6.7 Exceptions

Explain interrupts using state diagram from chapter 5.

Talk about interrupts on PC.

INT n

Another source of hazards in a pipeline processor are exceptions or interrupts.

For example, an instruction like add $1, $2, $1 may result in an arithmetic overflow.

When this happens (See section 6.8 for details)

1. Instructions must be flushed form the pipeline.

a. To flush IF stage by turning instruction into a NOP.

b. To flush ID stage zero control signals that cause writes.

c. To flush EX stage zero control signals that cause writes.

2. Control must be transferred to the exception routine.

a. CU loads PC with address of exception routine.

3. The exception routine must be able to return to the point of interruption and resume execution.

a. CU would store return address before transferring control to the exception routine.

b. The exception routine returns by restoring this value to the PC.

Other causes of exceptions

1. Processor service request from external device.

2. Invoking operating system service by a user program.

3. Using an undefined instruction.

4. Hardware malfunction.

It can be difficult to associate exception with appropriate instruction.

· 5 instructions are in the pipeline at same time.

· IF may try to read from a non-existent memory location.

· ID may encounter an illegal opcode.

· EX may have an arithmetic overflow.

· DM may attempt to write to an illegal memory location.

· Multiple exceptions may occur during a given clock cycle.

· Prioritize interrupts.

· Interrupt for the earliest instruction is serviced first. Why? Later instructions will be reissued, and can be handled in turn.

· Hardware

· Stops the exception instruction

· Let all instructions that came before complete.

· Flush all that came after.

· Save the cause of the exception.

· Save the address of the exception instruction (EPC).

Imprecise interrupts - machine does not always associate the correct exception with the correct instruction.

Most modern machine support precise interrupts.

6.9 Superscalar and Dynamic Pipelining

To achieve faster processors pipelining has been extended:

1. Superpipelining - Longer pipelines. Ideally Speedup = k.

a. 8 or more stages.

2. Superscalor - Replicate internal components and execute multiple instructions in each stage.

a. Two to six instructions in each stage.

3. Dynamic pipeline scheduling or dynamic pipelining.

a. Hardware reschedules instructions to avoid hazards.

b. Example.

lw
$t0, 20($s2)

addu
$t1, $t0, $t2

sub
$s4, $s4, $t3

slti
$t5, $t4, 20

Note: The lw, addu combination causes a stall, but sub and slti could execute.

We would expect the stall to be for only one clock cycle, but it could be more. We have assumed data is in cache so that it can be accessed in a single clock cycle. But if it is not in cache we must stall for several clock cycles. We will talk about this in the next chapter.

All of above increase complexity.

Superscalar MIPS example. Page 436.

For simplicity:

· Two instructions

· Aligned on 64 bit boundries

· (ALU or Branch) | (Load or store)

See Fig 6.44 p 436

Must add hardware to prevent structural hazards. i.e. GPR must be able to read 4 registers and write 2 registers.

See Figs page 437

Loop Unrolling for superpipelines

Assume loop index is a multiple of 4. See Fig page 440

Dynamic Pipeline Scheduling. See Page 443-445.

[image: image7.png]Clearly, this two-issue processor can 1mprove performance by up to a factorof |
2. Doing so, however, requires that twice as many instructions be overlapped in |
execution, and this additional overlap increases the relative performance loss from |
data and control hazards. For example, in our simple five-stage pipeline, loads !
have a use latency of 1 clock cycle, which prevents one instruction from using the
result without stalling. In the two-issue, five-stage pipeline, the result of a load
- struction cannot be used on the next clock cycle. This means that the next two
- structions cannot use the load result without stalling. Furthermore, ALU
instructions that had no use latency in the simple five-stage pipeline, now have a
one-instruction use latency, since the results cannot be used in the paired load or
store. To effectively exploit the parallelism available in a multiple-issue processor,
more ambitious compiler or hardware scheduling techniques are needed, and
static multiple issue requires that the compiler takes on this role.

Simple Multiple-lssue Code Scheduling

How would this loop be scheduled on a static two-issue pipeline for MIPS?

Loop: Tw $t0, 0($s1) # $t0=array element
addu $t0,$t0,$s2 # add scalar in $s2
SW $t0, 0($s1) # store result
addi $s1,$s1,-4 I decrement pointer

bne $s1,$zero,Loop # branch $s1!=0

Reorder the instructions to avoid as many pipeline stalls as possible. Assume
branches are predicted, so that control hazards are handled by the hardware.

| The first three instructions have data dependences, and so do the last two.

ANSWER Figure 6.46 shows the best schedule for these instructions. Notice that just

| one pair of instructions has both issue slots used. It takes 4 clocks per loop it-
eration: at 4 clocks to execute 5 instructions, we get the disappointing CPI of
0.8 versus the best case of 0.5., or an IPC of 1.25 versus 2.0. Notice that in

computing CPI or IPC, we do not count any nops executed as useful instruc-
tions. Doing so would improve CPI, but not performance!

loop unrolling A technique to
get more performance from

loops that access arrays, in An important compiler technique to get more performance from loops is loop
which multiple copies of the unrolling, a technique where multiple copies of the loop body are made. After

loop body are made and instruc- unrolling, there is more ILP available by overlapping instructions from different
tions from different iterations orati
iterations.

are scheduled together.

[image: image2.png]"
" B [
r . *
~ o/
"
Registers uf—s)
Instruction |— x
800001804 omory” == [J
—{wie
e
Data
LI (s AL —{ memory | |
SV
N _— |
paross
L "
x

FIGURE 6.45 A static two-issue datapath. The additions nceded for double issue are highlighted: another 32 bits from instruction memory,

two more read ports and one more write port on the register file, and another ALU. Assume the bottom ALU handles address calculations for data
transfers and the top ALU handles everything else.

[image: image1.png]Chapter 6 Enhancing Performance with Pipelining

Let’s look at a simple static issue version of a MIPS processor, before we
describe the use of these techniques in more aggressive processors. After using this
simple example to review the comments, we discuss the highlights of the Intel [A-
64 architecture.

An Example: Static Multiple Issue with the MIPS ISA

To give a flavor of static multiple issue, we consider a simple two-issue MIP5 pro-
cessor, where one of the instructions can be an integer ALU operation or branch,
and the other can be a load or store. Such a design is like that used in some
embedded MIPS processors. Issuing two instructions per cycle will require fetch-
ing and decoding 64 bits of instructions. In many static multiple-issue processors,
and essentially all VLIW processors, the layout of simultaneously issuing instruc-
tions is restricted to simplify the decoding and instruction issue. Hence, we will
require that the instructions be paired and aligned on a 64-bit boundary, with the
ALU or branch portion appearing first. Furthermore, if one instruction of the pair
cannot be used, we require that it be replaced with a no-op. Thus, the instructions
always issue in pairs, possibly with a nop in one slot. Figure 6.44 shows how the
instructions look as they go into the pipeline in pairs.

Static multiple-issue processors vary in how they deal with potential data and
control hazards. In some designs, the compiler takes full responsibility for remov-
ing all hazards, scheduling the code and inserting no-ops so that the code executes
without any need for hazard detection or hardware-generated stalls. In others, the
hardware detects data hazards and generates stalls between two issue packets,
while requiring that the compiler avoid all dependences within an instruction
pair. Even so, a hazard generally forces the entire issue packet containing the
dependent instruction to stall. Whether the software must handle all hazards or

Instruction type Pipe stages

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction | IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB
Load or store instruction IF ID EX MEM WB

FIGURE 6.44 Static two-issue pipeline in operation. The ALU and data transfer instructions are
issued at the same time. Here we have assumed the same five-stage structure as used for the single-issue
pipeline. Although this is not strictly necessary, it does have some advantages. In particular, keeping the reg-
ister writes at the end of the pipeline simplifies the handling of exceptions and the maintenance of a precise
exception model, which become more difficult in multiple-issue processors.

[image: image5.png]Clearly, this two-issue processor can 1mprove performance by up to a factorof |
2. Doing so, however, requires that twice as many instructions be overlapped in |
execution, and this additional overlap increases the relative performance loss from |
data and control hazards. For example, in our simple five-stage pipeline, loads !
have a use latency of 1 clock cycle, which prevents one instruction from using the
result without stalling. In the two-issue, five-stage pipeline, the result of a load
- struction cannot be used on the next clock cycle. This means that the next two
- structions cannot use the load result without stalling. Furthermore, ALU
instructions that had no use latency in the simple five-stage pipeline, now have a
one-instruction use latency, since the results cannot be used in the paired load or
store. To effectively exploit the parallelism available in a multiple-issue processor,
more ambitious compiler or hardware scheduling techniques are needed, and
static multiple issue requires that the compiler takes on this role.

Simple Multiple-lssue Code Scheduling

How would this loop be scheduled on a static two-issue pipeline for MIPS?

Loop: Tw $t0, 0($s1) # $t0=array element
addu $t0,$t0,$s2 # add scalar in $s2
SW $t0, 0($s1) # store result
addi $s1,$s1,-4 I decrement pointer

bne $s1,$zero,Loop # branch $s1!=0

Reorder the instructions to avoid as many pipeline stalls as possible. Assume
branches are predicted, so that control hazards are handled by the hardware.

| The first three instructions have data dependences, and so do the last two.

ANSWER Figure 6.46 shows the best schedule for these instructions. Notice that just

| one pair of instructions has both issue slots used. It takes 4 clocks per loop it-
eration: at 4 clocks to execute 5 instructions, we get the disappointing CPI of
0.8 versus the best case of 0.5., or an IPC of 1.25 versus 2.0. Notice that in

computing CPI or IPC, we do not count any nops executed as useful instruc-
tions. Doing so would improve CPI, but not performance!

loop unrolling A technique to
get more performance from

loops that access arrays, in An important compiler technique to get more performance from loops is loop
which multiple copies of the unrolling, a technique where multiple copies of the loop body are made. After

loop body are made and instruc- unrolling, there is more ILP available by overlapping instructions from different
tions from different iterations orati
iterations.

are scheduled together.

[image: image6.png]ALU or branch instruction Data transfer instruction m
| Tw

Loop: $t0, 0($sl)

add $s1,%s1,-4
addu $t0,$t0,$s2
bne $s1,%$zero,Loop SW $t0, 4($s1)

I WIN| P

FIGURE 6.46 The scheduled code as it would look on a two-issue MIPS pipeline. The
empty slots are nops.

Loop Unrolling for Multiple-lssue Pipelines

See how well loop unrolling and scheduling work in the example above.

Assume that the loop index is a multiple of four, for simplicity. m
To schedule the loop without any delays, it turns out that we need to make

four copies of the loop body. After unrolling and eliminating the unnecessary m

loop overhead instructions, the loop will contain four copies each of 1w, add,
and sw, plus one addi and one bne. Figure 6.47 shows the unrolled and

scheduled code.

During the unrolling process, the compiler introduced additional registers
($t1, $t2, $t3). The goal of this process, called register renaming, is to elim- register renaming The renam-
inate dependences that are not true data dependences, but could either lead to ~ ing of registers, by the compiler

or hardware, to remove antide-

potential hazards or prevent the compiler from flexibly scheduling the code.
pendences.

Consider how the unrolled code would look using only $t0. There would be
repeated instances of Tw $t0,0($$s1),addu $t0,$t0, $s2 followed by sw
t0,4($s1), but these sequences, despite using $t0, are actually completely
independent—no data values flow between one pair of these instructions and
the next pair. This is what is called an antidependence or name dependence, antidependence Also called
which is an ordering forced purely by the reuse of a name, rather than a real =~ name dependence. An order-
data dependence. ing forced.by the reuse of a
Renaming the registers during the unrolling process allows the compiler to ?}? me, typically a register, rather
) , : en by a true dependence that
subsequently move these independent instructions so as to better schedule the _ .. va1ue between two
code. The renaming process eliminates the name dependences, while preserv-
ing the true dependences.
Notice now that 12 of the 14 instructions in the loop execute as a pair. It
takes 8 clocks for four loop iterations, or 2 clocks per iteration, which yields a
CPI of 8/14 = 0.57. Loop unrolling and scheduling with dual issue gave us a
factor of two improvement, partly from reducing the loop control instructions
and partly from dual issue execution. The cost of this performance improve-
ment is using four temporary registers rather than one, as well as a significant
increase in code size.

Rewritten as:

Loop: lw
$t0,0($s1)

Addi
$s1,$s1,-4

Addu
$t0,$t0,$s2

Sw
$t0,4($s1)

bne
$s1,$0,Loop

Loop Unrolling assuming index is 4:

Loop:
Addi
$s1,$s1,-16

lw
$t0,16($s1)

lw
$t1,12($s1)

lw
$t2,8($s1)

lw
$t3,4($s1)

addu
$t0,$t0,$s2

addu
$t1,$t1,$s2

addu
$t2,$t2,$s2

addu
$t3,$t2,$s2

sw
$t0,16($s1)

sw
$t1,12($s1)

sw
$t2,8($s1)

sw
$t3,4($s1)

bne
$s1,$0,Loop
[image: image3.png]ALU or branch instruction Data transfer instruction m
| Tw

Loop: $t0, 0($sl)

add $s1,%s1,-4
addu $t0,$t0,$s2
bne $s1,%$zero,Loop SW $t0, 4($s1)

I WIN| P

FIGURE 6.46 The scheduled code as it would look on a two-issue MIPS pipeline. The
empty slots are nops.

Loop Unrolling for Multiple-lssue Pipelines

See how well loop unrolling and scheduling work in the example above.

Assume that the loop index is a multiple of four, for simplicity. m
To schedule the loop without any delays, it turns out that we need to make

four copies of the loop body. After unrolling and eliminating the unnecessary m

loop overhead instructions, the loop will contain four copies each of 1w, add,
and sw, plus one addi and one bne. Figure 6.47 shows the unrolled and

scheduled code.

During the unrolling process, the compiler introduced additional registers
($t1, $t2, $t3). The goal of this process, called register renaming, is to elim- register renaming The renam-
inate dependences that are not true data dependences, but could either lead to ~ ing of registers, by the compiler

or hardware, to remove antide-

potential hazards or prevent the compiler from flexibly scheduling the code.
pendences.

Consider how the unrolled code would look using only $t0. There would be
repeated instances of Tw $t0,0($$s1),addu $t0,$t0, $s2 followed by sw
t0,4($s1), but these sequences, despite using $t0, are actually completely
independent—no data values flow between one pair of these instructions and
the next pair. This is what is called an antidependence or name dependence, antidependence Also called
which is an ordering forced purely by the reuse of a name, rather than a real =~ name dependence. An order-
data dependence. ing forced.by the reuse of a
Renaming the registers during the unrolling process allows the compiler to ?}? me, typically a register, rather
) , : en by a true dependence that
subsequently move these independent instructions so as to better schedule the _ .. va1ue between two
code. The renaming process eliminates the name dependences, while preserv-
ing the true dependences.
Notice now that 12 of the 14 instructions in the loop execute as a pair. It
takes 8 clocks for four loop iterations, or 2 clocks per iteration, which yields a
CPI of 8/14 = 0.57. Loop unrolling and scheduling with dual issue gave us a
factor of two improvement, partly from reducing the loop control instructions
and partly from dual issue execution. The cost of this performance improve-
ment is using four temporary registers rather than one, as well as a significant
increase in code size.

[image: image4.png]440

Chapter 6 Enhancing Performance with Pipelining

instruction group InIA-64,a

sequence of consecutive instruc-

tions with no register data
dependences among them.

stop In IA-64, an explicit indi-
cator of a break between inde-
pendent and dependent
instructions.

ALU or branch instruction Data transfer instruction

Loop: add $s1,%s1,-10 Tw $t0, 0($sl)
W

| $t1,12(%$s1)

——aga S0 [sz, 8GsD |8
- [addu st1,8t1,$52 Tw $t3, 4($s1)
 [addu $t2,312,952 S $t0, 16($s1)
e staawdsse s wLiaGsD |6
- | S $t2, 8($s1)
bne $s1,%$zero,Loop SW $t3, 4(%$sl) —

FIGURE 6.47 The unrolled and scheduled code of Figure 6.46 as it would look on a static
two-issue MIPS pipeline. The empty slots are nops. Since the first instruction in the loop decrements
$51 by 16, the addresses loaded are the original value of $51, then that address minus 4, minus 8, and
minus 12.

The Intel 1A-64 Architecture

The 1A-64 architecture is a register-register, RISC-style instruction set like the 64-
bit version of the MIPS architecture (called MIPS-64), but with several unique
features to support explicit, compiler-driven exploitation of ILP. Intel calls the
approach EPIC (Explicitly Parallel Instruction Computer). The major differences
between IA-64 and the MIPS architecture are the following:

1. IA-64 has many more registers than MIPS, including 128 integer and 128
floating-point registers, as well as 8 special registers for branches and 64 1-
bit condition registers. In addition, IA-64 supports register windows In a
fashion similar to the original Berkeley RISC and Sun SPARC architectures.

2. 1A-64 places instructions into bundles that have a fixed format and explicit
designation of dependences.

3. TA-64 includes special instructions and capabilities for speculation and for
branch elimination, which increase the amount of ILP that can be
exploited.

The IA-64 architecture is designed to achieve the major benefits of a VLIW-
implicit parallelism among operations in an instruction and fixed formatting of
the operation fields—while maintaining greater flexibility than a VLIW normally
allows. The IA-64 architecture uses two different concepts to achieve this flexibil-
ity: instruction groups and bundles.

An instruction group is a sequence of consecutive instructions with no register
data dependences among them. All the instructions in a group could be executed
in parallel if sufficient hardware resources existed and if any dependences through
memory were preserved. An instruction group can be arbitrarily long, but the
compiler must explicitly indicate the boundary between one instruction group
and another. This boundary is indicated by placing a stop between two instruc-
tions that belong to different groups.

�

PAGE
4

