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Abstract

Law and enforcement policy is among the key elements of a civil
society that ensures the achievement of a higher social welfare. In this
paper, I study socially optimal law and enforcement policy making
under two different environments. In the first environment, private
externalities, an activity a person engages harms equally likely every-
one in the society. In the second environment, public externalities, it
harms the whole society. I show that social welfare function of these
two problems are the same under certain conditions. Polinsky and
Shavell [4] show that the optimal level of punishment in equilibrium is
such that expected level of punishment is less than the harm it causes.
I generalize their result to public and private externality environments
where all agents are either risk neutral or risk averse with respect to un-
certainties in harms they face. On the other hand, by allowing private
and public externality acts in the same environment, I show that even
though contribution of agents to the public harm is greater than harm
they may cause by choosing private externalities, the punishment level
of a private externality may be greater than the punishment level of
public externality if agents are sufficiently risk averse, which is differ-
ent from a result in Shavell [5]. This result shows that the distinction
between private and public externalities is important.

1 Introduction

In civil societies, there are some rules for the protection of both individuals’
and society’s interests against individuals’ or groups’ actions harming those
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interests. A particular way of implementing these rules is through deterrence
by punishment. These rules, as well as the ways and levels of punishment for
rule violation are usually formed in various ways like copying and adapting
them from another society or coming up with new ways and forms through
common sense in a particular society.

In economics, beginning with Becker [1], several papers have been written
suggesting how to choose the level of punishment and the level of detection so
that it would be optimal from the law maker’s point of view. Becker [1] says
that the aim can be minimizing social cost, which consists of harms caused by
agents, costs of detection, and the costs of punishment to the criminals less
gains of criminals. Individuals and their choices are implicitly explained, and
they get utility only from consumption, and face uncertainty only because of
the possibility of getting caught. He shows that the probability of detecting
the crime should be set to minimum possible and the level of punishment
should be as high as possible, for example total wealth of an individual. His
result is based on the risk neutrality of agents. In Polinsky and Shavell [3],
they study risk averse agents as well as risk neutral agents. In their model,
an agent derives utility from his consumption. If he does not engage in
the externality creating activity then his consumption consists of his wealth
remaining from taxes and insurance premium which covers all losses due to
externalites caused by individuals’ actions in the society. If he engages in the
activity then his consumption, in addition to taxes and insurance premium
paid, will increase with his gain from the activity and will decrease with fine
paid unless he does not get caught. Externalities created is felt equally likely
by everyone in the society but if agents are risk neutral then premium paid
can also be seen as the risk they bear due to possible harms caused by others
in the society. Since Polinsky and Shavell [3] use continuum (measure one)
of people, it is possible to see their model as the one in which the whole
society faces externalities without any uncertainty, and the level of harm
they face is given by the harm a single activity causes, and the ratio of
people engaging in the activity. The objective of the law maker in Polinsky
and Shavell [3] is to maximize the total expected utility of individuals in
the society1. They show that, if individuals are risk neutral it is optimal
to set probability of detection to a minimum level below which it is not
possible to detect any crime, and optimal to set the punishment level as
high as possible which is constrained by wealth of individuals. They have

1Cooter and Ulen [2] (p. 443) suggest that the aim of the law maker should be mini-
mization of the social cost which consists of costs of protection and the net harm caused
while crime is committed.
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two results when agents are risk averse. They say that these results explain
why the previous result is not realistic. The first one is that, probability of
detecting should be set to 1 when individuals are risk averse, and cost of
catching is sufficiently small. The second one is that, it may not be optimal
to set low probability to detecting, and setting the punishment levels very
high even if cost of catching is very large when individuals are risk averse.

In Polinsky and Shavell [4], the objective of the law maker is to maximize
total expected utility of individuals in the society. The expected utility of
an agent consists of gain from engaging in the activity, expected loss due to
the possibility of getting caught, expected loss due to the possibility of being
a victim of a crime, and the per capita cost of enforcement. If the agent
does not engage in the activity, then the expected utility will not include
the gain from engaging in the activity, and the expected punishment. They
show that in equlibrium, expected punishment for activity will always be
less than the harm caused by it.

In this paper I define public and private externality environments for-
mally, and find what utility functions of agents in these environments become
under certain assumptions (these assumptions greatly simplifies utility func-
tions, and make it possible to analyze models, and derive results). I also
show that these two environments are equivalent from social planner’s point
of view.
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2 The Single-Act Model

A significant reason for societies to have laws and enforcement is that people
in the society fear from possible negative externalities that may be caused by
others in the society. Laws exist, of course together with the enforcement, to
achieve a socially optimal state of the world by decreasing the possibility of
individuals being hurt, i.e. by deterring agents from taking certain actions.
An agent’s utility function is ui(ci, ai, hi) where ci ∈ RS+ is the consumption
plan of the individual. A state s ∈ S is determined by the set of all offender-
sufferer pairs and the set of all offenders captured. ai ∈ A = {a0, a} 2 is
the action taken by agent i. Agent i can either choose action a that gives
pleasure to him/her and causes negative externality to others (to either one
person or to all society, depending on the type of the action), or choose
action a0 that does not change anybody’s utility. The externality i faces
is denoted by a random variable hi. Each realization of hi determines the
group of people harming (taking action a against) agent i. For any agent i,
the set of people taking action a he/she faces, i.e. the set of people of who are
likely to hurt agent i, is denoted by N i

a and is defined as N i
a = Na\{i} where

Na is the set of people who are taking action a in the society. If the action is
public externality then hi is the same for all agents as everyone suffers from
the same externality. There is a single consumption good, and it is assumed
that utility is an increasing function of consumption. Consumption of an
agent consist of his initial endowment, and transfers made to him less per
capita cost of enforcement if he did not take any illegal action. Otherwise,
if the agent takes an illegal action and he gets caught then his consumption
is the amount of endowment, and transfers made to him remaining from
the punishment, and per capita cost of enforcement. If the agent takes an
illegal action and he does not get caught then he consumes his endowment
and transfers made to him.

2.1 Private Externalities

Private externality is a negative externality that affects any and only one
person. Property crime is a good example for that kind of externality. DWI
is another good example. In both of these examples, at any point in time,
although offender threatens every individual in the society, it will possibly

2A stands for the set of all possible actions. The set of illegal actions will be chosen by
the law maker, and it is a subset of A. Note that I asssume that an individual can choose
only one action at a time, as it has always been done in the literature, so multiple actions
are not allowed. An action is illegal if and only if its punishment is positive.
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hurt only one individual. If actions agents take cause private externalities ,
then agent j will offend agent i by taking action a with given probability 3

πji. Note that
∑

i∈N πji = 1 for any j. So the probability that agent i will be
offended by a group of R ⊆ N i

a people is β(R,N i
a) =

∏
j∈R πji

∏
l∈N i

a\R(1−
πli). If N i

a is the set of offenders agent i faces, and r of them offend agent
i, then α(p, r, k) = pk(1 − p)r−k

(
r
k

)
is the probability that any k of these

r people will be captured, and punished. Revenue from punishments of

these k agents then will be transferred to agent i. So c
(k,0)
i stands for the

consumption level of agent i when he/she gets caught for taking the action
a. If the agent i takes the action a0 or takes the action a but he/she does

not get caught then his/her consumption is c
(k,1)
i . Note that k stands for

the transfers from those k people who are caught after hurting agent i. His

budget constraint is c
(k,0)
i + f ≤ wi− c(p) + kf if he takes the action a, and

gets caught, and it is c
(k,1)
i ≤ wi− c(p)+kf if he takes action a0, or he takes

action a and does not get caught. In both cases agent i gets compensated by
k criminals’ punishments, kf as these are the only criminals caught among
those who hurt agent i. Each agent choosing action a will cause harm e.
So, given N i

a, the set of offenders, other than agent i himself, |R|e is the
total externality i faces when people in R ⊆ N i

a offend him. The subset of
offenders R agent i faces, the set of agents among R caught, and whether
agent i caught if he took action a determine the state agent i faces.

The expected utility function of agent i will then be

Eui(ci, ai, hi) = p
∑
R⊆N i

a

β(R,N i
a)

|R|∑
k=0

α(p, |R|, k)ui(c
(k,0)
i , ai, e|R|)

+ (1− p)
∑
R⊆N i

a

β(R,N i
a)

|R|∑
k=0

α(p, |R|, k)ui(c
(k,1)
i , ai, e|R|)

(1)

Note that if agent i takes action a0 then the expected utility function
above will become

Eui(ci, ai, hi) =
∑
R⊆N i

a

β(R,N i
a)

|R|∑
k=0

α(p, |R|, k)ui(c
(k,1)
i , ai, e|R|) (2)

as c
(k,0)
i = c

(k,1)
i for all k.

3The distribution of crime is to be determined endogeneously according to ratios of
individuals who choose actions. Note that the uncertainty presented here is endogeneous.
It may be an interesting problem and may be worth studying decision making under this
type of uncertainty.
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2.2 Public Externalities

Public externality is a negative externality that affects everybody in the
society. Air pollution is a good example for public externality. If actions
agents take cause public externalities then each one of these agents can cause
a harm level of eP , which will affect everybody. So the harm level agent i
faces is hi = eP |Na|, e.g. total level of harm.

Let α(p,N i
a, r) = pr(1− p)|N i

a|−r
(|N i

a|
r

)
denote the probability that any r

of the |N i
a| people commiting crime will be caught, and punished. Revenue

from punishment of an offender is transferred to every other agent in the

society equally. Agent’s budget constraint is c
(r,0)
i + f ≤ wi − c(p) + rf

N−1 if

he takes the action a, and gets caught , and it is c
(r,1)
i ≤ wi − c(p) + rf

N−1 if
he takes action a0, or he takes action a, and does not get caught. In both
cases agent i gets compensated by r criminals’ punishments, rf

N−1 as these
are the only criminals caught who hurt agent i together with the rest of
the society. Agent i takes Na, the number of people commiting crime, i.e.
taking action a, other than agent i himself, as given. wi is the wealth of the
agent, p is the objective probability4 of getting caught if an illegal action is
taken, c(p) is the per capita cost of detection 5 6 7 with probability p, and f
is the punishment 8 for action a. The punishment f ∈ R+ is positive if the
action a is considered as illegal.

4In a more general model, the probability of detection may depend on the action taken,
and it can be denoted by a function p : A → [0, 1].

5c(p) is assumed to be an increasing function of p.
6As the number of people is fixed througout the model, the cost of maintaining proba-

bility of detection p is also fixed. It may be possible to think that the cost of maintaining
probability p depends on the number of people both in the society and those commiting
acts.

7Fines criminals pay are transferred to victims. This is assumed as it makes analysis
simpler. If fines are considered as a part of the cost of enforcement then the taxes will
be nondeterministic when there are finite number of people in the society. If agents have
additively separable utility functions and they are risk neutral in consumption then this
won’t affect the optimal policy as fines paid by offender will be exactly offset by the gain
of the individuals receiving the fine revenue.

8The punishment can very well depend on the income of the agent. Then the constraint
in law maker’s problem will become 0 ≤ f(wi) ≤ wi where wi is agent i’s income level.
Whether the punishment should depend the level of income can be analyzed from the
welfare and incentive compatibility point of views.
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The expected utility function of an agent is 9 10

Eui(ci, ai, hi) = E[ui(ci, ai, eP |Na|)]

= p

|N i
a|∑

r=0

α(p,N i
a, r)ui(c

(r,0)
i , ai, eP |Na|)

+ (1− p)
|N i
a|∑

r=0

α(p,N i
a, r)ui(c

(r,1)
i , ai, eP |Na|)

(3)

2.3 Agent’s Problem

Given the punishment level f , the probability of detection p, and the ex-
ternality level hi agent i faces, action a∗i and the consumption plan c∗i solve
agent i’s problem which is

max
ai∈A,ci∈RS+

Eui(ci, ai, hi) (4)

subject to the budget constraints for each state he faces.

2.4 Equilibrium

Given the punishment level and probability of detection, equilibrium is a
sequence {c∗i , a∗i }i∈N of allocations and actions such that for each agent i,
(c∗i , a

∗
i ) is a solution to his/her problem defined above. The equilibrium

utility level of an agent i is defined as vi(p, f) = Eui(c
∗
i , a
∗
i , hi) where c∗i ,and

a∗i are solutions to agent i’s problem given in 4.

2.5 Law Maker’s Problem

I assume that the aim of the law maker is to choose the punishment level f
for action a, and a probability of detection p so that total expected utility
of individuals in the society in equilibrium will be maximized11. The level

9If the utility function is linear and additively separable in its arguments then the
consumption can be discarded and the utility function can be redefined as a function of
only actions taken, the punishment level for that action, and externality of other people.

10A more general model would be to consider not total harm caused by agents but
actions of other agents separately.

11It may be easier (or not?) to use policy maker’s problem in which the aim is to
minimize the cost of enforcement subject to a certain social welfare

7



of punishment12 f for action a is constrained by the net wealth of agents,
and the probability of detection p is in [0, 1].

max
f,p

N∑
i=1

Eui(c
∗
i , a
∗
i , hi)

subject to 0 ≤ f ≤ wi for all i

and 0 ≤ p ≤ 1

where wi is the net wealth of individual i13 , and a∗i is the best response
of individual i to punishment level f , and probability of detection p, and
the externality he faces, hi. It will be assumed that f is given through the
paper.

12Other types of punishments are possible too. The constraint on the wages can be
relaxed by implementing different levels of punishment on avegare life expectancy, e.g.
different levels of restrictions on freedom. The aim here would be not only punish offenders
but also to protect society if the offender is seen as a threat to the society. The tradeoff
will be solved through social welfare maximization. Nonmonetary based punishments may
be used for fairness purposes. For example, only giving ticket to high speeding may create
an incentive for wealthy people to high speed. It is worth studying this problem.

13Here it will be equal to wi − c(p).
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3 Separable Preferences

In this problem, given the probability of detection and punishment level,
each agent faces a choice among different alternatives that causes exter-
natilities to someone in the society or to the whole society. The aim here
is to determine the set of actions which are to be treated as illegal and a
socially optimal detection and punishment levels for this set of actions. An
agent may choose not to choose any action. For simplicity, and for now
I assume that agents can choose only one action14 (other than not doing
anything), and their utility functions are additively separable and they are
risk neutral in consumption. In the next section, I will show the derivation
of objective functions used in Polinsky and Shavell [4] model. The main dif-
ferences are that I consider finite number of people model and that i make
distinguish between Private and Public externalities.

3.1 Private Externalities

Theorem 1. Assume that an agent has a utility function given in 1, and
his utility function is additively separable and he is risk neutral with respect
to uncertainties in consumption.

Then his expected utility function becomes:

Eui(ci, ai, hi) = vi(ai)− pf(ai)− c(p) + pf
∑
j∈Ni

a

πji − E[hi] (5)

where vi(ai) is the utility i gets by taking action ai, and vi(a0) = 0.

Lemma 1. For any finite set of probabilities {πj}j∈J ,∑
R⊆J

(
∏
j∈R

πj
∏

l∈J\R
(1−πl)) = 1.

14When there are more than one action, and it can be assumed that the ordering of
harms caused by these actions is the same among agents. In this case, agents are generally
deterred from more harmful actions to less harmful actions. These actions may also stand
for different levels of a certain action, e.g. a factory that causes air pollution. This is
called marginal deterrence (See Stigler [6]). The aim of the law maker would be to draw a
line between illegal and legal actions, and determining levels of punishments and the level
of detection (if it is optimal to use the same enforcement for them) so that social welfare
will be maximized.
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Proof. For any k, k ∈ {1, .., |J |},∑
R⊆J

( ∏
j∈R

πj
∏

l∈J\R
(1−πl)) =πjk

∑
R⊆J\{jk}

( ∏
j∈R

πj
∏

l∈(J\{jk})\R
(1−πl))

+ (1− πjk )
∑

R⊆J\{jk}

( ∏
j∈R

πj
∏

l∈(J\{jk})\R
(1−πl))

=
∑

R⊆J\{jk}

( ∏
j∈R

πj
∏

l∈(J\{jk})\R
(1−πl)).

So, ∑
R⊆J

( ∏
j∈R

πj
∏

l∈J\R
(1−πl)) =

∑
R⊆J\{j1,j2,..,j|J|−1}

( ∏
j∈R

πj
∏

l∈(J\{j1,j2,..,j|J|−1})\R
(1−πl))

=π|J| + 1− π|J| = 1.

Lemma 2. For any finite set of probabilities {πj}j∈J ,∑
R⊆J

(
∏
j∈R

πj
∏

l∈J\R
(1−πl))|R| =

∑
j∈J

πj .

Proof. For |J | = 1, ∑
R⊆J

( ∏
j∈R

πj
∏

l∈J\R
(1−πl))|R| = π1.

Assume that for |J | = k − 1,

∑
R⊆J

( ∏
j∈R

πj
∏

l∈J\R
(1−πl))|R| =

|J|∑
j=1

πj .

For |J | = k,∑
R⊆J

( ∏
j∈R

πj
∏

l∈J\R
(1−πl))|R| =πj|J|

∑
{j|J|}⊆R⊆J

( ∏
j∈R\{j|J|}

πj
∏

l∈J\R
(1−πl))|R|

+ (1− πj|J|)
∑

R⊆J\{j|J|}

( ∏
j∈R

πj
∏

l∈(J\{j|J|})\R
(1−πl))|R|

=πj|J|
∑

R⊆J\{j|J|}

( ∏
j∈R

πj
∏

l∈(J\{j|J|})\R
(1−πl))

+
∑

R⊆J\{j|J|}

( ∏
j∈R

πj
∏

l∈(J\{j|J|})\R
(1−πl))|R|

=πj|J| +

|J|−1∑
j=1

πj

=

|J|∑
j=1

πj .
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Proof of Theorem 1. First note that (x + y)n =
∑n
r=0

(
n
r

)
xn−ryr for any integer n, and∑n

r=0

(
n
r

)
(1 − p)n−rprr = pn

∑n−1
r=0

(
n−1
r

)
(1 − p)n−1−rpr. By substitution of budget con-

straint, the expected utility function given in 1, by additive separability, and risk neutral-
ity, becomes

p
∑
R⊆Ni

a

β(R,N i
a)

|R|∑
k=0

α(p, |R|, k)(wi − c(p) + kf − f(ai) + v(ai))

+ (1− p)
∑
R⊆Ni

a

β(R,N i
a)

|R|∑
k=0

α(p, |R|, k)((wi − c(p) + kf + v(ai))− E[hi]

=
∑
R⊆Ni

a

β(R,N i
a)

|R|∑
k=0

α(p, |R|, k)(wi − c(p) + kf + v(ai))− pf(ai)
∑
R⊆Ni

a

β(R,N i
a)

|R|∑
k=0

α(p, |R|, k)− E[hi]

=(wi − c(p) + v(ai)− pf(ai)) +
∑
R⊆Ni

a

β(R,N i
a)

|R|∑
k=0

α(p, |R|, k)(kf)− E[hi]

=(wi − c(p) + v(ai)− pf(ai)) + f
∑
R⊆Ni

a

β(R,N i
a)

|R|∑
k=0

α(p, |R|, k)k − E[hi]

=(wi − c(p) + v(ai)− pf(ai)) + f
∑
R⊆Ni

a

β(R,N i
a)p|R|

|R|−1∑
k=0

α(p, |R| − 1, k)− E[hi]

=(wi − c(p) + v(ai)− pf(ai)) + pf
∑
R⊆Ni

a

β(R,N i
a)|R| − E[hi]

=(wi − c(p) + v(ai)− pf(ai)) + pf
∑
j∈Ni

a

πji − E[hi]

=(wi − c(p) + v(ai)− pf(ai)) + pf
∑
j∈Ni

a

πji − E[hi]

≡v(ai)− pf(ai)− c(p) + pf
∑
j∈Ni

a

πji − E[hi]

3.1.1 Risk Neutral Agents

Corollary 1. Assume that an agent has a utility function given in 1, and
his utility function is additively separable and he is risk neutral with respect
to uncertainties in consumption and in harm he faces, the level of private
externality an agent can cause over another agent is e, and is the same for
all agents. Then his expected utility function becomes:

Eui(ci, ai, hi) = vi(ai)− pf(ai)− c(p)− e
∑
j∈N i

a

πji + pf
∑
j∈N i

a

πji (6)
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where vi(ai) is the utility i gets by taking action ai, and vi(a0) = 0.

Note that an agent, say i, will take the action which causes an externality
if and only if vi(a) > pf(a).

3.1.2 Risk Averse Agents

In previous section, I assumed that agents are risk neutral both in consump-
tion and harm they face. Now, I will study the case where agents are risk
averse in harms they face.

Corollary 2. Assume that an agent has a utility function given in 1, and
his utility function is additively separable and he is risk neutral with respecto
to uncertainties in consumption, risk averse with respect to uncertainties in
harm he faces, and the level of private externality an agent can cause over
another agent is e, and is the same for all agents.

Then his expected utility function becomes:

Eui(ci, ai, hi) = vi(ai)− pf(ai)− c(p) + pf
∑
j∈Ni

a

πji −
∑
R⊆Ni

a

β(R,N i
a)hi(|R|e) (7)

where vi(ai) is the utility i gets by taking action ai, and vi(a0) = 0.

3.2 Public Externalities

The model here is the same as the previous one except that an action taken
by an individual will affect everyone in the society.

Theorem 1. Assume that an agent has a utility function given in 3, and his
utility function is additively separable and he is risk neutral in consumption,
the level of public externality an agent can cause is eP , and is the same for
all agents. Then his expected utility function becomes:

Eui(ci, ai, hi) = vi(ai)− pf(ai)− c(p) +
|N i

a|
|N − 1|

pf − hi(|Na|eP ) (8)

where vi(ai) is the utility i gets by taking action ai, vi(a0) = 0, and in
equilibrium

Na =

{
N i
a ∪ {i} if vi > pf + (hi((|N i

a|+ 1)eP )− hi(|N i
a|eP )),

N i
a otherwise.
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Proof. First note that (x + y)n =
∑n
r=0

(
n
r

)
xn−ryr for any integer n, and

∑n
r=0

(
n
r

)
(1 −

p)n−rprr = pn
∑n−1
r=0

(
n−1
r

)
(1 − p)n−1−rpr. By substitution of budget constraint, the

expected utility function given in 3, by additive separability, and risk neutrality, becomes

p

|Ni
a|∑

r=0

α(p, |N i
a|, r)(wi − c(p) +

rf

N − 1
− f(ai) + v(ai))

+ (1− p)
|Ni

a|∑
r=0

α(p, |N i
a|, r)(wi − c(p) +

rf

N − 1
+ v(ai))− E[hi]

=

|Ni
a|∑

r=0

α(p, |N i
a|, r)(wi − c(p) +

rf

N − 1
+ v(ai))− pf(ai)

|Ni
a|∑

r=0

α(p, |N i
a|, r)− E[hi]

=(wi − c(p) + v(ai)− pf(ai)) +

|Ni
a|∑

r=0

α(p, |N i
a|, r)(

rf

N − 1
)− E[hi]

=(wi − c(p) + v(ai)− pf(ai)) +
1

|N − 1|f
|Ni

a|∑
r=0

α(p, |N i
a|, r)r − E[hi]

=(wi − c(p) + v(ai)− pf(ai)) +
|N i

a|
|N − 1|pf

|Ni
a|−1∑
r=0

α(p, |N i
a| − 1, r)− E[hi]

=(wi − c(p) + v(ai)− pf(ai)) +
|N i

a|
|N − 1|pf − E[hi]

≡v(ai)− pf(ai)− c(p) + pf
|N i

a|
|N − 1| − E[hi]

3.2.1 Risk Neutral Agents

The model here is the same as the previous one except that an action taken
by an individual will affect everyone in the society.

Theorem 3. Assume that an agent has a utility function given in 3, and
his utility function is additively separable and he is risk neutral with respect
to uncertainties in consumption and in harm he faces, the level of public
externality an agent can cause is eP , and is the same for all agents. Then
his expected utility function becomes:

Eui(ci, ai, hi) = vi(ai)− pf(ai)− c(p)− |Na|eP + |N i
a|

|N−1|pf (9)

where vi(ai) is the utility i gets by taking action ai, vi(a0) = 0, and in
equilibrium

Na =

{
N i
a ∪ {i} if vi > pf + eP ,

N i
a otherwise.

13



Note that an agent, say i, will take the action which causes an externality
if and only if vi(a) > pf(a) + eP .

3.3 Multiplicity of Equilibria

When agents are risk averse with respect to uncertainties in harms they
face and risk neutral with respect to uncertainties in consumption, multiple
equilibria may arise. Consider the following example.

Example: There are two agents with distinct valuations and same con-
vex harm functions. Their valuations are sufficiently close, i.e. v2 − v1 <
h(2)− 2h(1). If v2 − (h(2eP )− h(eP )) ≤ pf < v1 − h(eP ) then in one equi-
librium agent 1 is deterred while agent 2 is an offender whereas in the other
equilibrium agent 2 is deterred while agent 1 is an offender. This happens
because expected punishment is large enough to deter only one person and
not large enough to deter everybody.Convexity of harm functions guarantees
that as expected level of punishment increases, number of offenders do not
increase. Although an efficient enforcement policy is unlikely to result in an
inefficient equilibria, existence of multiple equilibria under certain policies
is likely to arise as long as valuations of agents are sufficiently close. It is
possible though to have multiple equilibria under an efficient policy if there
are agents with identical valuations.

4 Monotonicity of Harm Probabilities

This section explores how probability of being offended is affected by changes
in the number of offenders in the society and by changes in the number of
offenders an agent faces.

If the number of offenders in a society increases then addition of a new
offender will affect all other agents. The number of states an agent faces will
increase because of the addition of this new offender. On the other hand,
probability of each state (being offended by a certain number of agents)
will decrease as for a given number of offenders an agent faces, number of
offenders who are not offending that agent is increasing. It is shown below
that, in general, effect of more number states an agent faces will outweight
the effect of lower probability of facing each state, and this will cause an
agent to face a higher probability of being offended by a certain number
of agents. This obvious result has an exception. If there are high number
of offenders in the society, more precisely N − 2, then an increase in the
number offenders will not affect any agent as those two effects will cancel

14



each other and an agent will face the same probability of being offended by
a certain number of offenders.

Theorem 4. Assume that in a private externalities environment number of
offenders is Na, 0 ≤ Na ≤ N − 2, N ≥ 2.15 Let π(r,Na) = ( 1

N−1)r(1 −
1

N−1)Na−r
(
Na
r

)
denote the probability that an agent will be harmed by r of

Na offenders. Then

1. π(0, Na) > π(0, Na + 1).

2. For Na < N − 2, π(r,Na) < π(r,Na + 1) for r ≥ 1.

3. For Na = N − 2, π(r,Na) < π(r,Na + 1) for r > 1, and π(1, Na) =
π(1, Na + 1)

Proof. If N = 2 then Na = 0 by assumption. So π(0, Na) = 1 > π(0, Na + 1) = 0. Now
assume that N > 2.

Case 1. r = 0

For 0 ≤ r ≤ Na, π(r,Na+1)
π(r,Na)

=
( 1
N−1

)r(1− 1
N−1

)Na+1−r(Na+1
r )

( 1
N−1

)r(1− 1
N−1

)Na−r(Na
r )

= (1− 1
N−1

)( Na+1
Na+1−r ). So

π(0,Na+1)
π(0,Na)

= (1− 1
N−1

) < 1.
Case 2.1 Na < N − 2
Na < N − 2⇔ 0 < Na+1

N−1
< 1. This implies that for r ≥ 1⇒ r > Na+1

N−1
⇔ (N − 1)r >

Na + 1 ⇔ (N − 2)(Na + 1) > (N − 1)(Na + 1) − (N − 1)r ⇔ (N−2
N−1

)( Na+1
N+a+1−r ) > 1 ⇔

π(r,Na) < π(r,Na + 1).
Case 2.2 Na = N − 2
π(1,Na+1)
π(1,Na)

= 1, and for r > 1, π(r,Na+1)
π(r,Na)

= (1− 1
N−1

)( Na+1
Na+1−r ) = (N−2

N−1
)( N−1
N−1−r ) > 1.

The following theorem shows that, in general, the probability of being
offended by a certain number of agents is higher than the probability of being
offended by a bigger number of agents. There cases when this is not true.
Probabilities of being not offended and being offended by only one agent are
equal when total number of offenders is very high, N −2 to be more precise.
Moreover probability of being not offended is less than the probability of
being offended by only one agent when total number of offenders is N − 1.

Theorem 5. Assume that in a private externalities environment number of
offenders is Na, 0 ≤ Na ≤ N − 1, and N ≥ 2.16 Let π(r,Na) = ( 1

N−1)r(1−
1

N−1)Na−r
(
Na
r

)
denote the probability that an agent will be harmed by r,

r < Na, of Na offenders. Then

15Na ≤ N − 2 as the maximum number of people that can hurt an agent is N − 1.
16Na ≤ N − 1 as the maximum number of people that can hurt an agent is N − 1.
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1. For Na < N − 2, π(r + 1, Na) < π(r,Na) for r ≥ 0.

2. For Na = N − 2, π(r + 1, Na) < π(r,Na) for r ≥ 1, and π(0, Na) =
π(1, Na).

3. For Na = N − 1, π(r + 1, Na) < π(r,Na) for r ≥ 1, and π(0, Na) <
π(1, Na).

Proof. If N = 2 then Na = 1 is the only case to consider, and π(0, 1) = 0 < π(1, 1) = 1.
Now assume that N > 2.

π(r+1,Na)
π(r,Na)

=
( 1
N−1

)(r+1)(1− 1
N−1

)Na−r−1(Na
r+1)

( 1
N−1

)r(1− 1
N−1

)Na−r(Na
r )

=
( 1
N−1

)

(1− 1
N−1

)
(Na−r
r+1

). So π(r + 1, Na) ≤

π(r,Na)⇔ (Na − r) ≤ (N − 2)(r + 1)⇔ Na−(N−2)
N−1

≤ r. This implies that if Na < N − 2
then π(r + 1, Na) < π(r,Na) for r ≥ 0. If Na = N − 2 then π(r + 1, Na) < π(r,Na) for
r ≥ 1, and π(0, Na) = π(1, Na). Finally, if Na = N − 1 then π(r + 1, Na) < π(r,Na) for
r ≥ 1, and π(0, Na) < π(1, Na).

5 Social Welfare

In this section, I will look at the social welfare of the society, and socially
optimal level of enforcement. Without loss of generality assume that if i <
j then vi ≤ vj . For notational simplicity, I will use f for f(a), a 6= a0, and
vi for vi(ai), ai 6= a0, and assume that f ≥ vN , where vN is the highest level
of valuation of the action in the society.

It is also assumed that an individual will not take any action if he is
indifferent between taking and not taking it. Otherwise, social planner’s
problem may not have a solution.

∑
i∈N ci(p) is the total cost of enforcement,

and the level of enforcement p is in [0, 1]. Individuals’ wealth are identical,
i.e. wi = w for all i ∈ {1, .., N}. The punishment level f is given, and it does
not bind budget constraint of individuals. Optimal value of probability of
detection is denoted by p∗. Social welfare of the society is a function of the
level of enforcement, W (p) =

∑
i∈N αiEu

∗
i ,
∑

i∈N αi = 1, αi > 0 for all i ∈
N . Eu∗i is the equilibrium utility level of agent i. The following two theorems
are generalizations of the main theorem in Polinsky and Shavell [4] where
they show that the optimal level of punishment in equilibrium is such that
expected level of punishment is less than the harm it causes.

Theorem 6. Assume that each agent has an equal weight in a private ex-
ternalities environment social planner’s problem, and that each agent will
hurt another agent with equal probability. Then the optimal level of enforce-
ment p∗ is such that Np∗fp

∗f <
∑

i∈N (
∑

R⊆N i
a∪Np∗f\{i} β(R,N i

a ∪ Np∗f \
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{i})hi(|R|e) −
∑

R⊆N i
a
β(R,N i

a)hi(|R|e)) where Npf is the set of all people
whose valuations are equal to pf .

Proof. The social welfare function WR(p) =
∑
αRi Eu

∗
i for a private externalities problem

for vRj ≤ pf < vRj+1 (if such j exists) is

WR(p) =
∑

i∈N\Na

αRi (−ci(p)− E[hi] + pf
∑
k∈Ni

a

πki)

+
∑
i∈Na

αRi (vRi − pf − ci(p)− E[hi] + pf
∑
k∈Ni

a

πki)

=
∑
i∈Na

αRi v
R
i −

∑
i∈N

αRi ci(p)− E[hi]− pf
∑
i∈Na

αRi + pf
∑
i∈N

αRi
∑
k∈Ni

a

πki.

Since αi = 1
N

, and πjk = 1
N−1

for all i, j, k ∈ N ,∑
i∈Na

αRi +
∑
i∈N

αRi
∑
k∈Ni

a

πki = 0.

Then social welfare becomes

WR(p) =
∑
i∈Na

vRi −
∑
i∈N

ci(p)−
∑
i∈N

E[hi].

If 0 ≤ pf < vR1 then the social welfare function is WR(p) =
∑
i∈N α

R
i v

R
i −

∑
i∈N α

R
i ci(p)−

E[hi], and it is WR(p) = −
∑
i∈N α

R
i ci(p) for vRN ≤ pf . So the social welfare function for

any p ∈ [0, 1] is

WR(p) =
∑
i∈Na

vRi −
∑
i∈N

ci(p)−
∑
i∈N

E[hi].

Now assume on the contrary that p∗f ≥ e. If p∗f 6= vj for any j ∈ N then a slight
decrease in p will decrease the second part of the expression without changing the first
one and this will lead to a increase in the social welfare, a contradiction to optimality of
p∗. On the other hand, if p∗f = vj for some j ∈ N then a slight decrease in p will increase
the number of offenders, Na, and increase the first sum, besides the second sum, in the
equation above as p∗f ≥ e, causing the welfare to increase, a contradiction.

Theorem 7. Assume that each agent has equal weight in a public exter-
nalities environment social planner’s problem. Then the optimal level of
enforcement Np∗fp

∗f <
∑

i∈N (hi(|Na ∪Np∗f |eP )− hi(|Na|eP )) .

Proof. The social welfare function WP (p) =
∑
αPi Eu

∗
i for a public externalities problem

for vPj ≤ pf + eP < vPj+1 (if such j exists) is

WP (p) =
∑
i∈Na

αPi (vPi − pf)−
∑
i∈N

αPi ci(p)−
∑
i∈N

αPi hi(|Na|eP ) +
∑
i∈N

αPi
|Na|
|N | pf

=
∑
i∈Na

αPi v
P
i −

∑
i∈N

αPi ci(p) + pf
|Na|
|N | − pf

∑
i∈Na

αPi −
∑
i∈N

αPi hi(|Na|eP )
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As αi = 1
N

for all i ∈ N the social welfare function becomes

=
∑
i∈Na

vPi −
∑
i∈N

ci(p)−
∑
i∈N

hi(|Na|eP ).

If 0 ≤ pf + eP < vP1 then the social welfare function is WP (p) =
∑N
i=1 α

P
i v

P
i −∑

i∈N αici(p)−
∑
i∈N hi(|Na|eP ), and it is WP (p) = −

∑
i∈N α

P
i ci(p) for vPN ≤ pf + eP .

So the social welfare function is

WP (p) =
∑
i∈Na

vPi −
∑
i∈N

ci(p)−
∑
i∈N

hi(|Na|eP ).

Now assume on the contrary that p∗f ≥ e. If p∗f 6= vj for any j ∈ N then a slight
decrease in p will decrease the second part of the expression without changing the first
one and this will lead to a increase in the social welfare, a contradiction to optimality of
p∗. On the other hand, if p∗f = vj for some j ∈ N then a slight decrease in p will increase
the number of offenders, Na, and increase the first sum, besides the second sum, in the
equation above as p∗f ≥ e, causing the welfare to increase, a contradiction.

V stands for a partition of N , and defined as for any V k ∈ V , for any
i, j ∈ N , i ∈ V k and j ∈ V k if and only if vi = vj , and for any k > l, i ∈ V k

and j ∈ V l if and only if vi > vj . The set of all sets of possible offenders
for various deterrence levels is V ∗ = {∪i≥jV i|0 ≤ i ≤ |V |} ∪ {∅}. So, for
each K ∈ V ∗, K = {i ∈ N |vi > v for some v}, and the set of offenders is
Na = {i ∈ N |vi > pf} ∈ V ∗ where p is the enforcement level.

Theorem 8. Social planner’s problems in a private externalities problem
with externality level e, and in a public externalities problem with the exter-
nality level eP are the same whenever the following conditions are satisfied:

1. For all i ∈ N , αRi = αPi ,

2. For all K ∈ V ∗,
∑

i∈N α
R
i

∑
k∈K\{i} πki = |K|

|N | ,

3. For all i ∈ N , vRi = vPi − eP ,

4. For all K ∈ V ∗, e = eP (|N | − |N ||K|
∑

i∈K α
P
i ).

Proof. The social welfare function WR(p) =
∑
αRi Eu

∗
i for a private externalities problem

for vRj ≤ pf < vRj+1 (if such j exists), Na = {j + 1, j + 2, ..., |N |}, is

WR(p) =

j∑
i=1

αRi (−ci(p)− e
∑
k∈Ni

a

πki + pf
∑
k∈Ni

a

πki)

+

N∑
i=j+1

αRi (vRi − pf − ci(p)− e
∑
k∈Ni

a

πki + pf
∑
k∈Ni

a

πki)

=
∑
i∈Na

αRi (vRi − pf)−
∑
i∈N

αRi ci(p)− (e− pf)
∑
i∈N

αRi
∑
k∈Ni

a

πki.
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If 0 ≤ pf < vR1 then the social welfare function is WR(p) =
∑
i∈N α

R
i (vRi − e) −∑

i∈N α
R
i ci(p), and it is WR(p) = −

∑
i∈N α

R
i ci(p) for vRN ≤ pf .

The social welfare function WP (p) =
∑
αPi Eu

∗
i for a public externalities problem for

vPj ≤ pf + eP < vPj+1 (if such j exists), Na = {j + 1, j + 2, ..., |N |}, is

WP (p) =
∑
i∈Na

αPi (vPi − pf)−
∑
i∈N

αPi ci(p)−
∑
i∈N

αPi |Na|eP +
∑
i∈N

αPi
|Na|
|N | pf

=
∑
i∈Na

αPi (vPi − pf)−
∑
i∈N

αPi ci(p)− (|N |eP − pf)
|Na|
|N |

=
∑
i∈Na

αPi (vPi − eP − pf)−
∑
i∈N

αPi ci(p) + [eP
∑
i∈Na

αPi − |Na|eP ] + pf
|Na|
|N |

If 0 ≤ pf + eP < vP1 then the social welfare function is WP (p) =
∑N
i=1 α

P
i (vPi − |N |eP )−∑

i∈N αici(p), and it is WP (p) = −
∑
i∈N α

P
i ci(p) for vPN ≤ pf + eP .

Hence, WP (p) = WR(p) for any p if conditions in the statement of the theorem are
satisfied.

Corollary 9. Social planner’s problems in a private externalities problem
with externality level e, and in a public externalities problem with the exter-
nality level eP are the same whenever the following conditions are satisfied:

1. αRi = αPj for all i, j ∈ N ,

2. For all K ∈ V ∗,
∑

i∈N α
R
i

∑
k∈K\{i} πki = |K|

|N | ,

3. For all i ∈ N , vRi = vPi − eP ,

4. e = eP (|N | − 1).

Lemma 3. For all K ∈ V ∗
∑

i∈N α
R
i

∑
k∈K\{i} πki = |K|

|N | if and only if for

any V m ∈ V ,
∑

i∈N α
R
i

∑
k∈Vm\{i} πki = |Vm|

|N | .

Proof. Suppose for any K ∈ V ∗
∑
i∈N α

R
i

∑
k∈K\{i} πki = |K|

|N| holds. Then for K = V |V
∗|∑

i∈N α
R
i

∑
k∈V |V ∗|\{i} πki = |V |V

∗||
|N| , and forK = V |V

∗|∪V |V
∗|−1∑

i∈N α
R
i

∑
k∈V |V ∗|∪V |V ∗|−1\{i} πki =

|V |V
∗|∪V |V

∗|−1|
|N| . As

∑
i∈N α

R
i

∑
k∈V |V ∗|∪V |V ∗|−1\{i} πki =

∑
i∈N α

R
i

∑
k∈V |V ∗|−1\{i} πki+∑

i∈N α
R
i

∑
k∈V |V ∗|\{i} πki =

∑
i∈N α

R
i

∑
k∈V |V ∗|−1\{i} πki + |V |V

∗||
|N| = |V |V

∗|∪V |V
∗|−1|

|N|

implies that
∑
i∈N α

R
i

∑
k∈V |V ∗|−1\{i} πki = |V |V

∗|−1|
|N| . Similarly, for V m ∈ V ,

∑
i∈N α

R
i

∑
k∈Vm\{i} πki =

|Vm|
|N| . ‘If’ part of the proof is trivial.

Lemma 4. If for all k, for all i, j, i 6= k, j 6= k, πki = πkj then for any

V m ∈ V ,
∑

i∈N α
R
i

∑
k∈Vm\{i} πki = |Vm|

|N | ⇒
∑

i∈Vm α
R
i = |Vm|

|N | , and for
those agents who has different valuations from every other agents in the
society, αRi = 1

|N | .
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Proof. For all k, for all i, j, i 6= k, j 6= k, πki = πkj implies that πki = 1
N−1

for all

k, i ∈ N, k 6= i. For any V m ∈ V ,
∑
i∈N α

R
i

∑
k∈Vm\{i} πki =

∑
i∈N
i/∈Vm

αRi
∑
k∈Vm πki +∑

i∈N
i∈Vm

αRi
∑
k∈Vm\{i} πki =

∑
i∈N
i/∈Vm

αRi
|Vm|
N−1

+
∑

i∈N
i∈Vm

αRi
|Vm|−1
N−1

= |Vm|
N−1

∑
i∈N α

R
i −

1
N−1

∑
i∈N
i∈Vm

αRi = |Vm|
|N| ⇒ 1 −

∑
i∈V m

Vm = N−1
N
⇒
∑
i∈V i α

R
i = |V i|

|N| . If i has differ-

ent valuations from every other agents in the society then αRi = 1
|N| as V m = {vi} for

some V m ∈ V .

Lemma 5. If for all k, for all i, j, i 6= k, j 6= k, πik = πjk = πk then for any

V m ∈ V ,
∑

i∈N α
R
i

∑
k∈Vm\{i} πki = |Vm|

|N | ⇒
∑
i∈Vm αRi πi
|Vm| =

∑
i∈N αiπi −

1
|N | ,

and if every agent has a distinct valuation in the society, αRi πi = 1
|N |(|N |−1) .

Proof. For any V m ∈ V ,
∑
i∈N α

R
i

∑
k∈Vm\{i} πki =

∑
i∈N
i/∈Vm

αRi
∑
k∈Vm πki+

∑
i∈N
i∈Vm

αRi
∑
k∈Vm\{i} πki =∑

i∈N
i/∈Vm

αRi |V m|πi+
∑

i∈N
i∈Vm

αRi (|V m|−1)πi = |V m|
∑
i∈N α

R
i πi−

∑
i∈Vm αRi πi = |Vm|

|N| ⇒∑
i∈V m αR

i πi

|Vm| =
∑
i∈N αiπi −

1
|N| . If for all V m ∈ V , |V m| = 1 then for all i ∈ N ,

αiπi =
∑
i∈N αiπi−

1
|N| . Adding over all i ∈ N ,

∑
i∈N αiπi = 1

|N|−1
, and this shows that

for all i ∈ N , αiπi = 1
|N|(|N|−1)

.

Note that W (vi) > W (pf) whenever vi < pf < vi+1. So, the planner
has actually N + 1 alternative expected punishment levels, including the
legalization of the action, pf = 0, to choose from.

If e ≤ v1 then it is socially optimal to legalize that action, i.e. p∗ =
f∗ = 0. If w < vj for some j then it is impossible to deter any agent i for
i ≥ j. So, w < v1 implies that it is socially optimal to legalize that action,
i.e. p∗ = f∗ = 0. Whenever all agents are identical then the optimal policy
is complete deterrence, i.e. p∗f∗ = v, if c( vw ) + v ≤ e; and it is optimal to
legalize the action, i.e. p∗f∗ = 0, if c( vw )+v > e. It is never optimal to deter
everbody if v > Nh where v is the average of valuations of agents involving
in the activity.

If there is a unit measure of agents in the society, g(v) is the probability
density of people who gain utility v from the action, and agents do not
know their types, and ex ante they are identical then the expected utility of
a representative agent in a unit measure society will be

Eu(c∗, a∗, h) =

v∫
pf

vg(v)dv − e
v∫

pf

g(v)dv − c(p). (10)

This is exactly the same objective function used in Polinsky and Shavell [4].
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Individuals do not know their types when the law and enforcement policy is
made but they learn their types before they engage in any activity.

Theorem 10. Let p∗R be a solution to social planner’s problems in a private
externalities problem with externality level e, and p∗P be a solution in a public
externalities problem with the externality level eP . Then p∗R ≥ p∗P if

1. for all i ∈ N , αRi = αPi ,

2. for all i ∈ N , πki = 1
N−1 ,

3. for all i, k ∈ N , vRi = vPi − eP ,

4. for all K ∈ V ∗, e = eP (|N | − 1),

5. agents are sufficiently risk averse.

Proof. The social welfare function WR(p) =
∑
αRi Eu

∗
i for a private externalities problem

for vRj ≤ pf < vRj+1 (if such j exists), Na = {j + 1, j + 2, ..., |N |}, is

WR(p) =

j∑
i=1

αRi (−ci(p)−
∑
R⊆Ni

a

β(R,N i
a)hi(|R|e) + pf

∑
k∈Ni

a

πki)

+

N∑
i=j+1

αRi (vRi − pf − ci(p)−
∑
R⊆Ni

a

β(R,N i
a)hi(|R|e) + pf

∑
k∈Ni

a

πki)

=
∑
i∈Na

αRi (vRi − pf)−
∑
i∈N

αRi ci(p) + pf
∑
i∈N

αRi
∑
k∈Ni

a

πki −
∑
i∈N

αRi
∑
R⊆Ni

a

β(R,N i
a)hi(|R|e).

If 0 ≤ pf < vR1 then the social welfare function isWR(p) =
∑
i∈N α

R
i (vRi −

∑
R⊆Ni

a
β(R,N i

a)hi(|R|e))−∑
i∈N α

R
i ci(p), and it is WR(p) = −

∑
i∈N α

R
i ci(p) for vRN ≤ pf .

The social welfare function WP (p) =
∑
αPi Eu

∗
i for a public externalities problem for

vPj ≤ pf + eP < vPj+1 (if such j exists), Na = {j + 1, j + 2, ..., |N |}, is

WP (p) =
∑
i∈Na

αPi (vPi − pf)−
∑
i∈N

αPi ci(p)−
∑
i∈N

αPi hi(|Na|eP ) +
∑
i∈N

αPi
|Na|
|N | pf

=
∑
i∈Na

αPi (vPi − pf)−
∑
i∈N

αPi ci(p) + pf
|Na|
|N | −

∑
i∈N

αPi hi(|Na|eP )

=
∑
i∈Na

αPi (vPi − eP − pf)−
∑
i∈N

αPi ci(p)−
∑
i∈N

αPi hi((|Na| − 1)eP ) + pf
|Na|
|N |

If 0 ≤ pf+eP < vP1 then the social welfare function isWP (p) =
∑N
i=1 α

P
i (vPi −hi(|N |eP ))−∑

i∈N αici(p), and it is WP (p) = −
∑
i∈N α

P
i ci(p) for vPN ≤ pf + eP .

Hence, WP (p) = WR(p) for any p if conditions in the statement of the theorem are
satisfied.
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