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Abstract

Ausubel’s dynamic private-values auction for heterogeneous dis-
crete goods, Ausubel (2006), yields an efficient equilibrium outcome
but it is designed for a limited class of environments. If bidders’ values
for bundles of goods are not integers, then the auction mechanism may
not yield an efficient allocation without any information on bidders’
values. In this paper, I extend Ausubel’s auction for heterogeneous
discrete goods to real-valued quasilinear utility functions. The mech-
anism I propose reaches a Walrasian equilibrium price vector in finite
“steps” without any additional information on bidders’ values. In the
extension of Ausubel’s auction, truthful bidding constitutes an effi-
cient equilibrium.
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1 Introduction

Auctioning of multiple goods has become a rapidly developing part of the
auction theory since the Federal Communications Commission began auc-
tioning wireless communication bands in 1994. It is well-known that when
many units of a good are to be auctioned, standard auction mechanisms are
generally inefficient, i.e., they do not award goods to buyers who value them
most. This inefficiency arises from buyers’ tendency to shade their bids,
the demand-reduction problem (see Krishna (2002), Ausubel and Cramton
(2002), and Milgrom (2004)). Vickrey’s sealed-bid auction, Vickrey (1961),
is among the few exceptions immune to the demand-reduction problem. Even
though the Vickrey auction is efficient, it is not widely used in practice. In
the Vickrey auction, bidders are supposed to submit their whole demand
curves to the auctioneer. So, if there are 10 objects for sale, each bidder
must compute and submit his values for 210 bundles of goods. Bidders pre-
fer not to submit so much information about themselves. Ausubel (2006)
introduced an elegant dynamic auction for divisible and discrete heteroge-
neous goods, and it is immune to the demand-reduction problem. However,
Ausubel’s auction for heterogeneous discrete goods is designed for a lim-
ited class of environments: Bidders’ values for bundles are restricted to be
integers, and the tâtonnement algorithm (price adjustment procedure, see
Ausubel (2005)) uses integer property of utility functions. If bidders’ val-
ues for bundles are not integers, without information on these values, the
tâtonnement algorithm may not reach a Walrasian equilibrium price vector.
The reason for this integer restriction is not explained in his paper.

One may argue that Ausubel’s auction, which uses the grid of integer
prices, with sufficiently fine grid of prices is a straightforward approxima-
tion of Ausubel’s auction to real numbers resulting in prices close to equi-
librium prices. The first problem with this argument is that the integer
assumption has a significant role in the price adjustment procedure: during
the ascending price adjustment procedure, if bidders have substitutes pref-
erences and they sincerely report their demand sets, at each integer price
vector reached, the auctioneer determines bidders’ indirect utility functions
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correctly for all prices in the K-dimensional unit cube above that integer
price vector (See Ausubel (2005), p.619). Using these correct indirect util-
ity functions, the auctioneer computes the next integer price vector in the
price adjustment. If the integer assumption is relaxed, the auctioneer may
not be able to correctly determine the indirect utility functions in the K-
dimensional cube above some price vector no matter how small the size of
the grid. As a result, the price adjustment procedure may not follow the
price path it is designed to because the auctioneer does not have the correct
information about indirect utility functions. The second problem is about
the allocation of goods: Ausubel’s auction is designed to allocate goods if
and only if an equilibrium price is reached, and the corresponding market
clearing allocation is used. There is no straightforward way to choose an al-
location if the procedure stops at a non-equilibrium price vector. Moreover,
it is not possible to get arbitrarily close to an efficient allocation by making
the grid finer because goods are discrete.

In this paper, I extend Ausubel’s auction for heterogeneous discrete goods
to real-valued quasilinear utility functions by introducing an analogous ex-
tension of the tâtonnement algorithm in Ausubel (2006). I show that the
extended tâtonnement algorithm reaches a Walrasian equilibrium price vec-
tor in finite “steps” when bidders’ values are real numbers. The extended
Ausubel auction for heterogeneous discrete goods has an efficient equilibrium
and yields Walrasian equilibrium prices when bidders’ values for bundles are
real numbers. Unlike the tâtonnement algorithm of Ausubel (2006), in the
extended tâtonnement algorithm, the auctioneer does not need any informa-
tion on the values bidders’ utility functions take when these values are not
integers.

In Ausubel’s auction, Ausubel (2006), bidders submit their demands as
prices are adjusted. A bidder is credited a unit of a good at the current
price when the rest of the bidders lower their demand for this good. A unit
of a good is debited from a bidder at the current price when the rest of
the bidders increase their demand for this good. The auctioneer calculates
the set of goods in excess demand and adjusts the prices accordingly. The
auction ends whenever there is a market clearing allocation demanded by
bidders at the current price. Bidders are assumed to have private values
for goods (each bidder’s values for goods depend only on his own type) and
have utility functions quasilinear in money. In the case of divisible goods,
bidders have concave utility functions whereas in the case of discrete goods,
they have preferences satisfying the gross substitutes condition. The gross
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substitutes assumption basically requires that a bidder’s demand for a set
of goods to be nondecreasing if their prices remain the same while the rest
of the prices do not decrease. This assumption guarantees the existence
of a Walrasian equilibrium (see Gul and Stacchetti (1999)). When goods
are divisible, the classical Walrasian tâtonnement is used to determine the
path of prices. In the case of discrete goods, a tâtonnement algorithm (see
Ausubel (2005)) is used. There are two analogous versions of the tâtonnement
algorithm: the ascending algorithm and the descending algorithm. Ausubel
(2005) shows that the ascending (descending) algorithm reaches a Walrasian
equilibrium price vector in finite steps if the initial prices are sufficiently
small (large). Ausubel (2006) converts this discrete-time price adjustment
procedure to a continuous-time price adjustment procedure. He achieves that
by linearly increasing (or decreasing) prices between two consecutive integer-
valued price vectors determined by the tâtonnement algorithm. Then, he
uses this continuous-time price adjustment procedure to prove that sincere
bidding by bidders comprise an efficient equilibrium and yields Walrasian
equilibrium prices.

As Ausubel’s auction does not require bidders to reveal all of their de-
mands at all prices, it preserves privacy of bidders, and it is simpler than the
Vickrey auction. Also, bidders are allowed to exercise their market power
but strategic bidders behave as price-takers under Ausubel’s nonlinear pric-
ing rule, which solves the demand-reduction problem.

In the proposed extension of Ausubel’s auction for discrete heterogeneous
goods, the auction starts at an initial price vector p(0). Each bidder submits
his report, a set of bundle of goods he demands at p(0). Bidders are allowed
to respond to each other’s reports at the same price p(0). Rounds of these
bidders’ reports continue as long as there is a bidder who wants to report
a demand set. After these rounds are over, the auctioneer adjusts prices
continuously according to the extended tâtonnement algorithm using the
demand reports from the last round. Bidders may add a new bundle to or
remove a bundle from their demand set during the price adjustment. They
submit their reports whenever they add a new bundle to their demand sets
as prices change. At any time t ∈ [0,∞), if there is a bidder who submits a
new report at the current price p(t), then the price adjustment stops. Again,
bidders are allowed to respond to these reports. After rounds of bidding are
over, prices are adjusted continuously according to the extended tâtonnement
algorithm using the demand reports from the last round. During the price
adjustment process, for each bidder i ∈ N , if opponents of bidder i lower
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their demand for a good, then the good is credited to bidder i at price p(t).
On the other hand, if opponents of bidder i rise their demand for a good, then
it is debited from bidder i at price p(t). The auction ends at time T ∈ [0,∞)
when there is a market clearing allocation of goods in these reports made
at time T . Payment of each bidder is calculated by adding his credits and
debits, and market clearing allocation of goods are made.

Milgrom and Strulovici (2009) in a recent paper also extended the Ausubel
auction independently. They use a steepest-descent algorithm whereas the
algorithm used in this paper is an analogous extension of the tâtonnement al-
gorithm of Ausubel (2006). In the extended algorithm proposed here, unlike
Milgrom and Strulovici (2009), bidders do not reveal their demands continu-
ously. Bidders report their demand sets finitely many times, whenever they
add a new bundle to their demand sets during the price adjustment process.

Section 2 gives the assumptions of the model. In Section 3, the extension
of Ausubel’s auction and the extended tâtonnement algorithm are explained.
Section 4 explains how to identify paths of the extended ascending and de-
scending algorithms, and shows that they reach Walrasian equilibrium price
vectors in finite steps.

2 The Model

In this paper, I follow a notation very similar to the one in Ausubel (2005)
so that the reader can easily follow one paper after the other. Let Z, Q, and
R stand for the sets of integer, rational and real numbers respectively. There
are finite number of goods, K = {1, 2, . . . , K}. There is a seller with supply
S = (Sk)k∈K ∈ ZK++ of discrete heterogeneous goods, and she wants to sell
them to a finite group of bidders, N = {1, 2, . . . , N}. Consumption set of
bidder i is Xi = {x ∈ ZK : 0 ≤ xk ≤ xki for all k ∈ K} where (xki )k∈K ∈ ZK ,
and it is bounded below and above. xi = (xki )k∈K ∈ Xi is a bundle bidder i
consumes.

The following assumptions are made for each bidder i:
A.1 Private Values: Bidder i’s utility function ui : Xi × R → R is a

function of bundle xi ∈ Xi and money ti ∈ R he consumes, and it does not
depend on any information about other bidders.

A.2 Quasilinearity: ui(·) is assumed to be quasilinear in money, i.e., there
exists Ui : Xi → R such that for each xi ∈ Xi and each ti ∈ R,
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ui(xi, ti) = Ui(xi) + ti

where Ui(xi) is i’s value for bundle xi.
Initial wealth mi ∈ R++ of each bidder i ∈ N is so large that his budget

constraint does not bind for any bundle he demands at any price. Since
ui(xi,mi − yi) = Ui(xi) + mi − yi where yi is the amount of expense he
makes, mi will be dropped without loss of generality.

A.3 Strict Monotonicity: For all (x′i, t
′
i) and (xi, ti) ∈ Xi × R such that

(x′i, t
′
i) 	 (xi, ti),

ui(x
′
i, t
′
i) > ui(xi, ti).

Bidder i’s indirect utility function at price vector p = (pk)k∈K ∈ RK+ is

Vi(p) = max
xi∈Xi

{Ui(xi)− p · xi},

and his demand correspondence (demand set) at price vector p ∈ RK+ is

Qi(p) = arg max
xi∈Xi

{Ui(xi)− p · xi}.

A Walrasian equilibrium is (p∗,x∗) where p∗ is equilibrium price vector
and x∗ = (xi)i∈N is equilibrium allocation, such that for each bidder i ∈ N
x∗i ∈ Qi(p

∗), and
∑

i∈N x
∗
i = S. Existence of Walrasian equilibrium heavily

relies on the gross substitutes assumption. Gul and Stacchetti (1999) shows
that the gross substitutes assumption is sufficient and “almost necessary” for
the existence of the Walrasian equilibrium. In the gross substitutes assump-
tion below, each good is assumed to be available in unit supply. The auction
mechanism proposed in this paper, like Ausubel’s auction Ausubel (2006),
allows multiple units of each good without loss of generality (see Bikhchan-
dani and Mamer (1997)). For more on the gross substitutes assumption see
Milgrom and Strulovici (2009): they make an extensive analysis of the gross
substitutes assumption and its relation to equilibrium.

A.4 Gross Substitutes: For all price vectors p and p′ ∈ RK+ such that
p′ ≥ p, if demand Qi(·) is single-valued both at p and at p′, xi ∈ Qi(p), and
x′i ∈ Qi(p

′), then x′ki ≥ xki for each k ∈ K such that p′k = pk.
In Ausubel’s auction, Ausubel (2006), bidders’ values for bundles are

assumed to be integer. The tâtonnement algorithm in Ausubel (2006) is
designed to use this property of utility functions to move on the grid of
integer price vectors, and to reach an integer-valued Walrasian equilibrium
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price vector. If the integer assumption on values is relaxed, more information
on bidders’ values is needed to reach a Walrasian equilibrium price vector.
There is no straightforward way of modifying the tâtonnement algorithm so
that it will reach a Walrasian equilibrium. If bidders’ values for bundles are
not integer, then there may not exist an integer-valued Walrasian equilibrium
price vector, and the price adjustment procedure may not yield an efficient
allocation when it ends. As Lemma 1 below shows, relaxing the integer-values
restriction enriches the class of preferences of bidders.

A preference relation R defined on X × R is representable if there exists
a utility function u : X × R→ R such that for each x,y ∈ X × R,

xRy if and only if u(x) ≥ u(y).

A preference relation R is said to be in RD if and only if there exists
a quasilinear utility function u : X × R → R representing R such that
u(·, t) = U(·) + t where U : X → D.

Lemma 1 shows that sets RZ, and RR are different.

Lemma 1. RZ ( RR.

Proof. RZ ⊂ RR is trivial. I will show that there exists R ∈ RR such that
R /∈ RZ. Let R ∈ RR be such that there exist x,y ∈ X and t ∈ R \ Z such
that

(x, t) v
R

(y, 0). (1)

By the definition of RR, there exists u(·, t) = U(·) + t representing R, where
U : X → R. Equation 1 implies that

u(x, t) = u(y, 0).

Therefore,
t = U(y)− U(x) ∈ R \ Z. (2)

Now, assume on the contrary that, there exists ũ(·, t) = Ũ(·)+ t representing
R such that

Ũ : X → Z. (3)

Equation 1 implies that ũ(x, t) = ũ(y, 0). So, t = Ũ(y)− Ũ(x). Equation 2

implies that t = Ũ(y)− Ũ(x) ∈ R \ Z, a contradiction to equation 3. Hence,
RZ ( RR.
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3 The Extension of Ausubel’s Auction

In the extension of Ausubel’s auction for discrete heterogeneous goods, there
are N bidders and an auctioneer with supply S ∈ ZK++ of goods to sell. The
auction designed is a continuous-time dynamic game. The time is repre-
sented by a lexicographically ordered pair (t, r) consisting of a continuously
increasing clock t ∈ [0,∞), and an increasing integer counter r ∈ Z+.

The auction starts at clock time t = 0, an initial price vector p(0) ∈
RK+ , and the counter is initialized to r = 0. The auctioneer adjusts prices
continuously according to the extended tâtonnement algorithm. When the
extended ascending algorithm starts at p(0), each bidder reports his demand
set at p(0). After this first round of reports, if there are bidders who would
like to report new demand sets at the same price vector p(0), the auctioneer
increases the counter r by 1 in each round with each new demand set reports
from bidders. After the reports are over at prices p(0) (there are finitely
many rounds by the no cyclic reports any round assumption stated below),
the auctioneer determines the set of goods in excess demand E+(p(0)) using
the demand reports from the last round at clock time t = 0. These reports
are denoted by xi(p(0)) ⊂ Xi for each bidder i ∈ N . The counter is reset
to r = 0, and the prices of these goods in excess demand are increased at
the same rate continuously whereas prices of the rest of the goods remain
the same. As prices are being adjusted, bidders may add bundles to their
demand set or they may remove bundles from their demand set. Each bidder
is required to report his demand set at all price vectors at which he adds a
bundle to his demand set.

Steps of the Procedure. Clock time t ∈ [0,∞) of the price adjustment is
called a step of the procedure if there is a bidder who reports his demand set
at p(t).

If a bidder reports his demand set at time t, then the auctioneer stops the
price adjustment and the clock at time t. Then, the counter r is increased,
and other bidders are allowed to respond to that bidder’s report at the same
clock time. This time structure allows bidders to respond to each other’s
reports at the soonest instant in continuous time (see Ausubel (2004), p.1465,
and Simon and Stinchcombe (1989)). I suppress the counter r from the
notation of prices p(t) without any confusion because prices will stay the
same through out the rounds at the same clock time t. The auctioneer
increases the counter r by 1 in each round with each new demand set report
from bidders. Then, the auctioneer computes the set of goods in excess
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demand E+(p(t)) using the demand reports from the last round at clock
time t, which are denoted by xi(p(t)) ⊂ Xi for each bidder i ∈ N . Next,
the auctioneer resumes the price adjustment by increasing prices of all goods
in E+(p(t)) at the same rate continuously, and holds the prices of the rest
of the goods the same. The extended ascending algorithm terminates when
the set of goods in excess demand is an empty set. The extended descending
algorithm works analogously.

Each bidder observes history h representing the prior play of the game
consisting of a finite string of vectors of clock time t, price vector p(t) at time
t, and a profile of demand sets reported at (t, r). In order to simplify the
notation, I suppress the round r from the notation without any confusion.
The round of the game at clock time t is represented by the order of these
vectors. For example, if h = (0,p(0),x), (0,p(0),x′), then x is the round
r = 0 demand reports at clock time t = 0, and x′ is the round r = 1 demand
reports at clock time t = 0. Note that if bidders truthfully report their
demand sets, then at each step there will be a single round. The strategy
σi(h) ⊂ Xi is a set-valued function of history. The strategy space of i consists
of all such functions with the following restriction:

No Cyclic Reports in Any Round. At each t ∈ [0,∞), no bidder is allowed
to report a demand set twice at any rounds r and r′ such that r < r′ if he
reports a different demand set at round r′′ such that r < r′′ < r′.

This restriction does not prevent bidders from bidding sincerely. Since
there are finitely many possible demand sets for each bidder, this restriction
on strategies also guarantees that the consecutive reporting of bidders at each
clock time t lasts finitely many rounds, and the clock resumes its increase at
the time where it stopped.

Following Ausubel (2004) and Ausubel (2006), ex post perfect equilibrium
is used in the dynamic game defined above:

The strategy profile {σi}i∈N constitutes an ex post perfect equilibrium if
for every history h, and for every realization of private information {ui}i∈N ,
the profile of continuation strategies {σi(·|h, ui)}i∈N constitutes a Nash equi-
librium of the game in which the realization of {ui}i∈N is common knowledge.

The notion of “crediting and debiting,” which is introduced in Ausubel’s
auction and used in the extension proposed here, works as follows: During the
price adjustment, if opponents of bidder j lower the quantity they demand
of a good in their bids, then it is credited to bidder i at price p(t). On
the other hand, if opponents of bidder j rise the quantity they demand of
a good, then it is debited from bidder j at price p(t). The auction ends,
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say at time T ∈ [0,∞), whenever there is a market clearing allocation in
bidders’ demand sets at p(T ). For each bidder credits and debits are added,
monetary transfers are made, and goods are allocated. For an illustration of
Ausubel’s auction, see the example in Ausubel (2006), pp. 606-607.

For each bidder i ∈ N , his payment is defined as

ai(T ) = p(0) · [S − x−i(0)]−
∫ T

0

p(t) · dx−i(t) (4)

where xi(t) is a bundle bidder i demands at price p(t) and

x−i(t) =
∑

j 6=i,j∈N

xj(t).

For a detailed discussion of this payment function see Ausubel (2006). In
Section 4.3, I show that this payment function is well-defined, and path
independent.

4 The Extended Ascending and Descending

Algorithms

4.1 Determining the Price Path

In the extended ascending algorithm and the extended descending algorithm,
at each price p, given the demand reports of bidders, the set of goods in excess
demand is found using the function

L(p) = p · S +
∑
i∈N

Vi(p). (5)

where L : RK+ → R is a Lyapunov function. Note that this function, by en-
velope theorem, is minimized at Walrasian equilibrium prices. The following
Lemma from Ausubel (2005) shows important properties of the Lyapunov
function L(·) of equation 5.

A function L : RK+ → R is submodular if for each p,p′ ∈ RK+

L(p ∧ p′) + L(p ∨ p′) ≤ L(p) + L(p′).

Lemma 2 (Ausubel (2005)). Under the gross substitutes assumption A4, the
Lyapunov function L(·) of equation 5 is a submodular and convex function.
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Proposition 1 below is from Ausubel (2005) and is valid without any
change when bidders’ values for bundles are real rather than integer. Propo-
sition 1 shows the relationship between the Walrasian equilibrium, the Lya-
punov function, and the social surplus.

Proposition 1 (Ausubel (2005)). Suppose that Assumptions A1−A3 hold,
and that a Walrasian equilibrium exists. Then, the set of Walrasian equilib-
rium price vectors equals the set of minimizers of L(·), and the set of Wal-
rasian equilibria equals the set of all (p∗,x∗) such that p∗ ∈ RK+ minimizes
L(·) and (x∗i )i∈N maximizes∑

i∈N

Ui(xi) subject to xi ∈ Xi for all i ∈ N,

and ∑
i∈N

xi ≤ S.

Corollary. Suppose that Assumptions A1− A4 hold. Then, the set of Wal-
rasian equilibrium price vectors is a nonempty lattice and there exist the low-
est and the highest Walrasian equilibrium price vectors, p ∈ RK+ and p ∈ RK+ ,
respectively.

The Corollary to Proposition 1 is also from Ausubel (2005), but integer
properties of the highest and the lowest Walrasian price vectors are dropped
as they are not necessarily true when bidders’ values for bundles are not
restricted to integers. For the proof of the Corollary to Proposition 1, see
Ausubel (2005).

The Corollary to Proposition 1 implies that for any economy ({ui(·)}i∈N ,S),
there exist Walrasian equilibrium price vectors p ∈ RK+ and p ∈ RK+ such

that if p∗ ∈ RK+ is a Walrasian equilibrium price vector, then p ≤ p∗ ≤ p.
The next lemma shows that as a set of prices are increased (decreased) in

the extended ascending (descending) algorithm, if a bidder removes a bundle
from his demand set, he does so immediately, i.e. as soon as prices start to
increase.

Lemma 3. Suppose that Assumptions A1−A2 hold. Let i ∈ N , xi,x
′
i ∈ Xi,

and p ∈ RK+ be such that Ui(xi)− p · xi = Ui(x
′
i)− p · x′i.
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If there exist ∆ ∈ RK+ and λ′ > 0 such that

Ui(xi)− (p∓ λ′∆) · xi > Ui(x
′
i)− (p∓ λ′∆) · x′i,

then for each λ > 0

Ui(xi)− (p∓ λ∆) · xi > Ui(x
′
i)− (p∓ λ∆) · x′i,

and if there exist ∆ ∈ RK+ , ∆ 6= 0 and λ′ > 0 such that

Ui(xi)− (p∓ λ′∆) · xi = Ui(x
′
i)− (p∓ λ′∆) · x′i,

then for each λ > 0

Ui(xi)− (p∓ λ∆) · xi = Ui(x
′
i)− (p∓ λ∆) · x′i.

Proof. Suppose that p ∈ RK+ , and xi,x
′
i ∈ Xi such that

Ui(xi)− p · xi = Ui(x
′
i)− p · x

′
i. (6)

Then, by equation 6, for each ∆ ≥ 0 and for each λ > 0,

Ui(xi)− (p∓ λ∆) · xi > Ui(x
′
i)− (p∓ λ∆) · x′i

if and only if
0 > ∓λ∆ · (xi − x′i). (7)

Observe that inequality 7 holds for some λ′′ > 0 if and only if it holds for all
λ > 0.

If there exist ∆ ∈ RK+ , ∆ 6= 0 and λ′ > 0 such that

Ui(xi)− (p∓ λ′∆) · xi = Ui(x
′
i)− (p∓ λ′∆) · x′i,

then by equation 6,
∓λ′∆ · (xi − x′i) = 0.

Thus, for each λ > 0,
∓λ∆ · (xi − x′i) = 0.

Hence, the result follows.
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Suppose that a bidder strictly prefers one bundle to another. If prices are
increased (decreased) linearly, then there are two possibilities: either he will
keep preferring one to the other, or he will be indifferent between them at a
unique price and he will reverse his preferences over these bundles as prices
continue to linearly increase (decrease). This is formally stated in the next
Lemma.

Lemma 4. Suppose that Assumptions A1−A2 hold. Let i ∈ N , xi,x
′
i ∈ Xi,

p ∈ RK+ , and ∆ ∈ RK+ be such that Ui(xi)−(p∓∆)·xi > Ui(x
′
i)−(p∓∆)·x′i.

Then, one of the following holds:

1. There exists a unique λx′
i
> 0 such that

Ui(xi)− (p∓ λx′
i
∆) · xi = Ui(x

′
i)− (p∓ λx′

i
∆) · x′i,

and for each λ ∈ (0, λx′
i
)

Ui(xi)− (p∓ λ∆) · xi > Ui(x
′
i)− (p∓ λ∆) · x′i,

and for each λ > λx′
i

Ui(xi)− (p∓ λ∆) · xi < Ui(x
′
i)− (p∓ λ∆) · x′i.

2. For all λ > 0, Ui(xi)− (p∓ λ∆) · xi > Ui(x
′
i)− (p∓ λ∆) · x′i.

Proof. If ∓∆ · (xi − x′i) > 0 then Ui(xi)− (p∓ λx′
i
∆) · xi = Ui(x

′
i)− (p∓

λx′
i
∆) · x′i for λx′

i
= ∓ (Ui(xi)−p·xi)−(Ui(x

′
i)−p·x

′
i)

∆(xi−x′
i)

. If ∓∆ · (xi − x′i) ≤ 0 then

Ui(xi)− (p∓ λ∆) · xi > Ui(x
′
i)− (p∓ λ∆) · x′i for all λ > 0.

Suppose that a bidder i ∈ N announces his demand set at Qi(p) ⊂ Xi

at price vector p ∈ RK+ . I will now show how the auctioneer can determine
bundles that will stay in bidder i’s demand set when prices of a subset of
goods are all slightly increased (or decreased).

For each p,∆ ∈ RK+ , a minimal-cost-increase bundle x̃i(p,∆) ∈ Qi(p) is
a bundle bidder i demands at p that has the lowest cost increase when prices
increase from p to p+ ∆, i.e.

x̃i(p,∆) ∈ arg min
x∈Qi(p)

{∆ · x}. (8)
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Analogously, a maximal-cost-decrease bundle ỹi(p,∆) ∈ Qi(p) is a bun-
dle bidder i demands at p that has the highest cost decrease when prices
decrease from p to p−∆, i.e.

ỹi(p,∆) ∈ arg max
x∈Qi(p)

{∆ · x}. (9)

Define

δi(p) =
1

2
inf
y∈Xi
y/∈Qi(p)

1∑
k∈K x

k
i

{(Ui(x̃i(p,∆))− p · x̃i(p,∆))− (Ui(y)− p · y)}.

If δi(p) is finite, then δi(p) is the difference between the highest and the
second highest utility levels bidder i can achieve from bundles in Xi at price
p as Xi is finite. Hence, for each p,∆ ∈ RK+ either

δi(p) = +∞

or
δi(p) > 0.

Note that δi(p) is infinite if and only if bidder i is indifferent among all
bundles at prices p.

Construct δ(p) as follows:

δ(p) = min
i∈N

δi(p) (10)

Since there are finitely many bidders in N ,

δ(p) > 0.

By the definition of δ(p), for each p ∈ R++, for each i ∈ N , for each x ∈
Qi(p), and for each y ∈ Xi \Qi(p)

(Ui(x)− p · x)− (Ui(y)− p · y) > δ(p).

Time t = 0 is the first step of the extended algorithm. Observe that by
the definition of a step, time t ∈ (0,∞) is a step of the extended algorithm if
there exist i ∈ N , xi ∈ Qi(p(t)), and t′ ∈ [0, t) such that for each t′′ ∈ (t′, t)

xi /∈ Qi(p(t′′)).
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Note that steps of the extended algorithm depend on the initial price and
preferences of bidders. If all bidders have integer valuations for all bundles,
the extended algorithm starts at an integer price vector, and bidders report
truthfully, then all steps will be at integer price vectors.

For each δ ∈ R, let δK = (δk)k∈K denote a K-dimensional vector such
that δk = δ for all k ∈ K. Proposition 2 shows that the auctioneer can
compute each bidder’s demand set for all prices in the K-dimensional δ(p)-
wide cube above (below) price vector p using that bidder’s demand set at
p.

Proposition 2. Suppose that Assumptions A1 − A2 hold. For each i ∈ N ,
for each p ∈ RK+ , for each ∆ ∈ RK+ , and for each λ ∈ R++ such that
0 � ∆ ≤ δ(p)K, and 0 � λ∆ ≤ δ(p)K

Qi(p+ λ∆) = {x̃i(p,∆) ∈ Qi(p)},
and

Qi(p− λ∆) = {ỹi(p,∆) ∈ Qi(p)}.

Proof. Let i ∈ N , p ∈ RK+ , and ∆ ∈ RK+ such that 0 � ∆ ≤ δ(p)K . Let
y ∈ Xi.

Claim. If y /∈ {x̃i(p,∆) ∈ Qi(p)}, then for each λ ∈ R++ such that 0 �
λ∆ ≤ δ(p)K

Ui(x̃i(p,∆))− (p+ λ∆) · x̃i(p,∆) > Ui(y)− (p+ λ∆) · y. (11)

Proof of the Claim. There are two cases to consider:
Case 1. If y ∈ Qi(p) \ {x̃i(p,∆) ∈ Qi(p)}, then for each λ ∈ R++ such

that 0 � λ∆ ≤ δ(p)K

Ui(x̃i(p,∆))− (p+ λ∆) · x̃i(p,∆) > Ui(y)− (p+ λ∆) · y.

Case 2. If y /∈ Qi(p), then

Ui(x̃i(p,∆))− p · x̃i(p,∆) > Ui(y)− p · y

.
Let λ ∈ R++ such that 0 � λ∆ ≤ δ(p)K . Observe that as ∆ ≥ 0, and

x̃i(p,∆),y ∈ Xi

λ∆ · (x̃i(p,∆)− y) ≤ λ∆ · (xki )k∈K = λ
∑
k∈K

(∆kxki )
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Hence,

λ∆ · (x̃i(p,∆)− y) ≤ λ
∑
k∈K

(∆kxki ). (12)

If there does not exist λy > 0 such that

Ui(x̃i(p,∆))− (p+ λy∆) · x̃i(p,∆) = Ui(y)− (p+ λy∆) · y,

then by Lemma 4

Ui(x̃i(p,∆))− (p+ λ∆) · x̃i(p,∆) > Ui(y)− (p+ λ∆) · y. (13)

If there exists such λy > 0, then, as (Ui(x̃i(p,∆))− p · x̃i(p,∆))− (Ui(y)−
p · y) = (x̃i(p,∆)− y) · λy∆, and by the definition of δ(p), for each k ∈ K

λ∆k ≤ δ(p) < λy∆ · (x̃i(p,∆)− y)
1∑

k∈K x
k
i

.

Thus, by multiplying with xki

λ∆kxki < λy∆ · (x̃i(p,∆)− y)
xki∑
k∈K x

k
i

,

and summing over k ∈ K

λ
∑
k∈K

∆kxki < λy∆ · (x̃i(p,∆)− y). (14)

Inequalities 12 and 14 imply that

λ∆ · (x̃i(p,∆)− y) < λy∆ · (x̃i(p,∆)− y).

So, by the definition of λy

λ∆ · (x̃i(p,∆)−y) <
(
Ui(x̃i(p,∆))−p · x̃i(p,∆)

)
−
(
Ui(y)−p ·y

)
. (15)

Hence,

Ui(x̃i(p,∆))− (p+ λ∆) · x̃i(p,∆) > Ui(y)− (p+ λ∆) · y. (16)

This completes the proof of the Claim.
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By the definition of x̃i(p,∆), for all minimal-cost-increase bundles x̃i(p,∆)
and x̃′i(p,∆), and for each λ > 0,

Ui(x̃
′
i(p,∆))−(p+λ∆)·x̃′i(p,∆) = Ui(x̃i(p,∆))−(p+λ∆)·x̃i(p,∆). (17)

Equations 11, 13, 17 and 16 imply that

Qi(p+ λ∆) = {x̃i(p,∆) ∈ Qi(p)}.

Analogously it can be shown that

Qi(p− λ∆) = {ỹi(p,∆) ∈ Qi(p)}.

For each δ ∈ R, and for each subset of goods E ⊂ K, let δE = (δk)k∈K
denote a K-dimensional vector such that δk = 0 if k /∈ E, and δk = δ if
k ∈ E.

As prices change, bidders’ demand sets change: a bidder may remove a
bundle from his demand set, or add a bundle to his demand set. Lemma 5
shows a relationship between bundles in the demand set and those added
during the price adjustment.

Lemma 5. Suppose that Assumptions A1−A4 hold. Let i ∈ N , p,p′ ∈ RK+
such that p ≤ p′,

Qi(p
′) \Qi(p) 6= ∅,

and
Qi(p

′) ∩Qi(p) 6= ∅. (18)

Then, there exist
x′i ∈ Qi(p

′) \Qi(p),

and
xi ∈ Qi(p

′) ∩Qi(p)

such that
#(xi \ x′i) = 1 and #(x′i \ xi) ≤ 1.

Moreover, there exists a unique k ∈ K such that

x′ki = xki − 1.
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Also,
pk < p′k.

On the other hand, if there exists k′ ∈ K such that x′k
′

i = xk
′
i + 1, then

p′k′ − pk′ < p′k − pk.

If there exists E ⊂ K and δ ∈ R++ such that p′ = p+ δE, then

k ∈ E,

and
k′ /∈ E if there exists k′ ∈ K such that x′k

′

i = xk
′

i + 1.

Proof. Define ∆ = p′−p. By Lemma 4, equation 18 implies that there does
not exist λ ∈ (0, 1) such that

Qi(p+ λ∆) \Qi(p) 6= ∅,

i.e. as prices are increased linearly from p to p′, p′ is the first price vector
reached at which a new bundle is added to the demand set.

Construction of x′i. Let x′i ∈ Qi(p
′) \ Qi(p) such that for each y ∈

Qi(p
′) \Qi(p)

Ui(x
′
i)− p · x

′
i ≥ Ui(y)− p · y.

x′i is a bundle bidder i adds to his demand set at p′ such that bidder i prefers
this bundle at p to all other bundles added at p′. Such x′i exists because Xi

is finite.
Construction of xi. By Lemma 4, for each y ∈ Qi(p

′) \ Qi(p), and for
each λ ∈ [0, 1]

Ui(x
′
i)− (p+ λ∆) · x′i ≥ Ui(y)− (p+ λ∆) · y.

As Xi is finite, by Lemma 4, there exists λ′ ∈ (0, 1) such that for each
λ ∈ (λ′, 1), and y ∈ Xi, if

Ui(y)− (p+ λ∆) · y > Ui(x
′
i)− (p+ λ∆) · x′i

then
y ∈ Qi(p+ λ∆).

In words, there exists a price p+λ′∆ such that at all prices reached between
p + λ′∆ and p′, there is no bundle both strictly preferred to x′i and not in
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bidder i’s demand set. Hence, by the single-improvement property (implied
by Assumptions the gross substitutes A4 and monotonicity A3, see Lemma
2 in Gul and Stacchetti (1999)), there exists

xi ∈ Qi(p+ λ∆)

such that
#(xi \ x′i) ≤ 1 and #(x′i \ xi) ≤ 1.

Since the first new bundle is added at p′ to bidder i’s demand set as prices
are increased linearly from p to p′, by Proposition 2,

Qi(p+ λ∆) = Qi(p) ∩Qi(p
′).

Therefore,
xi ∈ Qi(p) ∩Qi(p

′),

and
#(xi \ x′i) ≤ 1 and #(x′i \ xi) ≤ 1. (19)

So, xi is a bundle in bidder i’s demand sets at all prices reached between p
and p′ such that x′i can be constructed by adding at most a unit of a good
and removing at most a unit of another good to xi.

As Ui(x
′
i)− (p+ ∆) · x′i = Ui(xi)− (p+ ∆) · xi,

−(Ui(x
′
i)− p · x

′
i) + (Ui(xi)− p · xi) = (xi − x′i) ·∆.

Since xi ∈ Qi(p) and x′i /∈ Qi(p),

(xi − x′i) ·∆ > 0.

Therefore, by equations 19, there exists a unique k ∈ K such that x′ki = xki−1.
Observe that ∆k = p′k − pk > 0. Moreover, if there exists k′ ∈ K such that
x′k
′

i = xk
′
i + 1, then ∆k −∆k′ > 0 implying p′k′ − pk′ < p′k − pk. Otherwise,

∆k > 0 implying pk < p′k. The rest of the proof follows trivially.

Lemma 6 explains the relationship between each bidder’s demand set on
the corners of δ(p)-wide cube above (below) price vector p and his demand
sets on the edges of that cube.
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Lemma 6. Suppose that Assumptions A1− A4 hold. For each p ∈ RK+ , for
each δ ∈ [0, δ(p)], for each E ⊂ K, for each i ∈ N , and for each ∆ ≥ 0 such
that for each k ∈ E ∆k = 0, and for each λ ∈ R+ such that 0 ≤ λ∆ ≤ δK

{x̃i(p+ δE,∆) ∈ Qi(p+ δE)} = Qi(p+ δE + λ∆), (20)

and
{ỹi(p− δE,∆) ∈ Qi(p− δE)} = Qi(p− δE − λ∆).

Proof. Consider the equation 20. Suppose on the contrary that there exist
p ∈ RK+ , δ ∈ [0, δ(p)], E ⊂ K, i ∈ N , λ ∈ R+, ∆ ∈ RK+ and x̃i(p + δE,∆)
such that 0 ≤ λ∆ ≤ δK , and for each k ∈ E ∆k = 0, and equation 20 does
not hold. Then, either there exists x̃i(p+ δE,∆) ∈ Qi(p+ δE) such that

x̃i(p+ δE,∆) /∈ Qi(p+ δE + λ∆), (21)

or there exists

xi ∈ Qi(p+ δE + λ∆) \ {x̃i(p+ δE,∆) ∈ Qi(p+ δE)}. (22)

Suppose that equation 21 holds. If δ = 0 or λ∆ = 0, then equation 21
contradicts to the definition of x̃i(·, ·). So, suppose that δ > 0 and λ∆ 
 0.
By Lemma 3, equation 21 implies that

{x̃i(p+ δE,∆) ∈ Qi(p+ δE)} ∩Qi(p+ δE + λ∆) = ∅,

which means that all minimal cost bundles are dropped from the demand set
at the same price vector which is between p+ δE and p+ δE + λ∆. Hence,
by Lemma 3 again,

Qi(p+ δE) ∩Qi(p+ δE + λ∆) = ∅,

which implies equation 22. So, it is sufficient to show that equation 22 results
in a contradiction.

Define

λ = min{λ′ ∈ R++ : there exists x′i ∈ Xi \Qi(p+ δE) such that

Ui(x
′
i)− (p+ δE + λ′∆) · x′i

= Ui(x̃i(p+ δE,∆))− (p+ δE + λ′∆) · x̃i(p+ δE,∆)}.
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Note that p + δE + λ∆ is the first price vector reached at which bidder i
adds a bundle to his demand set as prices increase linearly from p + δE to
p + δE + λ∆. Let xi ∈ Xi be a bundle which bidder i adds to his demand
set at p + δE + λ∆ such that xi is preferred at all prices between p + δE

and p + δE + λ∆ to all other bundles which bidder i adds to his demand
set at p + δE + λ∆. Since Xi is finite, by Lemma 4 and equation 22, λ is
well-defined, and λ > 0. Observe that

λ < λ, (23)

and hence 0 � λ∆� δK . So, xi ∈ Xi is such that

Ui(xi)− (p+ δE + λ∆) · xi =Ui(x̃i(p+ δE,∆))

− (p+ δE + λ∆) · x̃i(p+ δE,∆),
(24)

and for each λ′ ∈ [0, λ], and for each xi ∈ Qi(p+ δE + λ∆) \Qi(p+ δE)

Ui(xi)− (p+ δE + λ′∆) · xi ≥ Ui(xi)− (p+ δE + λ′∆) · xi.

Note that xi /∈ Qi(p+ δE), and by Lemma 5, there exists

x̃i(p+ δE,∆) ∈ Qi(p+ δE + λ∆)

such that
#(x̃i(p+ δE,∆) \ xi) = 1

and
#(xi \ x̃i(p+ δE,∆)) ≤ 1.

By Proposition 2,
xi, x̃i(p+ δE,∆) ∈ Qi(p).

Hence,

Ui(xi)− p · xi = Ui(x̃i(p+ δE,∆))− p · x̃i(p+ δE,∆),

and by equation 24,

(x̃i(p+ δE,∆)− xi)(δE + λ∆) = 0.

Then, either
λ∆k = 0 for some k ∈ K,
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a contradiction to Lemma 5 for prices p+ δE and p+ δE + λ∆, or

λ∆k − δ = 0 for some k ∈ K,

a contradiction to equation 23 as λ∆ ≤ δK . An analogous argument can be
made for ỹi(p− δE,∆).

The next proposition shows that for each price vector there exists a unique
set of goods which determine the direction in which prices increase (decrease)
in the extended algorithm.

A minimal minimizer p+(·) is such that for each p ∈ RK+ ,

p+(p) ∈ arg min
p̃∈{p+∆:0≤∆≤δ(p)K}

{L(p̃)}, (25)

such that for each p′ ∈ RK+ if p ≤ p′ � p+(p), then L(p′) > L(p+(p)).
So, a minimal minimizer p+(p) is a minimizer of the Lyapunov function

of equation 5 in {p+ ∆ : 0 ≤∆ ≤ δ(p)K} and this set does not contain any
price vector which is less than or equal to p+(p) in every coordinate, and a
minimizer of the Lyapunov function in that set.

Similarly, for each p ∈ RK+ , a maximal minimizer p−(·) is defined as

p−(p) ∈ arg min
p̃∈{p−∆:0≤∆≤δ(p)K}

{L(p̃)},

such that for each p′ ∈ RK+ if p ≥ p′ 
 p−(p), then L(p′) > L(p−(p)).

Proposition 3. Suppose that Assumptions A1 − A4 hold, and that bidders
truthfully report their demand. Then, at each price p ∈ RK+ , and at each δ ∈
[0, δ(p)], there exist a unique minimal minimizer p+(p), a unique maximal
minimizer p−(p), and sets of goods E+(p), E−(p) ⊂ K such that

p+(p) = p+ δE+(p) (26)

and
p−(p) = p− δE−(p).

Corollary. Suppose that Assumptions A1−A4 hold, and that bidders truth-
fully report their demand. Then, for each step t of the extended ascending
(descending) algorithm, if the procedure does not terminate at t, then there
exists a step t′ > t such that there is no step t̂ such that t̂ ∈ (t, t′).
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Proof of the Corollary. Let t ∈ [0,∞) be a step of the algorithm, and p(t)
be the corresponding price vector. If t is not the last step, then, by Propo-
sitions 2 and 3, there exist δ(p) > 0 and E ⊂ K such that no bidder adds
any bundle at any price reached between p(t) and p(t̃) = p(t) + δE. Hence,
there is no step between t and t̃. Let t′ = inf

t′′>t and
t′′ is a step

t′′. Observe that t′ > t̃,

and t′ is a step.

Proof. As L(·) is continuous and the set {p+ ∆ : 0 ≤∆ ≤ δK} is compact,
L(·) attains a minimum. Thus, by Lemma 2, L(·) is a submodular function.
Hence, the set of minimizers of L(·) in {p+∆ : 0 ≤∆ ≤ δK} are a nonempty
sublattice. Therefore, there exists a unique minimal minimizer p+(p) of L(·)
in {p+ ∆ : 0 ≤∆ ≤ δK}.

Now, suppose on the contrary that there does not exist E+(p) satisfying

equation 26. Then, there exists k ∈ K such that pk+(p) /∈ {pk, pk + δ}. Let p̃
be a price vector such that for each k ∈ K

p̃k =

{
pk if pk+(p) /∈ {pk, pk + δ}
pk+(p) if pk+(p) ∈ {pk, pk + δ}. (27)

Construct
∆̃ = p+(p)− p̃,

and

λ =
δ

max{∆̃k : k ∈ K}
.

Observe that as pk+(p) /∈ {pk, pk + δ}, ∆̃ 
 0, and hence, λ is well-defined.

Moreover, p+(p) is a convex combination of p̃ + λ∆̃ and p̃. Note that p̃ +

λ∆̃ ≤ δK . Hence, Lemma 6 for E ⊂ K such that p̃ = p + δE, and for
∆ = ∆̃ implies that for each λ ∈ [0, λ],

x̃i(p̃, ∆̃) ∈ Qi(p̃+ λ∆̃).

Therefore, for each λ ∈ [0, λ] L(p̃+ λ∆̃) is linear in λ.

If L(p̃+λ∆̃) ≥ L(p̃), then L(p̃) ≤ L(p+(p)), a contradiction to p+(p) be-

ing the unique a minimal minimizer. On the other hand, if L(p̃+λ∆̃) < L(p̃),

then L(p̃ + λ∆̃) < L(p+(p)), a contradiction to p+(p) being a minimizer.
So, there exists E+(p) satisfying equation 26.

An analogous argument can be made for p−(p) and E−(p).
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The goods in E+(p) are called the goods in excess demand at price p.
This notion of excess demand is different from the classical notion of excess
demand. Gul and Stacchetti (2000) discuss the need for a different notion of
excess demand because of the problems arising during the price adjustment
when goods are discrete. Gul and Stacchetti (2000) point out to the distinc-
tion between the level of excess demand and the sum of quantities of goods
in excess demand in discrete goods. For example, two different goods can be
in excess demand but the level of excess demand may only be 1. The set of
goods in excess demand according to the classical notion and the one here
coincide if the demand correspondences are assumed to be single-valued. In
other words, the same set of goods will be in excess demand.

The following Lemma gives a simple method for determining the set of
goods in excess demand.

Lemma 7. Suppose that Assumptions A1−A4 hold, and that bidders truth-
fully report their demand. Then, for each p ∈ RK+

E+(p) ∈ arg min
E⊂K

∑
k∈E

(Sk −
∑
i∈N

x̃ki (p,1
E)), (28)

and for each δ ∈ [0, δ(p))

E+(p+ δE+(p)) = E+(p).

Moreover, if t and t′ are two consecutive steps of the extended ascending
algorithm such that t < t′, then for all t̂ ∈ [t, t′)

E+(p(t̂)) = E+(p(t)).

Similarly,

E−(p) ∈ arg max
E⊂K

∑
k∈E

(Sk −
∑
i∈N

ỹki (p,1E)),

and for each δ ∈ [0, δ(p)),

E−(p− δE−(p)) = E−(p).

Moreover, if t and t′ are two consecutive steps of the extended descending
algorithm such that t < t′, then for all t̂ ∈ [t, t′)

E−(p(t̂)) = E−(p(t)).
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Proof. For each p ∈ RK+ , by Proposition 3, there exist δ(p) ∈ R++ and
E+(p) ⊂ K such that p+(p) = p+ δ(p)E+(p). As

δ(p)E+(p) · x = δ(p)
∑

k∈E+(p)

xk,

by Proposition 2 and by the definition of x̃i(p,1
E+(p)), for each i ∈ N , and

for each δ ∈ (0, δ(p)]

x̃i(p,1
E+(p)) ∈ Qi(p+ δE+(p)).

Observe that

L(p+ δE+(p)) =(p+ δE+(p)) · S

+
∑
i∈N

(Ui(x̃i(p,1
E+(p)))− (p+ δE+(p)) · x̃i(p,1E+(p))))

=p · S +
∑
i∈N

(Ui(x̃i(p,1
E+(p))− p · x̃i(p,1E+(p))) + δE+(p) · S

−
∑
i∈N

δE+(p) · x̃i(p,1E+(p)))

=L(p) + δE+(p) · S −
∑
i∈N

δE+(p) · x̃i(p,1E+(p))).

So, minimizing L(p + δE), and maximizing L(p) − L(p + δE)) over the
set of goods E ⊂ K is equivalent to

min
E⊂K

δ
∑
k∈E

(Sk −
∑
i∈N

x̃ki (p,1
E)). (29)

Hence, for each δ, δ′ ∈ (0, δ(p)], the set of solutions to equation 29 for δ
and δ′ are identical.

Thus,

E+(p) ∈ arg min
E⊂K

∑
k∈E

(Sk −
∑
i∈N

x̃ki (p,1
E)),

and for each δ ∈ (0, δ(p)]

E+(p+ δE+(p)) = E+(p).
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An analogous derivation can be made for E−(p). Observe that at each
equilibrium price vector p∗,

E+(p∗) = E−(p∗) = ∅.

Note that Lemma 7 implies that in the extended ascending algorithm and
the extended descending algorithm, bidders reporting their demand sets at
the initial price vector and at prices at which they add a bundle to their
demand sets gives sufficient information to the auctioneer to adjust prices
correctly.

4.2 Reaching Walrasian Equilibrium Prices in Finite
Steps

In this section, I will show that the extended algorithms terminate in any
economy as long as Assumptions A1 − A4 are satisfied. Moreover, the ex-
tended ascending (descending) algorithm reaches a Walrasian equilibrium
price vector in finitely many steps if initial prices are sufficiently low (high).

Proposition 4 shows how the price vector at which the extended algorithm
terminates relates to the set of Walrasian equilibrium price vectors.

Proposition 4. Suppose that Assumptions A1 − A4 hold, and that bid-
ders truthfully report their demand. Starting from any initial price vector
p(0) ∈ RK+ , if the extended ascending algorithm ends at T , then p(T ) ≥ p.

Similarly, starting from any initial price p(0) ∈ RK+ , if the extended descend-
ing algorithm ends at T , then p(T ) ≤ p.

Proof. Suppose, for the extended ascending algorithm, that p(T ) � p. Then,
there exists a good k ∈ K such that the price of good k at p(T ) ∧ p is less

than pk. Since p is the smallest Walrasian equilibrium price vector, p(T )∧p
is not a Walrasian equilibrium price vector. Therefore, by Proposition 1

L(p) < L(p(T ) ∧ p). (30)

As L(·) is submodular by Lemma 2,

L(p(T ) ∧ p) + L(p(T ) ∨ p) ≤ L(p(T )) + L(p). (31)
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Inequalities 30 and 31 imply that

L(p(T ) ∨ p) < L(p(T )).

By Propositions 2 and 3, and by the definition of δ(·) in equation 10, there
exist δ(p(T )) ∈ R++ and E(p(T )) ⊂ K such that p(T ) + δ(p)E(p(T )) is the
unique minimal minimizer of L(·) in the cube {p+ ∆ : 0 ≤∆ ≤ δ(p(T ))K}.
Let p′ be a strict convex combination of p(T ) and p(T ) ∨ p such that 0 ≤
p′ − p(T ) ≤ δ(p(T ))K . p′ exists as p(T ) ∨ p 
 p(T ). Convexity of L(·)
implies that L(p′) < L(p(T )). This means that E(p(T )) 6= ∅ and that p(T )
is not a minimizer in {p(T ) + ∆ : 0 ≤ ∆ ≤ δ(p(T ))K}. Therefore, the
extended ascending algorithm does not stop at T as it is possible to decrease
the Lyapunov function further, a contradiction. Hence, p(T ) ≥ p.

The result for the extended descending algorithm can be proven analo-
gously.

Proposition 5 shows that if the initial prices are smaller (larger) than
the lowest (highest) Walrasian equilibrium price vector, then all the price
vectors reached by the extended ascending (descending) algorithm are smaller
(larger) than the lowest (highest) Walrasian equilibrium price vector.

Proposition 5. Suppose that Assumptions A1 − A4 hold, and that bidders
truthfully report their demand. In the extended ascending algorithm, starting
from any initial price vector p(0) ∈ RK+ , if p(t) ≤ p, then p(t′) ≤ p for all
t′ > t. In the extended descending algorithm, starting from any initial price
vector p(0) ∈ RK+ , if p(t) ≥ p, then p(t′) ≥ p for all t′ > t.

Proof. Consider the extended ascending algorithm. Suppose, on the contrary,
that there exist t and t′ such that t′ > t, p(t) ≤ p, and p(t′)k > pk for some
k ∈ K. As p(·) is continuous, there exists t′′ such that t < t′′ < t′ and
p(t′′)k = pk. Let

t′′ = sup
p(t)≤p

t.

Since p(·) is continuous, and prices are ascending, t′′ exists and p(t′′)k = pk.

By Proposition 1, and as p is a Walrasian price vector, for each s > t′′,

L(p) ≤ L(p(s) ∨ p). (32)

Moreover, since L(·) is a submodular function by Lemma 2,

L(p(s) ∨ p) + L(p(s) ∧ p) ≤ L(p(s)) + L(p). (33)
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Inequalities 32 and 33 imply that

L(p(s) ∧ p) ≤ L(p(s)). (34)

Note that there exists k′ ∈ K such that for each s > t′′

pk
′
(s) ∧ pk′ < pk

′
(s). (35)

By Proposition 3, there exists E ⊂ K such that

p(s) = p(t′′) + δ(p(t′′))E.

for some s ∈ (t′′, t′). Since inequality 35 holds for s = s,

p(s) ∧ p = p(t′′) + δ(p(t′′))A

for some A ( E. Therefore, by inequality 34, p(s) is not a minimal mini-
mizer, a contradiction.

The result for the extended descending algorithm can be proven analo-
gously.

The next step (Theorem 1) is to show that the extended ascending algo-
rithm and the extended descending algorithm stop after finitely many steps.

Theorem 1. Suppose that Assumptions A1−A4 hold, and that bidders truth-
fully report their demands. Then, the extended ascending algorithm and the
extended descending algorithm terminate in finite steps.

Proof. The algorithm converges to a price vector. Consider the extended
ascending algorithm. As there are finite number of bidders and the con-
sumption set of each bidder is bounded, there is an upper bound on bidders’
values for each good. In other words, for each good k ∈ K, there is a price
pkmax ∈ R+ at and above which no bidder wants good k regardless of the
prices of the rest of the goods . Observe that, by Lemma 7, if the total quan-
tity demanded of a good k ∈ K at price vector p(t) ∈ RK+ is less than the
total quantity of good k available, then the price of good k will not be in the
set of prices that will be increased at t in the extended ascending algorithm.
Therefore, in the extended ascending algorithm, for each k ∈ K and for each
t ∈ [0,∞),

pk(t) ≤ pkmax.
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By the Corollary to Proposition 3, for each step t′, there exists a step
t > t′ such that there is no other step t̃ such that t′ < t̃ < t, and there exists
a rational number tq ∈ Q such that t′ < tq < t. Therefore, there are at most
countably many steps in the extended ascending algorithm. Let {ps}s∈σ be
the sequence of all price vectors reached by the extended ascending algorithm
at all steps.

Observe that, by construction of the extended ascending algorithm, if
t′ > t′′, then p(t′) 
 p(t′′). Therefore, for each s ∈ σ,

ps � ps+1.

As the sequence {ps}s∈σ is bounded above and monotonically increasing,
it converges to a price vector p∗ ∈ R+ such that p∗ ≤ (pkmax)k∈K .

The relationship between the demand sets at price vectors of consecutive
steps. Note that for each s ∈ σ, ps+1 is the first price vector where a
bidder adds a bundle to his demand set after ps in the extended ascending
algorithm. Since the set of prices that are increased does not change between
consecutive steps in the extended ascending algorithm, the same set of prices
are increased from ps to ps+1. Therefore, there exist δs > 0 and Es ⊂ K
such that

ps+1 = ps + δs
Es ,

which can be rewritten as

ps+1 = p0 +
s∑

s′=0

δs′
Es′

where δs′ > 0 and Es′ ⊂ K for each s′ ∈ Z such that 0 ≤ s′ ≤ s.
For each step s ∈ σ, and for each bidder is ∈ N who adds a bundle to his

demand set at price vector ps+1, by Lemma 5 for price vectors ps and ps+1,
there exist bundles

xis ∈ Qi(ps) and x′is ∈ Qi(ps+1) \Qi(ps) (36)

such that
#(xis \ x′is) ≤ 1 and #(x′is \ xis) ≤ 1, (37)

and there exists a unique k ∈ K such that k ∈ Es and

xkis = x′kis + 1, (38)
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and there exists at most one k′ ∈ K such that k′ ∈ K \ Es and

xk
′

is = x′k
′

is − 1.

The strict monotonicity of excess demand. For each s ∈ σ, let ts ∈ [0,∞)
be such that

ps = p(ts).

Now I will show that the total quantity of goods in excess demand strictly
decreases at each step, i.e.∑

k̂∈Es+1

(Sk̂ −
∑
i∈N

x̃k̂i (ps+1,1
E
s+1)) >

∑
k̂∈Es

(Sk̂ −
∑
i∈N

x̃k̂i (ps,1
E
s )). (39)

As the prices in Es are increased from ps to ps+1, by Lemma 3, for each
i ∈ N and for all t, t′ ∈ (ts, ts+1)

Qi(p(t)) = Qi(p(t′)),

and for each t ∈ [ts, ts+1)

Qi(ps) ⊃ Qi(p(t))

and by the definition of step,

Qi(p(t)) ⊂ Qi(ps+1). (40)

Therefore, for each t ∈ (ts, ts+1)

Qi(p(t)) ⊂ Qi(ps) ∩Qi(ps+1),

and by Lemma 3
Qi(p(t)) = Qi(ps) ∩Qi(ps+1).

For each i ∈ N and for each t ∈ (ts, ts+1), by equation 40, and by the
definition of x̃i(·),∑

k̂∈Es+1

x̃k̂i (ps+1,1
E
s+1) ≤

∑
k̂∈Es+1

x̃k̂i (p(t),1Es+1). (41)

Therefore, for each t ∈ (ts, ts+1)∑
k̂∈Es+1

(Sk̂ −
∑
i∈N

x̃k̂i (ps+1,1
E
s+1)) ≥

∑
k̂∈Es+1

(Sk̂ −
∑
i∈N

x̃k̂i (p(t),1Es+1)).
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Since, by Lemma 7, for each t ∈ (ts, ts+1)∑
k̂∈Es+1

(Sk̂ −
∑
i∈N

x̃k̂i (p(t),1Es+1)) ≥
∑
k̂∈Es

(Sk̂ −
∑
i∈N

x̃k̂i (p(t),1Es ))

and ∑
k̂∈Es

(Sk̂ −
∑
i∈N

x̃k̂i (p(t),1Es )) =
∑
k̂∈Es

(Sk̂ −
∑
i∈N

x̃k̂i (ps,1
E
s ),

the following inequality holds∑
k̂∈Es+1

(Sk̂ −
∑
i∈N

x̃k̂i (ps+1,1
E
s+1)) ≥

∑
k̂∈Es

(Sk̂ −
∑
i∈N

x̃k̂i (ps,1
E
s )). (42)

Now I will show that the inequality 42 is strict.

Claim. There exists a bidder i′s ∈ N such that there does not exist x̃i′s ∈
Qi′s(ps) ∩Qi′s(ps+1) satisfying equation 8 at (ps+1,1

E
s+1).

Proof of the Claim. Suppose, on the contrary, that this is not true. Then,
for each i ∈ N there exists x̃i ∈ Qi(ps) ∩ Qi(ps+1) satisfying equation 8 at
(ps+1,1

E
s+1). Then,∑

k̂∈Es+1

(Sk̂ −
∑
i∈N

x̃k̂i (ps+1,1
E
s+1)) =

∑
k̂∈Es

(Sk̂ −
∑
i∈N

x̃k̂i ).

As ∑
k̂∈Es

(Sk̂ −
∑
i∈N

x̃k̂i (ps,1
E
s )) =

∑
k̂∈Es

(Sk̂ −
∑
i∈N

x̃k̂i ),

by inequality 42, Es = Es+1. But equation 38 implies that for each bidder is
who adds a bundle at step ts+1∑

k̂∈Es

x̃k̂is >
∑
k̂∈Es

x′k̂is (43)

because ∑
k̂∈Es

xk̂is >
∑
k̂∈Es

x′k̂is ,
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and ∑
k̂∈Es

x̃k̂is =
∑
k̂∈Es

xk̂is ,

where x′is and xis are bundles satisfying equations 36 and inequalities 37.
However, Es = Es+1 and inequality 43 imply that x̃is ∈ Qis(ps)∩Qis(ps+1)
does not satisfy equation 8 at (ps+1,1

E
s+1), a contradiction.

Therefore, there exists a bidder i′s ∈ N such that there does not exist
x̃i′s ∈ Qi′s(ps)∩Qi′s(ps+1) satisfying equation 8 at (ps+1,1

E
s+1). So, bidder i′s

adds a bundle to his demand set at ps+1, and there exists x′i′s ∈ Qi′s(ps+1)

satisfying equation 8 at (ps+1,1
E
s+1).

Hence, ∑
k̂∈Es+1

x′k̂i′s <
∑

k̂∈Es+1

x̃k̂i′s (44)

for all x̃i′s ∈ Qi′(ps) ∩Qi′(ps+1).
Inequality 44 implies that inequality 41 is strict for i′s. So, inequality 42

is strict.
The algorithm has finitely many steps. As the left side of inequality 39 is

integer and since the extended ascending algorithm terminates whenever it
is positive, there are finitely many steps.

Observe that the definition of step implies that if there is no market clear-
ing allocation at a step, then there will not be a market clearing allocation
until the next step. Therefore, the extended ascending algorithm terminates
at price vector p|σ|−1 = p(T ) = p∗ ∈ RK+ for some finite T .

The proof for the extended descending algorithm can be done analogously.

Theorem 2 (Theorem 3) shows that if the initial prices are sufficiently
low (high), then the extended ascending (descending) algorithm reaches the
lowest (highest) Walrasian equilibrium price vector of the economy in finitely
many steps.

Theorem 2. Suppose that Assumptions A1−A4 hold, and that bidders truth-
fully report their demands. Then, starting from any initial price vector of
p(0) ∈ RK+ such that p(0) ≤ p, the extended ascending algorithm reaches the
lowest Walrasian equilibrium price vector p in finite steps.
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Proof. The auctioneer asks each bidder i ∈ N his demand set xi(p(0)) ⊂
Xi at p(0). Using these demand sets, the auctioneer determines the set
E+(p(0)) ⊂ K of goods in excess demand at p(0) (see Lemma 7). Prices of
these goods in E+(p(0)) are increased continuously at the same rate while
the rest remains the same. As prices are increased, at any time t ∈ [0,∞),
if there is a bidder who adds a bundle to his demand set, then the price
adjustment stops. Each bidder i reports his demand xi(p(t)) ⊂ Xi at p(t).
The auctioneer determines the set E+(p(t)) ⊂ K of goods in excess demand
at p(t) (see Lemma 7). Prices of goods in E+(p(t)) are increased continuously
at the same rate while the rest remains the same. The extended ascending
algorithm reaches some price vector in finite steps (see Theorem 1). By
Propositions 4 and 5, the price vector the extended ascending algorithm
reaches is p, and by Proposition 1, there exists a market clearing allocation
(x∗i )i∈N such that x∗i ∈ xi(p) for each i ∈ N , provided that bidders report
their demands truthfully.

The proof of the convergence of the extended descending algorithm to the
highest Walrasian equilibrium price, Theorem 3 below, is analogous to the
proof of Theorem 2.

Theorem 3. Suppose that Assumptions A1−A4 hold, and that bidders truth-
fully report their demands. Then, starting from any initial price vector of
p(0) ∈ RK+ such that p(0) ≥ p, the extended descending algorithm reaches
the highest Walrasian equilibrium price vector p in finite steps.

A price vector p′ ∈ RK+ is a supporting price vector if there exists an
allocation x′ = (x′i)i∈N such that

∑
i∈N xi ≤ S, and for each i ∈ N , x′i ∈

Qi(p
′).

Theorem 2 imposes restrictions on the initial price vector. Theorem 4
shows that if these conditions are violated, then the extended ascending
algorithm reaches in finite steps a supporting price vector whenever bidders
report their demand sets truthfully.

Theorem 4. Suppose that Assumptions A1−A4 hold, and that bidders truth-
fully report their demand. Let p(T ) be a price vector the extended ascending
algorithm reaches at T ∈ [0,∞). Then, the extended ascending algorithm
ends at p(T ) in finite steps if and only if p(T ) is a supporting price vector.

Proof. Define a new economy by adding a fictitious bidder 0 with the con-
sumption set X0 = {x0 ∈ ZK : 0 ≤ x0 ≤ S}, and utility function U0(x0) =
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p(T ) · x0 to the economy. So, the indirect utility function of bidder 0 is
V0(p) = ((p(T )− p) ∨ 0) · S. Observe that p(T ) is a Walrasian equilibrium
price of the economy with bidder 0 if and only if p(T ) is a supporting price
vector of the economy without bidder 0. The Lyapunov function for the
economy with bidder 0 is L̃(p) = p · S +

∑n
i=0 Vi(p), and

L̃(p(T )) = p(T ) · S +
n∑
i=0

Vi(p(T ))

= p(T ) · S +
n∑
i=1

Vi(p(T )).

Since Vi(p) ≥ Vi(p(T )∨ p) for any i ∈ N ∪ {0}, L̃(p) ≥ L̃(p(T )∨ p) for any
p ∈ RK++. Now suppose that the price adjustment procedure in the economy

with bidder 0 terminates at p(T ). Then, p(T ) minimizes L̃(·). Suppose on

the contrary that there exists p ∈ RK++, p 6= p(T ), such that L̃(p) < L̃(p(T )).

Observe that L̃(p ∨ p(T )) < L̃(p(T )). So, for any δ(p) ∈ R, δ(p) > 0, there
exists p′ ∈ {p(T ) + ∆ : 0 � ∆ ≤ δ(p)K} such that p′ is a strict convex

combination of p∨p(T ) and p(T ). As, by Lemma 2, L̃(·) is a convex function,

L̃(p′) < L̃(p(T )). This contradicts to the assumption that the algorithm
terminated at p(T ).

Since p(T ) is a minimizer of L̃(·), applying Proposition 1 to L̃(·), p(T ) is
a Walrasian equilibrium price of the economy with bidder 0. Therefore p(T )
is a supporting price of the economy without bidder 0. By Theorem 1, the
price adjustment procedure converges in finite steps.

4.3 Truthful Bidding is an Ex Post Efficient Equilib-
rium

In the tâtonnement algorithm of Ausubel (2006), prices are adjusted in
discrete time and they take integer values. Ausubel (2006) converts the
tâtonnement algorithm to a continuous procedure by linearly increasing prices
between consecutive integer-valued price vectors, and uses the continuous-
time procedure to show that sincere bidding is an efficient equilibrium Ausubel’s
auction, and the procedure yields Walrasian equilibrium prices. The ex-
tended tâtonnement algorithm is also a continuous-time procedure. Observe
that the extended tâtonnement algorithm and the continuous version of the
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tâtonnement algorithm follow the same path if bidders’ values for bundles are
integer, the initial price vector is integer-valued, and the extended ascending
algorithm has a unit rate of change.

The price adjustment process can be written as

dpk(t)

dt
=

{
cE(p(t)) if k ∈ E(p(t))
0 if k /∈ E(p(t))

for all t except when t is a step, and

E(p(t)) = E+(p(t)) and cE+(p(t)) > 0

for the extended ascending algorithm, and

E(p(t)) = E−(p(t)) and cE−(p(t)) < 0

for the extended descending algorithm.
By Lemma 1 in Ausubel (2006), if p(·) is continuous and for each j ∈

N, j 6= i, any k ∈ K xkj (·), amount of good k demanded by bidder j, is
of bounded variation, then ai(T ) is well-defined. Moreover, if p(·) is also a
piecewise smooth function from [0, T ] to RK , and for each j ∈ N, j 6= i, Uj(·)
is a concave and continuous function, then by Lemma 2 in Ausubel (2006)

ai(T ) = p(0) · [S − x−i(0)]−
∑

j 6=i,j∈N

[Uj(xj(p(T )))− Uj(xj(p(0)))]. (45)

Observe that the price path induced by the extended ascending (descend-
ing) algorithm is piecewise linear and continuous. Therefore, since substitutes
preferences imply concave utility functions (see Ausubel (2006), p.617), the
conditions of Lemmas 1 and 2 in Ausubel (2006) hold. So, by Lemmas 1 and
2 in Ausubel (2006), payment function given in equation 4 is well-defined and
path-independent, and the equality 45 holds for the extended tâtonnement
algorithms. Hence, Theorems 1′ and 2′ in Ausubel (2006) hold literally (see
the discussion on p.620 Ausubel (2006)) for the extension of the Ausubel
auction proposed in this paper. As a result, starting at a sufficiently low
(high) price vector, the truthful bidding constitutes an efficient equilibrium
in the extension of Ausubel’s auction, and the extended ascending (descend-
ing) algorithm terminates at a Walrasian equilibrium price vector in finitely
many steps.
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5 Conclusion

In this paper, I extended the ascending and the descending price adjust-
ment procedures proposed in Ausubel (2006) to real-valued quasilinear util-
ity functions. I show that these extended procedures converge to a Walrasian
equilibrium price vector in finite steps. Unlike the tâtonnement algorithm in
Ausubel (2006), the extended tâtonnement algorithm does not require any
information on bidders’ when bidders’ values for bundles real.
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