
lable at ScienceDirect

Forensic Science International: Digital Investigation 45 (2023) 301565
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2023 USA - Proceedings of the Twenty Third Annual DFRWS Conference
PREE: Heuristic builder for reverse engineering of network protocols
in industrial control systems

Syed Ali Qasim*, Wooyeon Jo, Irfan Ahmed
Virginia Commonwealth University, Richmond, VA, 23284, USA
a r t i c l e i n f o

Article history:

Keywords:
Control logic
Industrial control systems
Forensics
SCADA
* Corresponding author.
E-mail addresses: qasimsa@vcu.edu (S.A. Qasim), i

https://doi.org/10.1016/j.fsidi.2023.301565
2666-2817/© 2023 The Author(s). Published by Elsev
creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

Industrial control systems (ICS) play a critical role in the operation of our vital infrastructures. They
consist of field sites and a control center, with programmable logic controllers (PLCs) used at field sites to
control physical processes directly. These systems communicate with the control center using pro-
prietary protocols for remote monitoring, control, and configuration. The ability to reverse engineer
these protocols can improve digital forensics techniques for investigating ICS attacks. The existing
methods for reversing ICS protocols are manual forensics, binary analysis, probabilistic methods, or
predefined network traffic analysis tools. ICS protocols, designed to operate in industrial environments,
exhibit overlapping functionality, like uploading/downloading control logic to a PLC, which results in
shared standard fields, such as function code and PLC memory address. Our hypothesis is that knowledge
of one ICS protocol can aid in reverse engineering other proprietary ICS protocols. The paper introduces a
heuristic builder, PREE, which enables control engineers with ICS protocol knowledge to create heuristics
for identifying fields in other ICS protocols. We test our hypothesis by creating seven heuristic variants
using the rolling window, vertical window, and frequency table techniques. We evaluate our heuristics
on six ICS protocols, i.e., Modbus TCP, UMAS, ENIP, Omron FINS, CLICK, and PCCC. The evaluation involves
five PLCs from four vendors: Modicon M221, Allen Bradley 1400 and 1100, Omron CP1L, and Automa-
tionDirect CLICK Koyo. Results show that PREE can effectively identify common fields in multiple pro-
tocols, such as function code, message type, message length, PLC memory address, data size, and session/
transaction IDs. PREE outperforms existing reverse engineering tools like NetPlier, Netzob, and Discov-
erer in terms of accuracy, conciseness, completeness, and consistency. We also demonstrate PREE's
applications in a vulnerability study on CLICK Koyo PLC and present SNORT rules for investigating various
attacks on it.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. All rights reserved. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A Programmable Logic Controller (PLC) is a critical component of
Industrial Control Systems (ICS) (Ahmed et al., 2012, 2016). These
devices are placed at field sites to control physical processes and
send their current state to the control center using proprietary
protocols. However, their critical nature makes them a target for
attackers over networks to disrupt physical processes (Ayub et al.,
2021a, 2021b, 2023; Zubair et al., 2022a; Qasim et al., 2022). Inves-
tigating such attacks is challenging due to the need for an appro-
priate forensic method to analyze the proprietary protocols used in
PLC communication (Rais et al., 2021, 2022; Awad et al., 2023).
ahmed3@vcu.edu (I. Ahmed).

ier Ltd on behalf of DFRWS. All rig
Protocol knowledge is valuable for security applications such as
fuzzing (Luo et al. Sun; Luo et al., 2020; Niedermaier et al., 2017),
intrusion detection (Yang et al., 2019; Li et al., 2020; Yoo et al.,
2019a), malware injection (Ayub et al., 2023; Yoo et al., 2019b;
Kalle et al., 2019; Senthivel et al., 2018; Zubair et al., 2022b),
vulnerability discover (Ayub et al., 2021b; Qasim et al., 2022) and
forensics (Ahmed et al., 2017; Senthivel et al., 2017; Qasim et al.,
2019, 2020). Since protocols are proprietary, network protocol
reverse engineering is typically used to uncover the format and
semantics of protocol messages. Existing methods include tedious
manual analysis, complex binary analysis (Narayan et al. Clancy; Lin
et al., 2008; Chang et al., 2018), or pre-installed capabilities for
network traffic analysis (L�adi et al., 2018; Kim et al., 2021; Wang
et al., 2020; Shim et al. Kim; Wu et al., 2019).

In manual network traffic forensics, the user can compare
messages within or across sessions to identify protocol field
hts reserved. This is an open access article under the CC BY-NC-ND license (http://

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:qasimsa@vcu.edu
mailto:iahmed3@vcu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301565&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301565
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2023.301565

S.A. Qasim, W. Jo and I. Ahmed Forensic Science International: Digital Investigation 45 (2023) 301565
positions and guess their meanings. Although this is a common
approach in security, it faces challenges such as large data volumes,
changing control logic message fields, unreadable binary messages,
context-specific fields affecting meaning, extracting client-server
sessions from network dumps (Narayan et al. Clancy), etc. With
Industry 4.0, manual semantic forensics is no longer feasible due to
the growing connectivity of heterogeneous PLC networks from
different vendors, making it difficult for experts to learn all
protocols.

These challenges have driven the forensic community to
develop automated protocol reverse engineering tools in two di-
rections: Binary (taint) Analysis and Network Trace Analysis. In
Binary Analysis, the reverse engineering tool inputs amessage to an
available executable file of the program or protocol and monitors
control flow, called instructions, and memory usage to learn the
protocol format and field semantics. In Network Trace Analysis,
network traffic between communicating entities is captured and
protocol fields and boundaries are identified through machine
learning and data analytics techniques like clustering and differ-
ential analysis (Wu et al., 2019).

ICS protocols support communication between PLCs and enable
remote monitoring, control, and configuration by a control center.
They inherently overlap and share many standard fields such as
function code and PLC memory address. ICS protocols have a
consistent usage pattern due to their repetitive control logic oper-
ations on PLCs. A pattern recognition tool called Ratcliff/Obershelp
was used for fuzzing in a study (Niedermaier et al., 2017),
demonstrating that ICS protocols’ consistency makes them suitable
for primitive protocol reverse engineering. Therefore, it is hypoth-
esized that knowledge of one ICS protocol can aid in identifying
standard fields in others.

This paper proposes a heuristic builder, the Protocol Reverse
Engineering Engine (PREE), to allow control engineers to use their
ICS protocol knowledge to create heuristics for protocol message
fields. PREE applies these heuristics to network traffic from an
unknown ICS protocol to automatically discover the locations and
semantics of similar fields in the protocol messages. It analyzes
network dumps at message and session levels and provides data
analysis functions to assist heuristic building, such as analyzing
message sections and comparing messages within and across
sessions.

We evaluated PREE on six ICS protocols (Modbus TCP, M221,
ENIP, OmronFINS, CLICK, and PCCC) using five PLCs from four ICS
vendors (Modicon M221, Allen Bradley 1400 and 1100, Omron
CP1L, and AutomationDirect CLICK Koyo). We used three different
techniques (rolling window, vertical window, and frequency table)
and created seven heuristics to discover similar fields in multiple
protocols. The heuristics effectively identified eight protocol fields,
including function code, message type, transmission length, PLC
memory address and data size, and session ID.

Our contributions are summarized as follows.

C We present PREE, a heuristic builder for control engineers to
use their domain knowledge to reverse engineer ICS
protocols.

C We develop eight heuristic algorithms to find eight distinct
fields in ICS protocols using three techniques

C We evaluate PREE on six real-world ICS protocols in five PLCs
and demonstrate its effectiveness in finding similar fields in
different protocols.

C We compare PREE with the existing binary protocol reverse
engineering tools like NetPlier, Netzob, and Discoverer.
2

C We conduct a vulnerability study on CLICK Koyo PLC and
develop SNORT rules to investigate and discover several at-
tacks on CLICK PLC to show the application of
PREEknowledge.

The remaining paper is organized as follows: Section 2 discusses
the background and related work. Section 3 presents the PREE ar-
chitecture and the heuristic algorithms. Section 4 and 5 presents
the PREE implementation and evaluation. Section 6 compares PREE
with existing reverse engineering tools. Section 7 shows offensive
and defensive applications of PREE. Section 8 concludes the paper
and presents future work.
2. Background and related work

There are many tools available for reverse engineering protocols
to discover protocol message format or the state machine. Most of
these tools fall under two techniques; the first is the program
analysis technique where protocol binaries are analyzed to reverse
engineer the protocol. The second is network trace analysis where
different network dumps are analyzed to extract protocol details.
Our focus is on tools developed using network trace analysis and is
close to PREE.

Ladi et al. (L�adi et al., 2018) presented a four-phase approach to
reverse engineer binary protocols. They captured network traffic,
constructed and optimized an acyclic graph of the messages
exchanged, and assigned pointers at the first byte of each packet to
monitor processing. The algorithm starts with a root node and adds
nodes for different fields as it moves the pointers of all packets.
They developed some heuristics to identify constant bytes, length
fields, counters, enumerated types, and highly variable bytes. The
approach was evaluated on Modbus and MQTT protocols.

Kim et al. (2021) proposed a 4-step method for reverse engi-
neering the Modbus/TCP protocol and creating an intrusion
detection system. They used 9 tuples to group similar messages,
then applied multiple sequence alignment to categorize bytes into
constant, categorical, and variable categories. Next, they identified
header/payload boundaries through local sequence alignment and
inferred payload fields by categorizing bytes and analyzing their
behavior. The result was a successful reverse engineering of the
Modbus/TCP protocol and an intrusion detection system.

Wang et al. (2020) proposed an approach to find feature words
in unknown protocols using V-grams and XGBoost. Binary mes-
sages were converted to hexadecimal data, grouped by length, and
aligned using PMSA. V-grams were generated and feature words
were extracted and ranked using XGBoost. They evaluated their
approach based on the S7 protocol.

Shim et al. (Shim et al. Kim) proposed a six-stage model for
identifying message formats in ICS protocols. They captured
communication between PLC and engineering software, then
grouped messages based on size and refined groups with K-Means,
UPGMA, and mean shift clustering. Then they used a contiguous
sequence pattern (CSP) algorithm to extract static/dynamic fields
and generated message formats. The approach was evaluated on
Modbus/TCP, ENIP, and FTP protocols.

Wu et al. (2019) presented an HMM-based approach for iden-
tifying ICS message formats. They tokenized application layer data
into two categories: text (printable bytes) and binary (non-print-
able) using ASCII encoding. Consecutive printable bytes form one
text token and non-printable bytes as a binary token. They then
grouped messages with similar token patterns into clusters and
inferred different message formats using an HMM-based sequence

S.A. Qasim, W. Jo and I. Ahmed Forensic Science International: Digital Investigation 45 (2023) 301565
alignment algorithm. Their approach was evaluated on Modbus/
TCP and IEC 61850 protocols.

3. Overview of PREE architecture

PREE helps users develop and implement heuristics by using
network dumps. Fig. 1 illustrates the bottom-up overview of PREE.
It has a three-layer model: a data pre-processing layer, where
network dumps are organized into data structures; a data analytics
layer, offering analytics functions for the session and message-level
analysis; and a heuristic builder where the user can develop and
execute their heuristics for protocol reverse engineering. PREE

works similarly to MySQL. To reverse engineer a protocol, the user
provides network dumps with targeted protocol and metadata (e.g.
PLC and engineering workstation IPs and ports) to PREE. After
processing the dump, the user can use PREE's analytics functions to
write heuristics, similar to MySQL queries.

3.1. Data pre-processing

PREE starts with data pre-processing. This involves extracting
client-server sessions, making request-responsemessage pairs, and
grouping messages.

Session Extraction: In a network dump, multiple client-server
sessions may exist. To analyze them, we must first separate these
sessions. PLCs in ICS environments have fixed ports, such as
AlleneBradley MicroLogix 1100 and 1400 using port 44818 and
Modicon M221 using port 502. However, the client-side port, used
by the engineering software, is often machine-dependent and
changes. PREE identifies and separates different sessions by using a
four-tuple: source IP, source port, destination IP, and destination
port.

Message Pairing: After separating messages from different
sessions, the next step is to pair request and responsemessages and
arrange them in order of exchange. This pairing and maintaining
the sequence helps identify common fields in request and response
messages and fields that show a consistent change along the
session.

Message Grouping: Grouping similar messages together is
important in ICS protocols that have more than one message
format. This helps the user develop heuristics for different groups
and discover different message formats in network dumps.
Grouping can be based on message payload length or total size.

3.2. Data analytics

PREE's data analytics layer offers useful functions for analyzing
network dumps and discovering protocol fields. Table 1 lists the
available functions, split into two categories: message-level and
session-level analysis.
Fig. 1. Protocol Reverse Engineering Engine (PREE) model.

3

Message-Level Analysis: During our research, we found that
certain protocol fields, such as the “Length field” and “Checksum
field”, can be identified using the information within the message.
The values in the Length and Checksum fields represent the actual
length and checksum of a specific section of the message. To aid
users in discovering these protocol fields, PREE offers several
message-level functions, such as “h_move” and “window_gen” that
can be used to identify correlations between different sections of a
message.

Session-Level Analysis: The second category focuses on proto-
col fields that change or show a pattern throughout a session, e.g.,
the “Transaction ID” present in many ICS protocols increases with
every new message in the session. PREE provides the user with
several functionalities, such as comparing bytes at the same index
in different messages, finding all the values seen at a fixed location
in all the messages, etc to perform the session-level analysis.

3.3. Heuristic building

We observe that the common fields in ICS protocols can be
divided into three categories based on their behavior during
communication. Fig. 5 illustrates the classification of different fields
in the Modicon M221 message into one of these categories.

Configuration Fields: The fields depend on the ICS environment
and can be configured by using engineering software. Their values
typically remain constant throughout the communication session.
An example of a configuration field is “PLC ID”.

Fixed Fields: The second category consists of fields with con-
stant values across all messages and sessions. Though it's chal-
lenging to gather semantic information from these fields through
differential analysis, their patterns can aid in identifying pro-
prietary protocols. Thus, we label them “Protocol Identifiers”.

Variable Fields: The third category includes fields with values in
different messages across sessions. For instance, the length,
checksum, function code, etc. Change per message, while the ses-
sion ID changes between sessions.

Finding Configuration Fields: No heuristics are required as the
values of “Configuration Fields” are known to the user. They can be
located in messages using the “find_msg” function of PREE, which
takes the target sequence of bytes (configuration field value) and
returns its location or index in all messages of a session if found.

Finding Fixed Fields: Like “Configuration Fields”, no heuristics
are required to locate “Fixed Fields”. Users can use the “find_feq”
function to generate a frequency table showing the frequency of
values at each index in all messages of the session. Fixed fields can
be found where the frequency is 100%, meaning the value stays the
same.

3.4. Heuristics for variable fields

Finding the location and meaning of “Variable fields” is difficult
because the variance depends on the field's nature. For example,
the “Transaction ID” in a message increases over time, the “Length”
and “CRC” fields depend on the payload, and the “Session ID” is
initiated by the PLC or engineering software. To handle these var-
iations, we used three techniques and created eight heuristics in
total.

Rolling window: In the Rolling Window heuristic, PREE em-
ploys a sliding window of varying sizes (1,2, …,n bytes) over the
message and applies the user-defined function (which could be
designed to find the length, checksum, etc) to all substrings of the
messages. If the output of the function matches the value within
the window, the location is labeled as a potential field. To minimize
false positives, only potential fields that consistently appear across
similar messages are selected. Fig. 2 shows the implementation of

Table 1
Summary of PREE data analytics functionalities.

Function Description Type

sim_msg Find similarity between two messages Message-Level
find_msg Search the given sequence of bytes in messages Message-Level
diff_msg Find difference between tow messages Message-Level
h_move Give all possible substrings and their indices in a message Message-Level
window_gen Generates substrings inside a window given message, window size and increment Message-level
longestSubstringFinder Find the longest common subsequence of two messages Session-Level
v_move Gives array of substring inside the given window for all messages Session-Level
find_feq Makes frequency table containing frequency of each byte at each index in the pcap file Session-Level
freq_match Find Messages that have bytes with frequency > given threshold Session-Level
freq_change Find indices in messages with frequency change lower than given threshold Session-Level

Fig. 2. Rolling window approach to find message-level fields.

S.A. Qasim, W. Jo and I. Ahmed Forensic Science International: Digital Investigation 45 (2023) 301565
this technique in PREE. Using this technique we developed and
executed two heuristics to find the length and checksum fields.

C Length field: If the user provides the function f(x) that cal-
culates the length of the payload, the value inside any win-
dow that matches the output of f(x), the current location of
the window can be marked as a length field.

C Checksum field: Similarly, if the user has developed a po-
tential checksum function, he can use the rolling window
technique to identify the location of checksum field.

Vertical Window: The value of some fields changes in a fixed
pattern throughout a session. This can be detected using the ver-
tical window approach (Fig. 3). Using a user-defined function “f(x)”,
PREE moves a window of varying sizes overall messages in a ses-
sion. For each consecutive message pair, i. e y and yþ1, it checks if
f(y) ¼ yþ1. If this condition is true for all message pairs, the current
window location can be labeled a potential protocol field based on
f(x). Using this technique we developed two heuristics to find the
Transaction ID and PLC Memory Address fields.

C Transaction ID: Transaction ID in a protocol increases
constantly with each new message. If a user defines f(x) to
add a fixed number to x, the sliding window can represent a
potential “Transaction ID”.

C PLC Memory Address: Uploading/downloading control logic
involves sending a series of messages with PLC memory
address and data size to be read/written i. e in consecutive
messages, the address changes by the size of data written/
read. To identify the “PLC Memory Address”, the vertical
Fig. 3. Vertical window approach to find session-level fields.

4

window can use f(x) to add the current memory address and
data size.

Frequency table: The frequency table is useful in identifying
variable fields in messages that don't have a specific pattern and
depend on software or PLC, such as “Function Codes” and “Session
ID”. The frequency table feature of PREE can be used to locate these
fields in message headers by creating a table of all messages and
storing the frequency and values of each byte at each index in a
session. This enables the development of various heuristics to find
protocol fields.

C Session ID: The Session ID is established in the initial mes-
sages between PLC and software and stays constant. To find
it, the frequency table can be queried for indices with limited
changes and these bytes can be searched in the initial mes-
sages. If found, these indices may indicate the “Session ID” in
the protocol.

C Function Code: The function code is a field with a limited set
of codes used by software to send requests to the PLC. If the
request is accepted, the PLC replies with a success code. If
not, a failure code is sent. In a session with no failures, the
function code can be found by querying the frequency table
for indices with limited variance in request messages and
constant values in response messages. These indices may
indicate the location of the “function code” in the ICS
protocol.

C Message Type ID: The message type ID is a field that iden-
tifies the message as a request or response. It has unique
values in request messages and different unique values in
response messages. To find this field, separate frequency
tables for request and response messages can be created,
then compare bytes with 100% frequency in each table.

4. Implementation

We developed PREE using Python and Scapy (Biondi, 2022). It is
designed as a simple and portable Python library, consisting of four
main modules: data processing, data analytics, storage, and query
builder. To use PREE, network dumps in the form of pcap files and
metadata such as client and server machine IP addresses and port
numbers are required.

Data Processing: PREE receives pcap files and metadata (IP &
port no.), extracts sessions from the network dump, and identifies
request and response messages. It stores them as an ordered dic-
tionary, where requests are keys and responses are values. Multiple
pcap files can be processed, creating dictionaries for each. Messages
with varying lengths are grouped by length for analysis.

Data Analytics: The data analytics module provides the user
with different functionalities to analyze the network dumps and
find various relations, patterns, and trends across different

S.A. Qasim, W. Jo and I. Ahmed Forensic Science International: Digital Investigation 45 (2023) 301565
messages. The details of functions provided by the data analytics
module are in Table 1.

Heuristics Builder: The Heuristics Builder allows for interaction
between the user and the PREE. The user can download the PREE

and use it either within their programs or through a Python shell.
With the help of various functions, the user can process pcap files
and make queries to gather information necessary for creating and
implementing heuristics.

Storage: The storage module offers various functions to store
intermediate results and final protocol message formats, as one
protocol field may lead to others.
5. Evaluation

5.1. Data collection

For evaluating PREE and our heuristic algorithms, we analyzed
six widely-used ICS protocols such as Modbus, EtherNet/IP, etc (Luo
et al., 2019; Yusheng et al., 2017). We generated network dumps by
connecting to different PLCs using their engineering software and
capturing network communication using Wireshark. To ensure
diversity and comprehensive coverage of message formats, we
performed various actions such as transferring control logic be-
tween PLC and engineering software, changing PLC mode, etc.
5.2. Evaluation metrics

Several studies have manually reverse-engineered some of the
protocols evaluated in this paper, identifying the location and
meaning of certain protocol fields for use in offensive or defensive
applications. For the purposes of this paper, we consider the
established location and meaning information for each protocol's
fields as the ground truth. With the ground truth defined, we
evaluated PREE using three metrics as shown in Fig. 4.

Coverage evaluates the percentage of messages covered by
PREE as protocol fields and is calculated as the ratio of bytes labeled
by PREE to the total bytes in the message.

Conciseness measures the stability of how PREE identified the
protocol fields compared to the ground truth and is calculated as
the ratio of fields extracted by PREE to the total number of fields in
the ground truth.

Perfection evaluates the quality of how we perfectly extracted
out of the existing ground truth fields. It is the same as having true-
positive as a numerator but divided by the total number of ground
truth fields.
Fig. 4. Three metrics used for evaluating PREE.

5

Conciseness ¼ of extracted ground truth fields
of extracted fields

Coverage ¼ of labeled bytes
of extracted bytes

Perfection ¼ of extracted ground truth fields
of total ground truth fields

5.3. Evaluation methodology

Table 2 shows that some fields are common across ICS protocols.
After collecting network dumps from multiple protocols, we
applied various heuristic algorithms created with PREE to each
protocol, to determine the location and meaning of these fields. To
assess conciseness, perfection, and coverage, We compared our
results with ground truth from previous ICS protocol reverse en-
gineering studies.

5.4. Modbus

In our experiments, we applied different heuristic algorithms
developed with PREE to identify fields listed in Table 2 in the
Modbus protocol. Using the rolling window heuristic, we found the
“Length field” is 2 bytes located at bytes 5-6th, representing the
length of the region from byte 6 to the end of the message
(payload). The “Transaction ID” was identified using the vertical
window heuristic and was found to be two bytes, represented by
the first two bytes of the message, and incrementing by one with
each new message. Finally, using a frequency table with 100% fre-
quency (bytes that had the same value in all the messages), we
identified the Protocol Identifiers. As shown in Fig. 5, PREEwas able
to achieve 100% coverage and identified 4 fields in the Modbus
message. Table 3 compares the location and semantics of fields
identified by PREE and the ground truth. PREE was able to achieve
100% conciseness and perfection. Our results align with the results
of previous manual reverse engineering studies on Modbus pro-
tocol (ground truth) (Qasim et al., 2020; Kalle et al., 2019).

5.5. UMAS

Weused the frequency table heuristic to identify the first byte as
a “Protocol Identifier” in the Modbus payload. We found a 2-byte
“Length field” at bytes 7e8 that represents the remaining mes-
sage length. We identified the M221 function code as the 3rd byte,
which changed in request messages and was constant in response
messages. The “PLC Memory Address” was found at bytes 4e5.
Fig. 6 shows that PREE was able to achieve 100% coverage in
request and 98% coverage in response messages. We found 5 fields
in the UMAS message. Furthermore, as shown in Table 4, the fields
and semantics identified by PREE also matched with the manual
forensic studies (Yoo et al., 2019b; Qasim et al., 2019; Kalle et al.,
2019) and achieved 100% conciseness and 80% perfection.

5.6. ENIP

ENIP is widely used by AlleneBradley PLCs, such as the Micro-
Logix 1400 and MicroLogix 1100, for communication with RSLogix
engineering software. For evaluation, we captured the communi-
cation between aMicroLogix 1400 PLC and RSLogix during different
engineering operations. Using the rolling window technique we
found three 2-byte “length fields” at offsets 3e4, 35e36, and

Table 2
Common fields in different ICS protocols.

Semantic Modbus Modbus M221 ENIP PCCC CLICK Omron FINS Field Type

PLC ID ✓ Configuration
Transaction/Message ID ✓ ✓ ✓ ✓ ✓ Variable
Session ID ✓ ✓ Variable
Message Type ID ✓ ✓ ✓ ✓ Variable
Message Length ✓ ✓ ✓ ✓ ✓ ✓ Variable
Function Code ✓ ✓ ✓ ✓ ✓ Variable
PLC Memory Data Size ✓ ✓ ✓ ✓ ✓ Variable
PLC Memory Address ✓ ✓ ✓ ✓ ✓ Variable
Protocol Identifiers ✓ ✓ ✓ ✓ ✓ ✓ Fixed

Table 3
Comparison of PREE and ground truth in Modbus.

Field PREE
Location

Ground
Truth
Location

PREE
Semantic

Ground
Truth
Semantic

#PREE types # Ground
Truth types

1 1e2 1e2 Transaction
ID

Transaction
ID

1 1

2 5e6 5e6 Length Length 1 1
3 3e4 3e4 Protocol ID Protocol ID 1 1
4 7 7 Protocol ID Protocol ID 1 1

Fig. 5. Fields identified in the Modbus message.

Fig. 6. Fields identified in UMAS request messages.

Table 4
Comparison of PREE and ground truth in UMAS.

Field PREE
Location

Ground
Truth
Location

PREE
Semantic

1 1 1 Protocol ID
2 3 3 Function

Code
3 4e5 4e5 PLC Memory

Address
4 8e9 8e9 Length

S.A. Qasim, W. Jo and I. Ahmed Forensic Science International: Digital Investigation 45 (2023) 301565

6

54e55, indicating multiple data layers. A 100% frequency threshold
in the frequency table identified multiple protocol IDs, and a 90%
frequency revealed a 4-byte session ID at bytes 5e8. The vertical
window approach showed a constant 2-byte “Transaction ID” at
bytes 13e14, incrementing by 2 in each message. A 6-byte session
field was also found but varied in different sessions. Furthermore,
frequency table heuristics identified an additional field: “Message
Type ID” at bytes 29e30 with values “0500” in requests and “0004”
in responses. Finally, we found the location of IP address of the PLC
at 37-50th byte by directly searching it in the message as Field 12 in
Table 5. As shown in Fig. 7 we could identify 14 fields in the ENIP
message and achieve a 98% coverage. Table 5 shows that not only
Ground
Truth
Semantic

#PREE types # Ground
Truth types

Protocol ID 1 1
Function
Code

1 1

PLC Memory
Address

1 1

PLC Memory
Data Size

1 1

Table 5
Comparison of PREE and ground truth in ENIP.

Field PREE
Location

Ground
Truth
Location

PREE
Semantic

Ground
Truth
Semantic

#PREE types # Ground
Truth types

1 1e2 1 Protocol ID Protocol ID 1 1
2 3e4 3 Length NA 1 1
3 5e8 4e5 Session

ID
NA 1 1

4 9e12 8e9 Protocol ID PLC Memory
Data Size

1 1

5 13e14 13e14 Transaction
ID

Transaction
ID

1 1

6 15e20 15e20 Session
Field

Session Field 1 1

7 21e28 21e28 Protocol ID Protocol ID 1 1
8 29e30 29e30 Message

Type
Message
Type

2 2

9 31e32 31e32 Protocol ID Protocol ID 1 1
10 34 34 Protocol ID Protocol ID 1 1
11 35e36 35e36 Length Length 1 1
12 37e50 NA PLC IP NA 1 1
13 52e53 52e53 Protocol ID Protocol ID 1 1
14 54e55 54e55 Length Length 1 1

Fig. 7. Fields identified in ENIP request Message.

S.A. Qasim, W. Jo and I. Ahmed Forensic Science International: Digital Investigation 45 (2023) 301565
the location and semantics discovered by PREE matched with the
existing manual reverse engineering efforts (Yoo et al., 2019b;
Qasim et al., 2019; Kalle et al., 2019), it was also able to identify an
extra field PLC IP Address (configuration field) that was not
discovered (hence marked NA, not applicable) in the previous
works. PREE achieved 100% conciseness and perfection.

5.7. PCCC

PCCC is a proprietary protocol used by many AlleneBradley
PLCs. For MicroLogix 1400 and 1100, PCCC messages are
embedded in ENIP payloads. After analyzing the ENIP protocol, we
applied heuristic algorithms to find PCCC protocol fields. Using the
frequency table technique, we found the “Message Type ID” at first
and a protocol identifier at the 2nd byte. The “Message Type ID”
remained “0f” for all request messages and “4f” for all response
messages. We identified the “Transaction ID” at the 3-4th byte in
the PCCC message, which increments by 4 with each newmessage.
Using rolling window heuristics, we identified the “Function Code”
at the 5th byte and the “PLC Memory Data Size” at the 6th byte. As
shown in Fig. 8, we were able to identify 5 fields in the PCCC
Fig. 8. Fields Identified in PCCC request Message.

7

protocol and achieve 60% coverage. Table 6 shows that the location
and semantics of different fields match with previous works
(Senthivel et al., 2017, 2018) done on PCCC. Furthermore, we
identified a one-byte Protocol Id at 2nd byte that was not labeled in
the previous work (NA). PREE achieved 100% conciseness and 62.5%
perfection for PCCC protocol as shown in Table 9.

5.8. CLICK

AutomationDirect has developed its own application layer
proprietary protocol for communication between CLICK PLC and its
engineering software. Using the frequency table technique with
100% frequency, we were able to identify “Protocol Identifiers”. We
also found a variable field at the 12th byte that was the same in all
the request-responsemessages except one.We also detected a one-
byte “length” field at the 9th byte and the “PLC Memory Data Size”
field using the rolling window technique. The “Transaction ID”, a
two-byte field, was found at the 5-6th byte using the vertical
window heuristic. Additionally, the Memory Address heuristic
helped us identify the “PLC Memory Address” field's location (16-
19th byte) and the read and write function codes at the 13th and
14th bytes. As shown in Fig. 9, we identified 8 fields in the CLICK
protocol, achieving 85% coverage. Table 7, shows that the semantics
of fields and their location identified by PREE matched the ground
truth (Ayub et al., 2021b).

5.9. OMRON FINS protocol

The Omron FINS protocol is a proprietary protocol used by
OMRON PLCs for communication with engineering software. We
used the OMRON CP1L PLC and CX-Programmer in our experi-
ments. Using the frequency table technique with a 100% threshold,
we identified the “Protocol Identifier” and “Message Type ID” fields
in OMRON FINS network dumps. The two-byte “length field” was
found at 7-8th bytes using the rolling window technique. It in-
dicates the number of bytes after it in the message. The one-byte
“Transaction ID” was discovered at the 26th byte with the vertical
window heuristic. It increases by one in new command messages
and stays constant in command-response messages. As shown in
Fig. 10 we identified 12 fields and achieved 23% coverage. Table 8
show the details of the location and semantics of different fields
identified using PREE. As we did not find any ground truth for the

Table 6
Comparison of PREE and ground truth in PCCC.

Field PREE
Location

Ground
Truth
Location

PREE
Semantic

Ground
Truth
Semantic

#PREE types # Ground
Truth types

1 1 1 Message
ID

Message
ID

2 2

2 2 NA Protocol ID NA 1 NA
3 3e4 3e4 Transaction

ID
Transaction
ID

1 1

4 5 5 Function code Function code 1 1
5 6 6 Length PLC Memory

Data Size
1 1

Table 7
Comparison of PREE and ground truth in CLICK.

Field PREE
Location

Ground
Truth
Location

PREE
Semantic

Ground
Truth
Semantic

#PREE types # Ground
Truth types

1 1e4 1e4 Protocol
ID

Protocol
ID

1 1

2 5e6 5e6 Transaction
ID

Transaction
ID

1 1

3 9 9 Length Length 1 1
4 10e11 10e11 Protocol

ID
Protocol
ID

1 1

5 15 15 PLC Memory
Data Size

PLC Memory
Data Size

1 1

6 16e19 16e19 PLC Memory
Address

PLC Memory
Address

1 1

7 20 20 Length PLC Memory
Data Size

1 1

Fig. 9. Fields identified in CLICK PLC request message.

Fig. 10. Fields identified in OMRON FINS command message.

S.A. Qasim, W. Jo and I. Ahmed Forensic Science International: Digital Investigation 45 (2023) 301565
OMRON FINS protocol, the ground truth location and semantic
columns show NA. Similarly, we were not able to compute the
conciseness and perfection as shown in Table 9.
6. Comparison with existing tools

6.1. Comparison metrics

In this section, we will compare the proposed PREEwith other
8

protocol reverse engineering tools. There are five evaluation met-
rics: V-measure, homogeneity, completeness, conciseness, and
perfection (Rosenberg and HirschbergV-measure, 2007). The score
of the V-measure v can be computed from homogeneity h and
completeness c as:

v ¼ 2$
h$c
hþ c

(1)

h ¼

Pk

i
of elements in clusteri from single class

Pk

i
of elements in cluster

c ¼

Pc

i
of elements in classi assigned to single class

Pc

i
of elements in class

where k represents the number of clusters, and c represents the
number of classes (keywords).

Evaluation metrics such as h and c for probabilistic approaches
indicate how well the clustering results are classified into classes.
Since PREE is not based on probabilistic methods, it is considered
that clustering has been successfully performed if the semantics of
the key fields are correctly identified. If the ground truth keyword,
in this case, function code (service code) is inferred, it has h and c
score of 100%. For instance, assuming a network using only two
function codes, h decreases if the network is classified as one
without being able to distinguish between the two, and c decreases
if more than two are excessively classified.

Table 8
Comparison of PREE and ground truth in OMRON FINS.

Field PREE
Location

Ground
Truth
Location

PREE
Semantic

Ground
Truth
Semantic

#PREE types # Ground
Truth types

1 1e6 NA Protocol
ID

NA 1 1

2 7e8 NA Length NA 1 1
3 9e16 NA Length NA 1 1
4 17 NA Message

Type ID
NA 1 1

5 18 NA Protocol
ID

NA 1 1

6 19 NA Message
Type ID

NA 1 1

7 20 NA Protocol
ID

NA 1 1

8 21 NA Message
Type ID

NA 1 1

9 22e23 NA Protocol
ID

NA 1 1

10 24 NA Message Type
ID

NA 1 1

11 25 NA Protocol ID NA 1 1
12 26 NA Transaction ID NA 1 1

Table 9
Summary of fields identified by PREE.

Results Modbus TCP Modbus
M221

CLICK ENIP PCCC Omron FINS

Ground Truth Fields 4 5 6 13 8 15
PREE
Identified

4 4 6 14 5 13

Conciseness 100% 100% 100% 100% 100% e

Perfection 100% 80% 100% 100% 62.5% e

S.A. Qasim, W. Jo and I. Ahmed Forensic Science International: Digital Investigation 45 (2023) 301565
6.2. Existing/comparison tools

NetPlier proposed by (Ye et al., 2021a) is the most recent state-
of-the-art automatic protocol reverse engineering study and pro-
vides protocol reverse engineering with probabilistic approaches
based on Netzob (Bossert et al., 2014) and MAFFT (Katoh et al.,
2002). The main probabilistic approaches based on NetPlier can
be evaluated with homogeneity and completeness scores, which
indicate how well clustering contains one class (keyword)
(Rosenberg and HirschbergV-measure, 2007). They also performed
a comparative analysis with the other protocol reverse engineering
tools Netzob and Discoverer (Cui et al., 2007).
6.3. Experiment methodology

For fairness, we compared the results of PREE and other tools
with a Modbus dataset known to have been used by NetPlier (Ye
et al., 2021b) as shown in Table 10. According to (Ren et al., 2018),
NetPlier collected this dataset through a network security moni-
toring tool called Bro (Paxson, 1999)and used this dataset for
anomaly detection. Even though NetPlier extracted and evaluated
Table 10
Comparison of PREE with existing tools in Modbus.

PREE NetPlier Netzob Discoverer

Homogeneity 100% 100% 73% 100%
Completeness 100% 100% 70% 55%
Conciseness 100% 70% 59% 4%
Perfection 100% 5% 8% 5%

9

1000messages from the dataset, the exact purificationmethod was
not disclosed. We evaluate all of the Modbus packets in the dataset.
6.4. Comparison results

As shown in Fig. 11, the proprietary protocols UMAS (embedded
in Modbus) and PCCC (embedded in ENIP) were compared using
PREE and NetPlier. To compare the two, additional development
was done for NetPlier. A total of 64,525 Modbus (UMAS) packets
were used for the evaluation and 16,601 for ENIP (PCCC). PREE
extracted function codes flawlessly in all four protocols. However,
due to the embedded proprietary protocols in Modbus and ENIP,
packet lengths becamemore variable, leading to a drop in NetPlier's
Fig. 11. Comparison of PREE with NetPlier on proprietary protocols (UMAS embedded
in Modbus and PCCC embedded in ENIP).

Fig. 12. Message of a control engine attack on CLICK PLC, showing the function code
used to change the PLC mode.

Fig. 13. Snort rules to detect different attacks on CLICK PLC.

S.A. Qasim, W. Jo and I. Ahmed Forensic Science International: Digital Investigation 45 (2023) 301565
performance of over 30%. Nonetheless, NetPlier showed better
performance in ENIP (PCCC) than in Modbus (UMAS), and the
completeness and homogeneity varied depending on the protocol's
propensity.

NetPlier infers keyword candidates to cluster classes accurately.
Function codes are typically used as the key field to indicate the
class, as is the case in most other situations. However, in instances
where a proprietary protocol is embedded in a known protocol
(e.g., UMAS in Modbus), there are two kinds of function code fields,
one in the known protocol and one in the proprietary protocol. As a
result, even if NetPlier correctly infers the function code in the
known protocol (Modbus) as a keyword, maintaining a homoge-
neity of 1.0, the completeness remains low because the proprietary
function code is the true classification.

NetPlier, Netzob, and Discoverer were unable to infer pro-
prietary function fields such as Modbus (UMAS) and ENIP (PCCC).
This trend occurred due to two main reasons. Firstly, the probabi-
listic approach is not appropriate for analyzing proprietary pro-
tocols with dual structures. Secondly, entropy-based alignment
performed by MAFFT does not handle proprietary fields located
within the payload effectively.

The performance of proprietary protocols, such as Modbus
(UMAS) and ENIP (PCCC), was inversely proportional to the number
of internal function types. Although performance tended to in-
crease on a large scale as the number of packets increased, it never
exceeded a certain value. This is due to the proprietary function
field not being recognized as a possible keyword candidate based
on entropy. It's worth noting that poor metrics were not solely
caused by proprietary protocols. The example packets' usage pat-
terns differed somewhat from the actual behavior of PLCs.

7. PREE applications for vulnerability study and forensic
analysis of different attacks

7.1. PREE application 1: vulnerability study on CLICK PLC

Network-based attacks on PLCs often require knowledge of
proprietary protocols. For example, reverse engineering was used
to exploit PLC authentication in Adeen et al. (Ayub et al., 2021b).
Kalle et al. (2019) leveraged knowledge of the Modbus protocol for
a control logic injection attack on Schneider Electric's Modicon
M221. Syed et al. (Qasim et al., 2022) demonstrated a new type of
attack that disrupts the physical process by targeting the control
engine (responsible for executing control logic). They identified
messages for starting/stopping the control engine of a PLC by
analyzing network communication between the PLC and software,
then modified fields and replayed the messages to stop the engine.
We extended their work by conducting a control engine attack on
the CLICK PLC using protocol knowledge obtained through PREE.

Adversary Model: We assume the adversary is inside the ICS
network and can communicate with the target PLC, sniff its
communication with engineering software, initiate connections,
and send malicious messages.

Experimental Setup: We used AutomationDirect's CLICK Koyo
PLC model C0-10DD2E-D with firmware version 2.60. The engi-
neering software was running onWindows 10 in a virtual machine,
and the attacker scripts ran on an Ubuntu 18.04 virtual machine,
both in the same network.

Attack Implementation:We started by changing the mode of a
PLC using the engineering software, captured the network traffic,
and analyzed the differences to identify the messages responsible
for switching the PLC from start to stop. Once identified (Fig.12), we
created a python script that modifies the message using the pro-
tocol knowledge from PREE and sends it to the target PLC to change
its operation mode.
10
7.2. PREE application II: forensic analysis of different attacks on
CLICK PLC using SNORT

The communication between a PLC and the attacker, if captured
during an attack, can serve as a forensic artifact. A forensic inves-
tigator with knowledge of the PLC protocol can use SNORT to
analyze network dumps (pcap files) for evidence of an attack.
SNORT is a widely used IPS/IDS tool, and it is used in projects such
as (Quickdraw-snort and https, 2022). It analyzes messages using
user-defined rules and generates alerts for matching packets.

Snort Rule for Detecting Control Engine Attack: To investigate
if control logic engine attacks happened on a CLICK PLC, we used
PREE to analyze attack messages and find fields in the CLICK pro-
tocol. Fig.13 shows the SNORT rules we developed.While analyzing
a network dump a SNORT rule raises an alert if it finds a message
containing the signature of a PLC mode change i. e“4 b 4f 50 00” at
offset 0 and “07 00 4 d 01 43 00” starting from offset 8. Our eval-
uation shows that this rule effectively detects control engine at-
tacks on a CLICK PLC.

Snort Rule for Control Logic Injection Attack: To detect con-
trol logic injection attacks on the CLICK PLC, where an attacker tries
to download malicious control logic to the PLC, we need to identify
the request message used for writing data and its signature. We
captured network communication while downloading a benign
control logic on the PLC and identified write request messages
(those with the largest size and larger than the corresponding
response message). Using PREE, we extracted protocol identifiers,
length, and function code and developed a SNORT rule as shown in
Fig. 13. The SNORT rule raises an alert when it detects a message
with the signature “4 b 4f 50 00” at offset 0 and “0a 00 4 d 0165 05”
starting from offset 8. In this way, the forensic investigator can
analyze the network dump to find evidence of a control logic in-
jection attack on the targeted PLC.

Snort Rule for Control Logic Theft Attack: To detect control

S.A. Qasim, W. Jo and I. Ahmed Forensic Science International: Digital Investigation 45 (2023) 301565
logic theft attacks, where an attacker tries to read the logic on a PLC,
we need to identify the unique signature of read request messages.
We captured the communication between the PLC and engineering
software during a control logic upload and found the read request
messages by looking for smaller requests compared to other re-
quests and smaller than their corresponding response. Then we
used PREE to discover different fields in these messages and
developed the snort rule that raises an alert whenever it detects a
message in the network dump with the following signature; bytes
“4 b 4f 50 00” at offset 0, and “0a 00 4 d 01 65 04” starting from
offset 8. In this way, a forensic investigator can discover if a control
logic theft attack happened on the targeted PLC.

8. Conclusion

In industrial control systems, proprietary protocols are
commonly used to establish communication between PLCs and
their engineering software. The knowledge of the location and
meaning of various fields in these protocols can enhance the
effectiveness of existing security solutions, support the develop-
ment of new tools, and aid the forensic community in investigating
network-based attacks on PLCs. Consequently, we introduce a novel
tool for reversing proprietary ICS protocols: the protocol reverse
engineering engine PREE.

Our observations revealed that many ICS protocols have similar
characteristics and share common fields due to operational re-
quirements. This led us to propose the hypothesis that knowledge
of one ICS protocol can aid in reverse engineering other proprietary
protocols. In this paper, we present PREE, a tool that helps users
develop heuristics for identifying fields in proprietary ICS protocols.
To test our hypothesis, we employed three techniques to develop
seven heuristics, which were applied to six different protocols
(Modbus, UMAS, ENIP, PCCC, CLICK, OMRON FINS). Our evaluation
results indicate that PREE is able to identify several common fields
in these protocols, such as “Length”, “Transaction ID”, “Message
Type ID”, etc. Furthermore, we showed the practical application of
protocol knowledge to investigate 3 different network-based at-
tacks on CLICK PLC.

Disclaimer

The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies, either expressed or implied, of the U.S.
Department of Homeland Security.

Acknowledgment

This material is based upon work supported by the U.S.
Department of Homeland Security under Grant Award Number
17STCIN00001-05-00.

References

Ahmed, I., Obermeier, S., Naedele, M., R III, G.G., 2012. Scada systems: challenges for
forensic investigators. Computer 45, 44e51.

Ahmed, I., Roussev, V., Johnson, W., Senthivel, S., Sudhakaran, S., 2016. A SCADA
system testbed for cybersecurity and forensic research and pedagogy. In: Pro-
ceedings of the 2nd Annual Industrial Control System Security Workshop. ICSS).

Ahmed, I., Obermeier, S., Sudhakaran, S., Roussev, V., 2017. Programmable logic
controller forensics. IEEE Security Privacy 15 (6), 18e24.

Awad, R.A., Rais, M.H., Rogers, M., Ahmed, I., Paquit, V., 2023. Towards generic
memory forensic framework for programmable logic controllers. selected pa-
pers of the Tenth Annual DFRWS EU Conference Forensic Sci. Int.: Digit. Invest.
44, 301513. https://doi.org/10.1016/j.fsidi.2023.301513. https://www.
sciencedirect.com/science/article/pii/S2666281723000148. URL.

Ayub, A., Johnson, J., Ahmed, I., et al., 2021. Attacking the Iec-61131 Logic Engine in
Programmable Logic Controllers in Industrial Control Systems. Tech. Rep.. Oak
11
Ridge National Lab.(ORNL), Oak Ridge, TN (United States).
Ayub, A., Yoo, H., Ahmed, I., 2021. Empirical study of plc authentication protocols in

industrial control systems. In: 2021 IEEE Security and Privacy Workshops
(SPW). IEEE, pp. 383e397.

Ayub, A., Zubair, N., Yoo, H., Jo, W., Ahmed, I., 2023. Gadgets of gadgets in industrial
control systems: return oriented programming attacks on plcs. In: 2023 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST).
IEEE.

Biondi, P., 2022. The Scapy Community. https://scapy.net/.
Bossert, G., Guih�ery, F., Hiet, G., 2014. Towards automated protocol reverse engi-

neering using semantic information. In: Proceedings of the 9th ACM Sympo-
sium on Information. computer and communications security, pp. 51e62.

Chang, Y., Choi, S., Yun, J.-H., Kim, S., 2018. One step more: automatic ics protocol
field analysis. In: D'Agostino, G., Scala, A. (Eds.), Critical Information In-
frastructures Security. Springer International Publishing, Cham, pp. 241e252.

Cui, W., Kannan, J., Wang, H.J., 2007. Discoverer: automatic protocol reverse engi-
neering from network traces. In: USENIX Security Symposium, pp. 1e14.

S. Kalle, N. Ameen, H. Yoo, I. Ahmed, Clik on plcs! attacking control logic with
decompilation and virtual plc, Proceedings 2019 Workshop on Binary Analysis
Research.

Katoh, K., Misawa, K., Kuma, K.-i., Miyata, T., 2002. Mafft: a novel method for rapid
multiple sequence alignment based on fast fourier transform. Nucleic Acids Res.
30 (14), 3059e3066.

Kim, H., Kim, S., Jo, W., Kim, K.-H., Shon, T., 2021. Unknown payload anomaly
detection based on format and field semantics inference in cyber-physical
infrastructure systems. IEEE Access 9, 75542e75552.

L�adi, G., Butty�an, L., Holczer, T., 2018. Message format and field semantics inference
for binary protocols using recorded network traffic. In: 2018 26th International
Conference on Software. Telecommunications and Computer Networks (Soft-
COM), pp. 1e6.

Li, H., Wang, B., Xie, X., 2020. An improved content-based outlier detection method
for ics intrusion detection. EURASIP J. Wirel. Commun. Netw. (1).

Lin, Z., Jiang, X., Xu, D., Zhang, X., 2008. Automatic protocol format reverse engi-
neering through context-aware monitored execution. NDSS 8, 1e15.

Luo, Z., Zuo, F., Jiang, Y., Gao, J., Jiao, X., Sun, J., 2019. Polar: function code aware fuzz
testing of ics protocol. ACM Trans. Embed. Comput. Syst. 18, 1e22. https://
doi.org/10.1145/3358227.

Luo, Z., Zuo, F., Shen, Y., Jiao, X., Chang, W., Jiang, Y., 2020. Ics protocol fuzzing:
coverage guided packet crack and generation. In: 2020 57th ACM/IEEE Design
Automation Conference. DAC), pp. 1e6.

Z. Luo, F. Zuo, Y. Jiang, J. Gao, X. Jiao, J. Sun, Polar: function code aware fuzz testing of
ics protocol, ACM Trans. Embed. Comput. Syst. 18 (5s).

J. Narayan, S. K. Shukla, T. C. Clancy, A survey of automatic protocol reverse engi-
neering tools, ACM Comput. Surv. 48 (3).

Niedermaier, M., Fischer, F., von Bodisco, A., 2017. Propfuzz d an it-security fuzzing
framework for proprietary ics protocols. In: 2017 International Conference on
Applied Electronics. AE), pp. 1e4.

Paxson, V., 1999. Bro: a system for detecting network intruders in real-time.
Comput. Network. 31 (23e24), 2435e2463.

Qasim, S.A., Lopez, J., Ahmed, I., 2019. Automated reconstruction of control logic for
programmable logic controller forensics. In: Lin, Z., Papamanthou, C.,
Polychronakis, M. (Eds.), Information Security. Springer International Publish-
ing, Cham, pp. 402e422.

Qasim, S.A., Smith, J.M., Ahmed, I., 2020. Control logic forensics framework using
built-in decompiler of engineering software in industrial control systems.
Forensic Sci. Int.: Digit. Invest. 33, 301013.

Qasim, S.A., Ayub, A., Johnson, J., Ahmed, I., 2022. Attacking the iec 61131 logic
engine in programmable logic controllers. In: Staggs, J., Shenoi, S. (Eds.), Critical
Infrastructure Protection XV. Springer International Publishing, Cham,
pp. 73e95.

Quickdraw-snort. https://github.com/digitalbond/Quickdraw-Snort, 2022.
Rais, M.H., Awad, R.A., Lopez Jr., J., Ahmed, I., 2021. Jtag-based plc memory acqui-

sition framework for industrial control systems. Forensic Sci. Int.: Digit. Invest.
37, 301196.

Rais, M.H., Awad, R.A., Lopez Jr., J., Ahmed, I., 2022. Memory forensic analysis of a
programmable logic controller in industrial control systems. Forensic Sci. Int.:
Digit. Invest. 40, 301339.

Ren, W., Yardley, T., Nahrstedt, K., 2018. Edmand: edge-based multi-level anomaly
detection for scada networks. In: 2018 IEEE International Conference on Com-
munications, Control, and Computing Technologies for Smart Grids (Smart-
GridComm). IEEE, pp. 1e7.

Rosenberg, A., Hirschberg, J., V-measure, 2007. A conditional entropy-based
external cluster evaluation measure. In: Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning. EMNLP-CoNLL), pp. 410e420.

Senthivel, S., Ahmed, I., Roussev, V., 2017. Scada network forensics of the pccc
protocol. Digit. Invest. 22, S57eS65.

Senthivel, S., Dhungana, S., Yoo, H., Ahmed, I., Roussev, V., 2018. Denial of engi-
neering operations attacks in industrial control systems. In: Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy,
pp. 319e329.

K. Shim, Y.-H. Goo, M.-S. Lee, M.-S. Kim, Clustering method in protocol reverse
engineering for industrial protocols, Int. J. Netw. Manag. 30.

Wang, R., Shi, Y., Ding, J., 2020. Reverse engineering of industrial control protocol by
xgboost with v-gram. In: 2020 IEEE 6th International Conference on Computer

http://refhub.elsevier.com/S2666-2817(23)00074-4/sref1
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref1
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref1
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref2
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref2
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref2
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref3
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref3
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref3
https://doi.org/10.1016/j.fsidi.2023.301513
https://www.sciencedirect.com/science/article/pii/S2666281723000148
https://www.sciencedirect.com/science/article/pii/S2666281723000148
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref5
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref5
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref5
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref6
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref6
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref6
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref6
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref7
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref7
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref7
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref7
https://scapy.net/
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref9
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref9
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref9
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref9
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref9
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref10
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref10
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref10
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref10
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref11
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref11
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref11
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref13
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref13
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref13
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref13
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref14
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref14
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref14
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref14
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref15
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref15
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref15
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref15
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref15
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref15
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref15
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref16
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref16
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref17
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref17
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref17
https://doi.org/10.1145/3358227
https://doi.org/10.1145/3358227
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref19
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref19
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref19
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref19
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref22
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref22
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref22
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref22
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref22
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref23
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref23
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref23
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref23
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref24
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref24
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref24
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref24
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref24
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref25
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref25
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref25
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref26
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref26
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref26
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref26
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref26
https://github.com/digitalbond/Quickdraw-Snort
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref28
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref28
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref28
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref29
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref29
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref29
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref30
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref30
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref30
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref30
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref30
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref31
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref31
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref31
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref31
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref31
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref32
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref32
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref32
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref33
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref33
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref33
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref33
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref33
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref35
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref35

S.A. Qasim, W. Jo and I. Ahmed Forensic Science International: Digital Investigation 45 (2023) 301565
and Communications (ICCC). IEEE, pp. 172e176.
Wu, Z., Shu, M., Shi, J., Cao, Z., Xu, F., Li, Z., Xiong, G., Yiu, S.M., 2019. How to reverse

engineer ics protocols using pair-hmm. In: Satapathy, S.C., Joshi, A. (Eds.), In-
formation and Communication Technology for Intelligent Systems. Springer
Singapore, Singapore, pp. 115e125.

Yang, H., Cheng, L., Chuah, M.C., 2019. Deep-learning-based network intrusion
detection for scada systems. In: 2019 IEEE Conference on Communications and
Network Security (CNS), pp. 1e7.

Ye, Y., Zhang, Z., Wang, F., Zhang, X., Xu, D., 2021. Netplier: Probabilistic Network
Protocol Reverse Engineering from Message Traces. NDSS, pp. 1e18.

Ye, Y., Zhang, Z., Wang, F., Zhang, X., Xu, D., 2021. Netplier tool data. https://github.
com/netplier-tool/NetPlier/tree/master/data.

Yoo, H., Kalle, S., Smith, J., Ahmed, I., 2019. Overshadow plc to detect remote
control-logic injection attacks. In: Perdisci, R., Maurice, C., Giacinto, G.,
Almgren, M. (Eds.), Detection of Intrusions and Malware, and Vulnerability
12
Assessment. Springer International Publishing, Cham, pp. 109e132.
Yoo, H., Ahmed, I., 2019. Control logic injection attacks on industrial control sys-

tems. In: Dhillon, G., Karlsson, F., Hedstr€om, K., Zúquete, A. (Eds.), ICT Systems
Security and Privacy Protection. Springer International Publishing, Cham,
pp. 33e48.

Yusheng, W., Kefeng, F., Yingxu, L., Zenghui, L., Ruikang, Z., Xiangzhen, Y., Lin, L.,
2017. Intrusion detection of industrial control system based on modbus tcp
protocol. In: 2017 IEEE 13th International Symposium on Autonomous Decen-
tralized System. ISADS), pp. 156e162. https://doi.org/10.1109/ISADS.2017.29.

Zubair, N., Ayub, A., Yoo, H., Ahmed, I., 2022. Control logic obfuscation attack in
industrial control systems. In: 2022 IEEE International Conference on Cyber
Security and Resilience (CSR). IEEE, pp. 227e232.

Zubair, N., Ayub, A., Yoo, H., Ahmed, I., 2022. Pem: remote forensic acquisition of plc
memory in industrial control systems. Forensic Sci. Int.: Digit. Invest. 40,
301336.

http://refhub.elsevier.com/S2666-2817(23)00074-4/sref35
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref35
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref36
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref36
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref36
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref36
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref36
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref37
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref37
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref37
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref37
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref38
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref38
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref38
https://github.com/netplier-tool/NetPlier/tree/master/data
https://github.com/netplier-tool/NetPlier/tree/master/data
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref40
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref40
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref40
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref40
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref40
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref41
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref41
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref41
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref41
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref41
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref41
https://doi.org/10.1109/ISADS.2017.29
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref43
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref43
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref43
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref43
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref44
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref44
http://refhub.elsevier.com/S2666-2817(23)00074-4/sref44

	PREE: Heuristic builder for reverse engineering of network protocols in industrial control systems
	1. Introduction
	2. Background and related work
	3. Overview of PREE architecture
	3.1. Data pre-processing
	3.2. Data analytics
	3.3. Heuristic building
	3.4. Heuristics for variable fields

	4. Implementation
	5. Evaluation
	5.1. Data collection
	5.2. Evaluation metrics
	5.3. Evaluation methodology
	5.4. Modbus
	5.5. UMAS
	5.6. ENIP
	5.7. PCCC
	5.8. CLICK
	5.9. OMRON FINS protocol

	6. Comparison with existing tools
	6.1. Comparison metrics
	6.2. Existing/comparison tools
	6.3. Experiment methodology
	6.4. Comparison results

	7. PREE applications for vulnerability study and forensic analysis of different attacks
	7.1. PREE application 1: vulnerability study on CLICK PLC
	7.2. PREE application II: forensic analysis of different attacks on CLICK PLC using SNORT

	8. Conclusion
	Disclaimer
	Acknowledgment
	References

