \left(P \oplus P^{\prime}\right) /\left(Q \oplus Q^{\prime}\right)=2^{L} \\
& \log \left(\left(P \oplus P^{\prime}\right) /\left(Q \oplus Q^{\prime}\right)\right)=L
\end{aligned}
\]

\section*{RAID6 Error Correction}
- If 2 errors exist, there are 4 options of what they could be:
- The two parity blocks
- If this is the case, just recompute them
- One data block and \(P\)
- One data block and Q
- Two data blocks

\section*{One Corrupted Data Block}
- If only one data block is corrupted, and one of the parity is corrupted, then the data can be recreated from the good parity
- If P is good than:
\[
\begin{aligned}
& P=D_{0} \oplus \ldots \oplus D_{L-1} \oplus D_{L} \oplus D_{L+1} \oplus \ldots \oplus D_{n} \\
& 0=P \oplus D_{0} \oplus \ldots \oplus D_{L-1} \oplus D_{L} \oplus D_{L+1} \oplus \ldots \oplus D_{n} \\
& D_{L}=P \oplus D_{0} \oplus \ldots \oplus D_{L-1} \oplus D_{L+1} \oplus \ldots \oplus D_{n}
\end{aligned}
\]
- If \(Q\) is good than recompute \(Q\) (called \(Q\) ') with the bad data as zeros:
\[
\begin{aligned}
& Q=2^{0} \times D_{0} \oplus \ldots \oplus 2^{L-1} \times D_{L-1} \oplus 2^{L} \times D_{L} \oplus 2^{L+1} \times D_{L+1} \oplus \ldots \oplus 2^{n} \times D_{n} \\
& Q^{\prime}=2^{0} \times D_{0} \oplus \ldots \oplus 2^{L-1} \times D_{L-1} \oplus 2^{L} \times 0 \oplus 2^{L+1} \times D_{L+1} \oplus \ldots \oplus 2^{n} \times D_{n} \\
& Q \oplus Q^{\prime}=2^{L} \times D_{L} \\
& \left(Q \oplus Q^{\prime}\right) / 2^{L}=D_{L}
\end{aligned}
\]

\section*{Two Data Drives Corrupted}
- Data is corrupted on drives \(L\) and \(K\) (assuming \(K<L\) ), recalculate \(P\) and \(Q\left(P^{\prime}\right.\) and \(Q^{\prime}\) ) with erroneous data blocks as zeros:
\[
\begin{aligned}
& P=D_{0} \oplus \ldots \oplus D_{K-1} \oplus D_{K} \oplus D_{K+1} \oplus \ldots \oplus D_{L-1} \oplus D_{L} \oplus D_{L+1} \oplus \ldots \oplus D_{n} \\
& P^{\prime}=D_{0} \oplus \ldots \oplus D_{K-1} \oplus 0 \oplus D_{K+1} \oplus \ldots \oplus D_{L-1} \oplus 0 \oplus D_{L+1} \oplus \ldots \oplus D_{n} \\
& P=P^{\prime} \oplus D_{K} \oplus D_{L} \\
& Q=2^{0} \times D_{0} \oplus \ldots \oplus 2^{K-1} \times D_{K-1} \oplus 2^{K} \times D_{K} \oplus 2^{K+1} \times D_{K+1} \oplus \ldots \\
& \oplus 2^{L-1} \times D_{L-1} \oplus 2^{L} \times D_{L} \oplus 2^{L+1} \times D_{L+1} \oplus \ldots \oplus 2^{n} \times D_{n} \\
& Q^{\prime}=2^{0} \times D_{0} \oplus \ldots \oplus 2^{K-1} \times D_{K-1} \oplus 2^{K} \times 0 \oplus 2^{K+1} \times D_{K+1} \oplus \ldots \\
& \oplus 2^{L-1} \times D_{L-1} \oplus 2^{L} \times 0 \oplus 2^{L+1} \times D_{L+1} \oplus \ldots \oplus 2^{n} \times D_{n} \\
& Q=Q^{\prime} \oplus 2^{K} \times D_{K} \oplus 2^{L} \times D_{L}
\end{aligned}
\]

\section*{Two Data Drives Corrupted}
- Then solve the first equation for \(D_{L}\) and the second for \(D_{K}\) and plug the in for \(\mathrm{D}_{\mathrm{K}}\) :
\[
\begin{aligned}
& P=P^{\prime} \oplus D_{K} \oplus D_{L} \\
& D_{L}=P \oplus P^{\prime} \oplus D_{K}
\end{aligned}
\]
\[
Q=Q^{\prime} \oplus 2^{K} \times D_{K} \oplus 2^{L} \times D_{L}
\]
\[
D_{K}=2^{K} \times\left(Q \oplus Q^{\prime}\right) \oplus 2^{L-K} \times D_{L}
\]
\[
D_{L}=P \oplus P^{\prime} \oplus 2^{K} \times\left(Q \oplus Q^{\prime}\right) \oplus 2^{L-K} \times D_{L}
\]
\[
D_{L} \oplus 2^{L-K} \times D_{L}=P \oplus P^{\prime} \oplus 2^{K} \times\left(Q \oplus Q^{\prime}\right)
\]
\[
\left(2^{L-K} \oplus 1\right) \times D_{L}=P \oplus P^{\prime} \oplus 2^{K} \times\left(Q \oplus Q^{\prime}\right)
\]
\[
D_{L}=\frac{P \oplus P^{\prime} \oplus 2^{K} \times\left(Q \oplus Q^{\prime}\right)}{2^{L-K} \oplus 1}
\]

\section*{Two Data Drives Corrupted}
- \(\quad\) Since \(K<L\), it can be assumed that \(2^{L-K} \oplus 1>1\)
- No division by zero possible
- After \(D_{L}\) is found, plug back in for \(D_{K}\) in the \(P\) equation solved for \(D_{K}\) :
\[
D_{k}=P \oplus P^{\prime} \oplus D_{L}
\]

\section*{Cost of Implementing in FPGA}
- FPGAs use 4 input lookup tables (LUT4) in the fabric to implement logic
- 2-input AND has same logic cost as 2-input XOR
- 2-input XOR has same logic cost as 4-input XOR
- If more than 4 inputs are needed, another LUT4 is cascaded to make a 7-input gate
- This can be repeated many times in a tree (with a branching factor of 4), until required number of inputs is supplied:
- Hardware cost is: LUT4/ \(N\)-input gate \(=\lceil(N-1) / 3\rceil\)
\(-\quad\) Speed cost is: delay \(=\) Depth of LUT4 tree \(=\left\lceil\log _{4} N\right\rceil\)

\section*{What is the Best way to do RAID6 in Hardware?}
- With various ways, which is the best?
- 3 different things to be discussed
- Encoding
- Decoding to detect error
- Decoding to correct errors

\section*{FPGA Hardware Encoding}
\[
Q=\sum_{i=0}^{N}\left(2^{i} \times D i\right)
\]
- Can be done with 3 different methods:
- Lookup Tables
- Requires N \(256 \times 8\) lookup tables to be done (assuming N is even)
- Good for when slice count becomes an issue and timing constraints are relaxed
- Hardware General-Purpose Multipliers
- Easily expandable and requires no block RAM
- Hardware Special-Purpose Multipliers
- Uses multiplication by \(2^{x}\) multipliers to multiply by the required constants
- Requires very few slices and no block RAM

\section*{FPGA Error Detection}
\(\log \left(\left(P \oplus P^{\prime}\right) /\left(Q \oplus Q^{\prime}\right)\right)=L\)
- Requires a log table, so only sensible way of doing it is with lookup tables
- This also allows for simplified logic
\[
\begin{aligned}
& \log \left(\exp \left(\log \left(P \oplus P^{\prime}\right)-\log \left(Q \oplus Q^{\prime}\right)\right)\right)=L \\
& \log \left(P \oplus P^{\prime}\right)-\log \left(Q \oplus Q^{\prime}\right)=L
\end{aligned}
\]
- Only requires one dual-ported log table, and no exponentiation table this way

\section*{FPGA 2 Error Correction}
\[
D_{L}=\frac{P \oplus P^{\prime} \oplus 2^{K} \times\left(Q \oplus Q^{\prime}\right)}{2^{L-K} \oplus 1}
\]
- Can be done 3 different ways:
- Lookup tables
- Requires 4 lookup tables, or 2 if no pipelining is required
- General-Purpose multiplication and Division
- Quite a lot of hardware required
- Special-Purpose Multiplication and Division
- Use multiply/divide by constant circuits w/ multiplexer to use the proper one for the desired values of \(L\) and \(K\)
- Need at most \(\mathrm{N}-1\) multiply by constants, and \(\mathrm{N}-1\) Divide by constants and 2 ( \(\mathrm{N}-1\) )-input Muxes

\section*{Conclusion}

Multiply/Divide by constant combinational circuits can be used to greatly reduce the complexity of RAID6 encoding and decoding

\section*{Any Questions?}```

