
 1

Galois Field Algebra and RAID6

By David Jacob

 2

Overview
• Galois Field

– Definitions
– Addition/Subtraction
– Multiplication
– Division
– Hardware Implementation

• RAID6
– Definitions
– Encoding
– Error Detection
– Error Correction
– Hardware Implementations

 3

Galois Field (GF)

• A finite field with integer elements
• All GF operations are closed
 – Operations on a element give another element in the

field

• The field is generated using a generating
polynomial, F

 – All math is done modulo F

 4

GF Notation

• GF(pn)
 – p = prime that defines number of numbers per digit
 • Ex. GF(2) = binary

 – n = highest order of generating polynomial; also the
number of digits for each number in the field

 • E.g. GF(28) = 8-bit binary field (aka: every element is a
byte) This is the field that will be used throughout the
rest of this discussion

 • For GF(28), F = x8+x4+x3+x2+1

 5

Addition/Subtraction

• Defined as addition/subtraction modulo p.
– In GF(2), this is the XOR operation

X Y X+Y
0 0 0
0 1 1
1 0 1
1 1 0

 6

Multiplication

• Multiplication modulo F
• Ex.
 – F = 100011101, A = 10101010, B = 00000010
 – AxB = (A*B) mod F
 = (101010100) mod 100011101
 = 01001001

 7

Multiplication by 2x

• As shown before, this is equivalent to a
LFSR with a feedback of F that is shifted x
times.

• Since fields are also mathematical rings,
all elements are a power of 2, so this can
be used to multiply any numbers A and B
if you know what log2(B) is

• If you are multiplying by a constant, this
LFSR can be unrolled and combined to
reduce time and logic

2B7⇐ B6

2B6⇐ B5

2B5⇐B4

2B4⇐B3⊕B7

2B3⇐ B2⊕B7

2B2⇐B1⊕B7

2B1⇐B0

2B0⇐ B7

 8

Multiplication by 2x

X0 X1 X2 X3 X4 X5 X6 X7

X7 X0 X1+X7 X2+X7 X3+X7 X4 X5 X6

X6 X7 X0+X6 X1+X6+
X7

X2+X6+
X7

X3+X7 X4 X5

X5 X6 X5+X7 X0+X5+
X6

X1+X5+
X6+X7

X2+X6+
X7

X3+X7 X4

X4 X5 X4+X6 X4+X5+
X7

X0+X4+
X5+X6

X1+X5+
X6+X7

X2+X6+
X7

X3+X7

X3+X7 X4 X3+X5+
X7

X3+X4+
X6+X7

X3+X4+
X5

X0+X4+
X5+X6

X1+X5+
X6+X7

X2+X6+X7

X2+X6+
X7

X3+X7 X2+X4+
X6+X7

X2+X3+
X5+X6

X2+X3+
X4

X3+X4+
X5

X0+X4+
X5+X6

X1+X5+X6

+X7

X1+X5+
X6+X7

X2+X6

+X7
X1+X3+
X5+X6

X1+X2+
X4+X5

X1+X2+
X3+X7

X2+X3+
X4

X3+X4+
X5

X0+X4+X5

+X6

 9

Fast General-Purpose Multiplication

• If you want to multiply by a number that isn’t a power of
2, use Distributive property.

 – Multiplying 2ixB can be done using unrolled LFSRs

 – A(i)x(2ixB) is done with AND gates

 – Addition is XOR gates

• This results in general purpose multiplication being
done in combinational time

A×B=∑
i=0

n

Ai×2i×B

 10

GF Division

• Defined as multiplication by the multiplicative
inverse

– A/B = AxB-1

• The multiplicative inverse is unique for every
element in the field

• Multiplicative inverse defined as:
 – AxA-1 = 1

 11

Multiplicative Inverse
 There are 3 ways of finding multiplicative

inverse: Brute Force, Fermat's Little Theorem,
and Extended Euclidean Algorithm

 Brute Force method of multiplying by each
possible element until one of the products is 1 is
obviously very expensive in either time or
hardware

 12

Fermat's Little Theorem
 Fermat's little theorem involves math modulo F,

and can be used like this:

 Therefore, in GF(28): A254 = A-1

Apn

=Amod F
Apn−1

=1mod F
A⋅Apn−2

=1mod F

 13

Fermat's Little Theorem
(Tom Wada, 2003)

 Using some “tricks” this can be calculated much
easier than it would seem
 This still requires the equivalent of 11 general-

purpose multipliers

`

 14

Euclidean Algorithm
 The Euclidean Algorithm is used to find the Greatest

Common Denominator (GCD) of two numbers.
 If you are trying to find the GCD(A,B), and assuming

A>=B
 Q = A/B (integer division), R = A mod B

 So, R is also a multiple of the GCD(A,B), so GCD(A,B)
= GCD(B,R)

 This can be continued until there is no remainder, in
which case, the last value divided by is the GCD(A,B)

A=Q⋅BR
R=A−Q⋅B
R=m⋅GCD A ,B−Q⋅n⋅GCDA , B
R=GCD A , B⋅m−Q⋅n
R=GCD A , B⋅p

 15

Euclidean Algorithm
GCD(A,B):
 // initialize
 Rn := A; R := B;
 repeat
 // shift the values back for the next reduction
 Rm := Rn;
 Rn := R;
 // reduce
 Q := Rm/Rn; //this is integer division
 R := Rm - Q * Rn;
 until R = 1;
 return Rn;
end GCD(A,B);

 16

Extended Euclidean Algorithm

• Not only find GCD, but constants of
multiplication

• Uses the quotients that are thrown away in the
normal Euclidean Algorithm to find X and Y

GCDA , B=A⋅XB⋅Y

 17

Extended Euclidean Algorithm

• This is is found by assuming:

• So:

Ri=Ri−2−
Ri−2

Ri−1
⋅Ri−1

Ri=A⋅X i−2B⋅Y i−2−
Ri−2

Ri−1
⋅A⋅X i−1B⋅Y i−1

Ri=A⋅X i−2B⋅Y i−2−
Ri−2

Ri−1
⋅A⋅X i−1

Ri−2

Ri−1
⋅B⋅Y i−1

Ri=A⋅X i−2−
Ri−2

Ri−1
⋅X i−1B⋅Y i−2

Ri−2

Ri−1
⋅Y i−1

Ri=A⋅X iB⋅Y i

 18

Extended Euclidean Algorithm

• Since X and Y are defined recursively, starting
points are needed

• Consider that the first two “remainders” are A
and B

R−2=A=A⋅1B⋅0
R−1=B=A⋅0B⋅1

 19

Extended Euclidean Algorithm
Ext_GCD(A,B):
 //initialize
 Rn := A; R := B;
 Xn := 1; X := 0;
 Yn := 0; Y := 1;
 repeat
 // shift the values back for the next reduction
 Rm := Rn; Rn := R;
 Xm := Xn; Xn := X;
 Ym := Yn; Yn := Y;
 // reduce
 Q := Rm/Rn; //this is integer division
 R := Rm - Q * Rn;
 // update X and Y
 X := Xm - Q * Xn; Y := Ym - Q * Yn;
 until R = 1;
 return Rn,X,Y;
end Ext_GCD(A,B);

 20

How does Extended Euclidean
Algorithm Help?

• In GF algebra, F is coprime with all elements
in the field and multiplication is done modulo F
so:

• So X is the multiplicative inverse of A

A×X⊕F×Y=GCD A , F 
A×X⊕F×Y=1
A×X=F×Y⊕1
A×X=0⊕1
A×X=1

 21

Improving Ext. Euclidean Algorithm
for GF(2)

• First, the Y is not important, so don't keep
track of it

• Second, since the point of finding the
multiplicative inverse is to implement division,
finding Q = Rn/Rm is impossible.

– Q isn't important either, just finding the
remainder after the division

 22

Finding the GF(x) Remainder
(Brent et. al, 1984)

• Basically do binary “long division” until the
remainder is found

MOD(A,B)

 delta := deg A - deg B;
 repeat
 // scale A and X
 Bs := xdelta * B; Xs := xdelta * X;
 // reduce
 A := A – Bs; Y := Y - Xs;
 // recalculate degree
 delta := deg A - deg B;
 until delta < 0;
 return A, Y;
end MOD(A,B);

 23

Finding the GF(2) Remainder
(Brunner et. al, 1993)

• How to do “xdelta * B” efficiently?
– Could shift both values until the Msb are high
– Then when subtraction is done, the top bit of A

is 0, so it can be shifted, and delta decremented
• Remember that the result must be in the Galois

Field, so math on it should be GF Algebra!
– GFM2(A) = returns A times 2 (GF Multiplication)
– GFD2(A) = returns A divided by 2 (GF Division)

 24

Finding the GF(2) Remainder
(Brunner et. al, 1993)

MOD(A,B)
 delta := 0;
 repeat
 if R(N) = 0 then // scale up B and X and increment delta
 B := B << 1; X := GFM2(X); delta := delta + 1;
 else
 if A(N) = 0 then // scale up A and scale down X
 A := A << 1; X := GFD2(X);
 else
 // if both MSb's are high, reduce B and Y and scale A and X
 A := A – B; Y := Y xor X;

A := A << 1; X := GFD2(X);
 end if;
 delta := delta - 1;
 end if;
 while delta >= 0;
 return A and Y;
end MOD(A,B);

 25

GF(2) Multiplicative Inverse
(Brunner et. al, 1993)

• Combining this method of finding the
remainder with the original Extended
Euclidean Algorithm gives a usable
implementation

• Since the order of F is N, and worst case, the
order of A can be of order N, the loop needs to
be done 2*N times

• To save registers, X and A can be used as
temporary registers, since the final value of
them is unimportant anyway

 26

GF(2) Multiplicative Inverse
(Brunner et. al, 1993)

GF_Inversion(A)
 Rn := F; R := A;
 Xn := 1; X := 0;
 delta := 0;

 for i = 1 to 2*N
 if R(N) = 0 then // scale up B and X and increment delta
 Rn := Rn << 1; X := GFM2(X);
 delta := delta + 1;
 else
 if Rn(N) = 1 then
 R := R – Rn; X := X xor Xn;
 end if;
 R := R << 1;
 if delta = 0 then // division is done, so swap variables for new division
 swap(R,Rn); swap(X,Xn);
 X := GFM2(X);
 else
 X := GFD2(X);
 delta := delta - 1;
 end if;
 end if;
 end loop;
 return R;
end GF_Inversion(B);

 27

GF(2) Multiplicative Inverse In
Hardware

(Brunner et. al, 1993)
• To implement things in hardware, concurency

can be taken advantage of
• To simplify hardware design, signals T and W

are added

 28

GF(2) Multiplicative Inverse In
Hardware

(Brunner et. al, 1993)
GF_Inversion(B)
 Rn := F; R := B;
 Xn := 1; X := 0;
 delta := 0;

 for i = 1 to 2*N
 if R(N) = 1 and Rn(N) = 1 then
 T := R xor Rn;
 W := X xor Xn;
 else
 T := R;
 W := X;
 end if;

 29

GF(2) Multiplicative Inverse In
Hardware

(Brunner et. al, 1993)
 if R(N) = 0 then
 R := R << 1; Rn := T;
 X := GFM2(X); Xn := W;
 delta := delta + 1;
 else
 if delta = 0 then
 Rn := R; R := T << 1;
 Xn := X; X := GFM2(W);
 delta := delta + 1;
 else
 Rn := T << 1; R := R;
 Xn := W; X := GFD2(X);
 delta := delta - 1;
 end if;
 end if;
 end loop;
 return R;
GF_Inversion(A);

 30

Division by 2x

• Dividing by 2 is the
inverse of
multiplying by 2, so
a LFSR which
reverses the
multiply by 2 LFSR
would divide by 2.

• This can once
again be expanded
to multiply by any
constant.

2B7⇐ B6

2B6⇐ B5

2B5⇐B4

2B4⇐B3⊕B7

2B3⇐ B2⊕B7

2B2⇐B1⊕B7

2B1⇐B0

2B0⇐ B7

B7⇐2B0

B6⇐2B7

B5⇐2B6

B4⇐2B5

B3⇐2B4⊕2B0

B2⇐2B3⊕2B0

B1⇐2B2⊕2B0

B0⇐2B1

 31

Multiplication/Division with Lookup
Tables

• Multiplication and Division can also be done
w/ lookup tables

• Requires 256X8 lookup tables
– Typically done in hard RAM blocks, so as not to

use up fabric resources
– The lookup tables are at most dual ported, so 2

RAM blocks are needed per pair of inputs

A×B=explogAlog B
A /B=explog A−logB

 32

RAID

• Redundant Array of Independent
(Inexpensive) Drives

• RAID comes in 4 common “varieties”
– RAID0 - data striped across the array
– RAID1 - data mirrored across the array
– RAID5 - data striped across the array with one

parity block
– RAID6 - data striped across the array with two

parity blocks

 33

RAID 6

• RAID6 uses GF(28) Algebra to create 2
redundant parity blocks

– Data is striped in data blocks of 1 sector
– 2 blocks are used for parity information so

usable array space is N – 2 drives
– Can detect 1 corrupt data bock
– Can recover 2 corrupt data blocks (assuming

some other method of detecting the error exists)

 34

RAID6 Parity

• The P block is:

– This is the same as RAID5 parity
– Allows for easy generation and recovery

• The Q block is:

– More complicated generation, but allows for
error detection

P=∑
i=0

n−2

Di

Q=∑
i=0

n−2

2i×Di

 35

RAID6 Error Detection

P=D0⊕...⊕DL−1⊕DL⊕DL1⊕...⊕Dn

P '=D0⊕...⊕DL−1⊕X⊕DL1⊕...⊕Dn

P⊕P '=Dl⊕X

Q=20×D0⊕...⊕2L−1×DL−1⊕2L×DL⊕2L1×DL1⊕...⊕2n×Dn

Q'=20×D0⊕...⊕2L−1×DL−1⊕2L×X⊕2L1×DL1⊕...⊕2n×Dn

Q⊕Q'=2L×DL⊕2L×X=2L×DL⊕X 

P⊕P ' /Q⊕Q' =2L

log P⊕P ' /Q⊕Q ' =L

• If the data at (unknown) location L is corrupted
to X, then:

 36

RAID6 Error Correction

• If 2 errors exist, there are 4 options of what
they could be:

– The two parity blocks
• If this is the case, just recompute them

– One data block and P
– One data block and Q
– Two data blocks

 37

One Corrupted Data Block
• If only one data block is corrupted, and one of the parity is

corrupted, then the data can be recreated from the good
parity

– If P is good than:

– If Q is good than recompute Q (called Q') with the bad
data as zeros:

P=D0⊕...⊕DL−1⊕DL⊕DL1⊕...⊕Dn

0=P⊕D0⊕...⊕DL−1⊕DL⊕DL1⊕...⊕Dn

DL=P⊕D0⊕...⊕DL−1⊕DL1⊕...⊕Dn

Q=20×D0⊕...⊕2L−1×DL−1⊕2L×DL⊕2L1×DL1⊕...⊕2n×Dn

Q'=20×D0⊕...⊕2L−1×DL−1⊕2L×0⊕2L1×DL1⊕...⊕2n×Dn

Q⊕Q'=2L×DL

Q⊕Q' /2L=DL

 38

Two Data Drives Corrupted

• Data is corrupted on drives L and K (assuming K<L),
recalculate P and Q (P' and Q') with erroneous data
blocks as zeros:

P=D0⊕...⊕DK−1⊕DK⊕DK1⊕...⊕DL−1⊕DL⊕DL1⊕...⊕Dn

P '=D0⊕...⊕DK−1⊕0⊕DK1⊕...⊕DL−1⊕0⊕DL1⊕...⊕Dn

P=P '⊕DK⊕DL

Q=20×D0⊕...⊕2K−1×DK−1⊕2K×DK⊕2K1×DK1⊕...
⊕2L−1×DL−1⊕2L×DL⊕2L1×DL1⊕...⊕2n×Dn

Q'=20×D0⊕...⊕2K−1×DK−1⊕2K×0⊕2K1×DK1⊕...
⊕2L−1×DL−1⊕2L×0⊕2L1×DL1⊕...⊕2n×Dn

Q=Q'⊕2K×DK⊕2L×DL

 39

Two Data Drives Corrupted

• Then solve the first equation for DL and the second for DK
and plug the in for DK:
P=P '⊕DK⊕DL

DL=P⊕P '⊕DK

Q=Q'⊕2K×DK⊕2L×DL

DK=2K×Q⊕Q' ⊕2L−K×DL

DL=P⊕P '⊕2K×Q⊕Q' ⊕2L−K×DL

DL⊕2L−K×DL=P⊕P '⊕2K×Q⊕Q' 
2L−K⊕1×DL=P⊕P '⊕2K×Q⊕Q' 

DL=
P⊕P '⊕2K×Q⊕Q' 
2L−K⊕1

 40

Two Data Drives Corrupted

• Since K<L, it can be assumed that
– No division by zero possible

• After DL is found, plug back in for DK in the P
equation solved for DK:

2L−K⊕11

Dk=P⊕P '⊕DL

 41

Cost of Implementing in FPGA
• FPGAs use 4 input lookup tables (LUT4) in

the fabric to implement logic
– 2-input AND has same logic cost as 2-input

XOR
– 2-input XOR has same logic cost as 4-input

XOR
• If more than 4 inputs are needed, another

LUT4 is cascaded to make a 7-input gate
– This can be repeated many times in a tree (with

a branching factor of 4), until required number
of inputs is supplied:

– Hardware cost is:
– Speed cost is: delay=Depth of LUT4tree=⌈log4 N ⌉

LUT4 /N−input gate=⌈N−1/3⌉

 42

What is the Best way to do RAID6 in
Hardware?

• With various ways, which is the best?
• 3 different things to be discussed

– Encoding
– Decoding to detect error
– Decoding to correct errors

 43

FPGA Hardware Encoding

• Can be done with 3 different methods:
– Lookup Tables

• Requires N 256x8 lookup tables to be done
(assuming N is even)

• Good for when slice count becomes an issue and
timing constraints are relaxed

– Hardware General-Purpose Multipliers
• Easily expandable and requires no block RAM

– Hardware Special-Purpose Multipliers
• Uses multiplication by 2x multipliers to multiply by

the required constants
• Requires very few slices and no block RAM

Q=∑
i=0

N

2i×Di

 44

FPGA Error Detection

• Requires a log table, so only sensible way of
doing it is with lookup tables

• This also allows for simplified logic

– Only requires one dual-ported log table, and no
exponentiation table this way

logP⊕P ' /Q⊕Q' =L

logexp logP⊕P ' −log Q⊕Q' =L
logP⊕P ' −log Q⊕Q' =L

 45

FPGA 2 Error Correction

• Can be done 3 different ways:
– Lookup tables

• Requires 4 lookup tables, or 2 if no pipelining is
required

– General-Purpose multiplication and Division
• Quite a lot of hardware required

– Special-Purpose Multiplication and Division
• Use multiply/divide by constant circuits w/

multiplexer to use the proper one for the desired
values of L and K

• Need at most N-1 multiply by constants, and N-1
Divide by constants and 2 (N-1)-input Muxes

DL=
P⊕P '⊕2K×Q⊕Q ' 
2L−K⊕1

 46

Conclusion

• Multiply/Divide by constant combinational
circuits can be used to greatly reduce the
complexity of RAID6 encoding and decoding

 47

Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

