EGRE 426

Homework

Due

Monday 9/29/09

Solutions

. Using a combination of CSA and CLA show the fastest way to add 16 partial products. You do not have to be concerned with minimizing the size of the adders, and you should assume that the propagation delay of the CLA is significantly longer that the CSA.

	P1
	P2
	P3
	P4
	P5
	P6
	P7
	P8
	P9
	P10
	P11
	P12
	P13
	P14
	P15
	P16

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	CSA
	
	
	CSA
	
	
	CSA
	
	
	CSA
	
	
	CSA
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	CSA
	
	CSA
	
	
	CSA
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	CSA
	
	
	
	CSA
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	CSA
	
	
	
	CSA
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	CSA
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	CSA
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	CLA
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Worst case 6 CSA delays and 1 CLA delay.

[image: image1.png]3.11 Exercises

229

Historical Perspective and Further
Reading

This section surveys the history of the floating point going back to von Neumann,
including the surprisingly controversial IEEE standards effort, plus the rationale
for the 80-bit stack architecture for floating point in the IA-32. See @ Section
3.10.

Exercises

[3] <§3.2> Convert 4096, into a 32-bit two’s complement binary number.

ten

3.1 [3]
3.2 [3] <§3.2> Convert —2047,.,, into a 32-bit two’s complement binary number.
3.3 [5]

[5] <§3.2> Convert —2,000,000,., into a 32-bit two’s complement binary

number.

3.4 [5] <§3.2> What decimal number does this two’s complement binary num-
berrepresent: 1111 1111 1111 1111 1111 1111 0000 01104,

3.5 [5] <§3.2> What decimal number does this two’s complement binary num-
berrepresent: 1111 1111 1111 1111 1111 1111 1110 1111y,,°?

3.6 [5] <§3.2> What decimal number does this two’s complement binary num-
ber represent: 0111 1111 1111 1111 1111 1111 1110 1111,.¢

3.7 [10] <§3.2> Find the shortest sequence of MIPS instructions to determine the
absolute value of a two’s complement integer. Convert this instruction (accepted
by the MIPS assembler):

abs $t2,95t3

This instruction means that register $t2 has a copy of register $t3 if register $t3
is positive, and the two’s complement of register $t3 if $t3 is negative. (Hint: It
can be done with three instructions.)

3.8 [10] <§3.2> @} For More Practice: Number Representations

Gresham's Law (“Bad
money drives out Good”) for
computers would say, “The
Fast drives out the Slow even
if the Fast is wrong.”

W. Kahan, 1992

Never give in, never give in,
never, never, never—in
nothing, great or small, large
or petty—mnever give in.
Winston Churchill, address at
Harrow School, 1941, Abroad,
1869

Answer:

add
$t2,$t3,$0
Move $t3 to $t2

bgtz
$t2,OK

If positive done

sub
$t2,$0,$t2
If negative make positive

OK:
…

[image: image2.png]Chapter 3 Arithmetic for Computers

3.9 [10] <§3.2> If A is a 32-bit address, typically an instruction sequence such as

Tui $t0, A_upper
ori $t0, $t0, A_lower
Tw $s0, 0($t0)

can be used to load the word at A into a register (in this case, $S 0). Consider the
following alternative, which is more efficient:

Tui $t0, A_upper_adjusted
Tw $s0, A_Tower($t0)

Describe how A_upper is adjusted to allow this simpler code to work. (Hint:
A_upper needs to be adjusted because A_lower will be sign-extended.)

®3.10 [10] <§3.3> Find the shortest sequence of MIPS instructions to determine if
there is a carry out from the addition of two registers, say, registers $t3 and $t4.
Place a 0 or 1 in register $t2 if the carry out is 0 or 1, respectively. (Hint: It can be
done in two instructions.)

3.11 [15] <§3.3> @ For More Practice: Writing MIPS Code to Perform Arithmetic

@ 3.12 [15] <§3.3> Suppose that all of the conditional branch instructions except
beq and bne were removed from the MIPS instruction set along with s1t and all
of its variants (s1ti, s1tu, s1tui). Show how to perform

s1t $t0, $s0, $sl

using the modified instruction set in which s1t 1s not available. (Hint: It requires
more than two instructions.)

3.13 [10] <§3.3> Draw the gates for the Sum bit of an adder, given the equation
on [@ page B-28.

3.14 [5] <§3.4> @ For More Practice: Writing MIPS Code to Perform Arithmetic
3.15 [20] <§3.4> [@ For More Practice: Writing MIPS Code to Perform Arithmetic
3.16 [2 weeks] <§3.4> @] For More Practice: Simulating MIPS Machines

3.17 [1 week] <§3.4> [@ For More Practice: Simulating MIPS Machines

3.18 [5] <§3.4> [@ For More Practice: Carry Lookahead Adders

3.19 [15] <§3.4> [@ For More Practice: Carry Lookahead Adders

3.20 [10] <§3.4> [@ For More Practice: Relative Performance of Adders

Solution: Recall that

	lw
	rt,ofst(rs)
	rt (M(rs + (ofst)

If A_lower(15) = 0 then A_upper_adjusted = A_upper. If A_lower(15) = 1 then A_upper_adjusted = A_upper + 1 then

$t0 = A_upper_adjusted|0000_0000_0000_0000 = A_upper|0000_0000_0000_0001

A_lower($t0) = $t0 + 1111_1111_1111_1111|A_lower =

= (A_upper + 1)|0000_0000_0000_0000 + 1111_1111_1111_1111|A_lower

= [A_upper + (1111_1111_1111_1111 + 1)] |A_lower = A_upper|A_lower

[image: image3.png]Chapter 3 Arithmetic for Computers

3.9 [10] <§3.2> If A is a 32-bit address, typically an instruction sequence such as

Tui $t0, A_upper
ori $t0, $t0, A_lower
Tw $s0, 0($t0)

can be used to load the word at A into a register (in this case, $S 0). Consider the
following alternative, which is more efficient:

Tui $t0, A_upper_adjusted
Tw $s0, A_Tower($t0)

Describe how A_upper is adjusted to allow this simpler code to work. (Hint:
A_upper needs to be adjusted because A_lower will be sign-extended.)

®3.10 [10] <§3.3> Find the shortest sequence of MIPS instructions to determine if
there is a carry out from the addition of two registers, say, registers $t3 and $t4.
Place a 0 or 1 in register $t2 if the carry out is 0 or 1, respectively. (Hint: It can be
done in two instructions.)

3.11 [15] <§3.3> @ For More Practice: Writing MIPS Code to Perform Arithmetic

@ 3.12 [15] <§3.3> Suppose that all of the conditional branch instructions except
beq and bne were removed from the MIPS instruction set along with s1t and all
of its variants (s1ti, s1tu, s1tui). Show how to perform

s1t $t0, $s0, $sl

using the modified instruction set in which s1t 1s not available. (Hint: It requires
more than two instructions.)

3.13 [10] <§3.3> Draw the gates for the Sum bit of an adder, given the equation
on [@ page B-28.

3.14 [5] <§3.4> @ For More Practice: Writing MIPS Code to Perform Arithmetic
3.15 [20] <§3.4> [@ For More Practice: Writing MIPS Code to Perform Arithmetic
3.16 [2 weeks] <§3.4> @] For More Practice: Simulating MIPS Machines

3.17 [1 week] <§3.4> [@ For More Practice: Simulating MIPS Machines

3.18 [5] <§3.4> [@ For More Practice: Carry Lookahead Adders

3.19 [15] <§3.4> [@ For More Practice: Carry Lookahead Adders

3.20 [10] <§3.4> [@ For More Practice: Relative Performance of Adders

Solution: Refer to the Four Bit Two’s Complement Addition Table in the Chapter 3 slides and observe that when the two numbers added and the result is treated as unsigned integers carry out occurs iff abd only ig $t3 + $t4 < $t3 and $t4. The sltu instruction compares registers treating the registers as unsigned integers. (See footnote 8 of MIPS instruction set handout). Therefore, the solution is:

addu
$t2,$t3,$t4

sltu
$t2,$t2,$t4
or
sltu
$t2,$t2,$t3

[image: image4.png]Chapter 3 Arithmetic for Computers

3.30 [15] <§§3.2, 3.6> The Big Picture on page 216 mentions that bits have no
inherent meaning. Given the bit pattern:

101011010001 0000 0000 0000 0000 0010

what does it represent, assuming that it is
a. a two’s complement integer?
b. an unsigned integer?
c. asingle precision floating-point number?

d. a MIPS instruction?
You may find Figures 3.20 (page 208) and [@ A.10.2 (page A-50) useful.

3.31 <§$§3.2, 3.6> This exercise is similar to Exercise 3.30, but this time use the bit
pattern

0010 0100 1001 0010 0100 1001 0010 0100

3.32 [10] [10] <§3.6> @ For More Practice: Floating Point Number Represen-
tations

3.33 [10] <§3.6> @ For More Practice: Floating Point Number Representations

3.34 [10] <§3.6> For More Practice: Writing MIPS Code to Perform FP
Arithmetic

3.35 [5] <§3.6> Add 2.85,., x 10% to 9.84,., X 10%, assuming that you have only
three significant digits, first with guard and round digits and then without them.

3.36 [5] <§3.6> This exercise is similar to Exercise 3.35, but this time use the
numbers 3.63,., X 10* and 6.87,,,, x 10°.

ten

3.37 [5] <§3.6> Show the IEEE 754 binary representation for the floating-point

number 20, in single and double precision.

3.38 [5] <§3.6> This exercise is similar to Exercise 3.37, but this time replace the
number 20,.. with 20.5

ten ten-

3.39 [10] <§3.6> This exercise is similar to Exercise 3.37, but this time replace the
number 20, with 0.1

ten ten*

3.40 [10] <§3.6> This exercise is similar to Exercise 3.37, but this time replace the

number 20,., with the decimal fraction —5/6.

3.41 [10] <§3.6> Suppose we introduce a new instruction that adds three
floating-point numbers. Assuming we add them together with a triple adder, with
guard, round, and sticky bits, are we guaranteed results within 1 ulp of the results
using two distinct add instructions?

Solution:

a. –1,391,460,350

b. 2,903,506,946

c. –8.18545 x 10-12
d. sw $r16, $r8(16)

3.37 Show the IEEE 745 binary representation for the floating-point number 2010 in single precision.

Solution: 2010 = 101002 = 1.0100 x 24
Sign = 0, Significan = .010…, Exponent = 127 + 4 = 13110 = 10000011

0_10000011_01000000000000000000000

PAGE
3

