NAME:__SOLUTIONS
EGRE 426

Quiz 2

Open book / Open notes

November 3, 2008

1. On the MIPS control unit description shown below, show how to add the jalr instruction. You may add new microinstructions if they are necessary and reasonable.

	jalr
	rs
	$31 (PC+4, PC (rs

THE MIPS CONTROL UNIT V 5.03 Needs to be MODIFIED for SW preceded by LW.

(IRX.OP = ADD) / ALUM ((+ (

(IRM.OP = SW) / M(ALUM) (SMDR

(IRM.OP = LW) / ALUW (M(ALUM)

2. Consider the following mips code sequence that uses non-delayed branches:

Start:
addi
$s1, $0, 400

add
$t0, $0, $0

Loop:
lw
$t1, 1000($s1)

add
$t0, $t0, $t1

addi
$s1, $s1, -4

bne
$s1, $0, Loop

sw
$t0, 1000($s1)

j
OverThere

(a). What is the address of the first word loaded into $t1?

ANS: 1400

(b). What is the address of the last word laded into $t1?

ANS: 1004

(c). How many times are words loaded into $t1?

ANS: 100

(d). In what address is $t0 stored?

Ans: 1000

(e). Assuming the idealized case where an instruction exits the pipeline on each clock cycle and ignoring hazards, stalls, aborts, etc., how many clock cycles in the idealized case are required to execute the code shown.

Hint: If the code sequence were

Start:
addi
$s1, $0, 400

add
$t0, $0, $0

j
OverThere

The answer would be three.

ANS: We go through the loop 100 times; therefore, the number of clock cycles = 2 + 100 X 4 + 2 = 404.
(f). Because of hazards, stalls, aborts, etc. the code will actually execute slower. In the actual case (assuming instructions execute as shown and branches are not delayed), how long will it take for the code to execute? (Assume the control unit is similar to that described by the table in problem 1).

Hint: If the code sequence were

Start:
addi
$s1, $0, 400

add
$t0, $0, $0

j
OverThere

The answer would still be three.

ANS: The add following the lw must be stalled creating a bubble. This happens 100 times. Each time the bne is taken the sw and j will be fetch and aborted creating two bubbles in the pipeline. This happens 99 times. Thus, the number of bubbles generated is 100 + 2 X 99 = 298, and the total time is 404 + 298 = 602.

3. The non-delayed branch code fragment from the previous problem is to be implemented on a delayed branch machine. For this machine the bne delay is 2 and the j delay is 1. Three possible versions of a delayed branch implementation are shown. Which version or versions produce the same result as the version on the non-delayed branch machine?

ANS: Version 1 writes to locations before loading them; therefore, it does not store correct sum. Version 2 is correct. Version 3 does not load M(1400) and stores sum in M(1004); therefore, it is not correct.

	Non-delayed branch version.

Start:
addi
$s1, $0, 400

add
$t0, $0, $0

Loop:
lw
$t1, 1000($s1)

add
$t0, $t0, $t1

addi
$s1, $s1, -4

bne
$s1, $0, Loop

sw
$t0, 1000($s1)

j
OverThere

M(1000) = M(1400) + …+M(1004)
	Version 1.

Start:
addi
$s1, $0, 400

add
$t0, $0, $0

Loop:
lw
$t1, 1000($s1)

addi
$s1, $s1, -4

bne
$s1, $0, Loop

add
$t0, $t0, $t1

sw
$t0, 1000($s1)

j
OverThere

nop

M(1000)=M(1400)+…+M(1004)

but changes M(1396)…M(1004) first

	Version 2.

Start:
addi
$s1, $0, 396

add
$t0, $0, $0

Loop:
lw
$t1, 1004($s1)

bne
$s1, $0, Loop

addi
$s1, $s1, -4

add
$t0, $t0, $t1

j
OverThere

sw
$t0, 1004($s1)

M(1000)=M(1400)+…+M(1004)
	Version 3.

Start:
addi
$s1, $0, 396

add
$t0, $0, $0

Loop:
addi
$s1, $s1, -4

bne
$s1, $0, Loop

lw
$t1, 1004($s1)

add
$t0, $t0, $t1

j
OverThere

sw
$t0, 1004($s1)

M(1004)=M(1396)+M(1004)

4. For parts 1 through 6, consider the following three sequences of instructions that execute on the pipelined version of the MIPS processor.

	a).
	
	b).
	
	c)
	

	lw
	$4,100($2)
	lw
	$4,100($2)
	add
	$2,$3,$5

	sub
	$6,$4,$3
	add
	$2,$3,$5
	lw
	$4,100($2)

	add
	$2,$3,$5
	sub
	$6,$4,$3
	sub
	$6,$4,$3

In a) and c) the sub following the lw will have to stall waiting for the $4 value to be read form memory. This will introduce a bubble in the pipeline when a) and c) are executed; therefore, a) and c) have an effective execution time of 4 clock cycles while b) has an effective execution time of only 3 clock cycles.

1. Does the execution of sequence a) and b) produce the same results?

Yes. There are no data dependences between the add and sub; therefore, either can be executed first.

2. Does the execution of sequence a) and c) produce the same results?

No. The add changes register $2 which is used by the lw instruction; therefore, the lw will not read the same memory word in both cases.

3. Does a) execute faster than b)?

No. Since a stalls and b does not, b executes faster.

4. Does b) execute faster than a)?

Yes. b does not stall.

5. Does c) execute faster than a)?

No. a and c both stall and execute in the same time.

6. Does c) execute faster than b)?

No. c stalls and b does not; therefore, b executes faster.

5. The test program we used in the previous lab is shown below. Rewrite this program (without changing the algorithm) to run in the most efficient way on the pipelined version of the MIPS processor. Assume that the “j” and the “beq” instructions are delayed branches with a delay of two. If necessary, use nop for a no-op instruction.

 addi $0, $0, 4097 # try to put garbage in $0

 sw $0, 20($0) # clear sum in M(14H)

 addi $9, $0, 1000 # put max count in R10

 loop: lw $8, 20($0) # get old sum

 add $8, $8, $9 # update sum

 sw $8, 20($0) # save sum

 addi $9, $9, -1 # decrement count

 beq $9, $0, done # check if count = 0

 j loop # if not loop

 done: j done # when done M(14H) = 37H

My solution:

 addi $0, $0, 4097 # try to put garbage in $0

 sw $0, 20($0) # clear sum in M(14H)

 addi $9, $0, 1000 # put max count in R109
 loop: lw $8, 20($0) # get old sum

 # addi $9, $9, -1 # decrement count

 nloop: beq $9, $0, done # check if count = 0

 add $8, $8, $9 # update sum

 sw $8, 20($0) # save sum

 j nloop # if not loop

 lw $8, 20($0)
get sum

 addi $9, $9, -1
decrement count

 done: j done # when done M(14H) = 37H

 nop

 nop

6. The code for problem 6.47 is shown below. Write the code as it must have appeared before the loop was unrolled.

[image: image1.png]6.47 [10] <§6.9> The following code has been unrolled once but not yet sched-
uled. Assume the loop index is a multiple of two (i, $10 is a multiple of cight):

Loop: Tw $2, 0($10)
sub $4, $2, $3
sw $4, 0($10)
Tw $5, 4($10)
sub $6, $5, $3
sw$6, 4($10)
addi $10, $10, 8
bne §10. $30. Loop

�

ANS:

Loop:	lw	$2, 0($10)

	sub	$4, $2. $3

	sw	$4, 0($10)

	addi	$10, $10, 4

	bne	$10, $30, Loop

PAGE
1

