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The Discrete Ring or Loop
A (discrete) ring of �excitable media�is a closed, �nite network of cells ca-

pable of generating and conducting electro-chemical signals, or pulses called
action potentials. Prominent examples of such networks include circuits of
neurons in the brain and the nervous system, and also loops of cardiac cells
within the heart (we use the heart for the scienti�c context of this note).
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The next picture shows what such a ring might look like in the heart
(black patch at the bottom of the left ventricle):

Reentrant Arrhythmias

The existence of a conducting ring of tissue may cause a form of tach-
yarrhythmia, i.e., abnormal fast rhythm in heart beats. Certain types of
tachyarrhythmias may lead to cardiac arrest and sudden death if not imme-
diately stopped.
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A form of potentially life-threatening tachyarrhythmia that occurs in a
conducting loop is called reentrant. The loop itself is called a reentrant
circuit.
The term reentrant refers to the reentry of an action potential pulse in the

loop throught a region of unidirectional block (UB) - shaded lightly in the
�gure. The UB region stops propagation in one direction, thus permitting a
pulse to reenter the loop without being stopped by an opposing pulse.

The Ring as a Discrete Dynamical System
The propagation of a reentrant pulse in a loop can be modeled mathemat-

ically using di¤erence equations on a discrete space, namely, the abstracted
closed network that represents the loop.
The loop is divided intom cell aggregates, or units, that constitute a �nite

space. An m-dimensional dynamical system is de�ned on this discrete space
where each time unit corresponds to one complete cycle, i.e., once around
the loop.

Each vector in the state space has the form

DIn = (DI1;n; : : : ; DIm;n)

where non-negative real numbers DIi;n give the �diastolic intervals�or the
rest periods for each unit i = 1; : : : ;m:
Here is a schematic view of the evolution of the states; in the case of the

heart, each state corresponds to one beat. Reentry of the action potential
pulse in the loop at unit #1 completes a cycle which is then repeated.

During each beat, the pulse moves outwards, away from the loop
and neutralizes the normal action of heart�s pacemakers (the self-oscillatory
�Sinoatrial or SA�node and the �atrioventricular or AV�node).
If a reentrant pulse takes over, the normal SA beat rate of about 70 bpm

is replaced by a fast rate that often exceeds 200 bpm.
The existence of an anomalous ring is not necessary for the initiation of

reentry and the occurrence of tachyarrhythmia. A UB region is also required.
The imbalance of ionic current generated by a unit in the UB region and the
activation current threshold of the adjacent unit is one of the possible causes
for the occurrence of the UB region.
Even if the UB region is active, other factors such as the concduction

velocity CV of the pulse (also called the �speed of the wavefront�) or the
action potential duration, APD may inhibit the initiation of reentry.

3



There may also be several rings in multiple locations in the heart whose
actions may cancel each other if reentry does initiate in some of them.
If reentry is initated in a ring, it may terminate spontaneously because

of several factors, including the inactivation of the UB feature.

Sustained Reentry

If reentry initiates and does not terminate internally, then we have sus-
tained reentry. This can be stopped by means of electrical shocks to the
heart, either externally or by implantable de�brillator devices.
Sustained reentry in a loop can be modeled by means of a higher order,

nonlinear di¤erence equation that is obtained from a special system of partial
di¤erence equations called a �coupled map lattice�.

1. The coupled map lattice (CML):
The duration or length of each beat or cycle n is the time that it takes

the pulse to complete one turn around the loop from a given node back to
that node again.

For each node i this length of time is on the one hand:

APDi;n +DIi;n
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and on the other hand it is:

i�1X
j=1

CTj;n+1 +
mX
j=i

CTj;n:

Here APD is the action potential duration and CT is the conduction
time of the action potential pulse (or the wavefront) across a unit. Setting
the two quantities above equal to each other, gives the coupled-map lattice.

2. The restitution functions:
The two quantities APD and CD are functions of DI: In the simplest

case, we have:

APDi;n = A(DIi;n�1)

CTi;n = �LiC(DIi;n�1)

where the single-variable functions A;C are, respectively, the restitution of
APD and the restitution of CD: The function A is increasing and the func-
tion C is decreasing.

The numbers �Li, i = 1; : : : ;m are the physical lengths of the m
units that make up the ring. The CML

i�1X
j=1

�LjC(DIj;n) +
mX
j=i

�LjC(DIj;n�1)

= A(DIi;n�1) +DIi;n; i = 1; : : : ;m

is a system of m partial di¤erence equations:
For numerical simulations, exponential type functions are commonly used

to de�ne A and C. For example,

A(t) = a� be��t

C(t) = c+ de�!t

where the positive real numbers a; b; �; c; d; ! are parameters of the model
that can be determined from curve �tting of experimental data or from the
solutions of partial di¤erential equations used to model the physiological
aspects of each cell.
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3. CML reduced to an ordinary di¤erence equation:
Make a change of variables

xmn+i = DIi;n; �mn+i = �Li

for all n = 0; 1; 2; : : : and use the restitution functions in the CML to
obtain the ordinary di¤erence equation

xmn+i =
mn+i�1X

j=mn�m+i
�jC(xj)� A(xmn�m+i)

This can be re-written in a more conventional form by setting k = mn+ i
to get

xk =
k�1X

j=k�m

�jC(xj)� A(xk�m):

This is the pulse propagation equation in sustained reentry mode. Note
that this equation is also a higher order, ordinary di¤erence equation.

6


