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We report that Co0.1Ti0.9O2−d prepared by the sol-gel technique is a paramagnet following the
Curie–Weiss law: x=x0+C/ sT+ud with u.5 K. However, hydrogenation at 673 K in
H2/Ar s5% /95%d gas converts a part of the paramagneticsPd sample to room temperature
ferromagnetsRTFMd and reheating the sample at 573 K in air converts it back to a paramagnet
completely. This reversibleP�RTFM transition has been observed for additional cycles by
alternately heating in air and H2/Ar. It is argued that this RTFM is intrinsic and it is due to
Co2+–Co2+ exchange interaction mediated by oxygen holes which are produced by hydrogenation
but eliminated by oxidation. ©2005 American Institute of Physics. fDOI: 10.1063/1.1854931g

Reports of RTFMsroom temperature ferromagnetismd in
thin films of CoxTi1−xO2−d in 2001 by Matsumotoet al.1 has
aroused a great deal of interest as to the nature of the FM
state since the FM state has been observed even forx=0.01.
Soon after, Chamberset al.2 reported RTFM in both epitaxial
and polycrystalline Co-doped TiO2 sanatased films, followed
by Park et al.3 and Matsumotoet al.4 reporting RTFM in
Co-doped TiO2 srutiled films. More recent studies of these
films by Punnooseet al.5 using careful temperature depen-
dence studies of magnetic behavior for differentx values, by
EMR selectron magnetic resonanced studies of Rameevet
al.6 and by Kimet al.7 have shown that RTFM is most likely
due to metallic Co nanoparticles. The controversy, however,
is not yet completely resolved since the group of Shutthanan-
dan et al.8 have recently reported RTFM in ion-implanted
Co-doped TiO2 srutiled films with x.0.02 without any evi-
dence for the presence of metallic Co0 state. Theoretically,
Park et al.9 proposed a model of RTFM in CoxTi1−xO2−d

sRef. 9d in which oxygen holes near Co can provide the
necessary exchange coupling between Co2+ ions, leading to
intrinsic RTFM.

In recent studies, we have taken somewhat different ap-
proaches to the synthesis of Co-doped TiO2 samples. In one
study,10 thin films of Co/TiO2 sanatased prepared by spray
pyrolysis were found to be paramagnetic in that the magnetic
susceptibility followed the Curie–Weiss law:x=x0+C/ sT
+ud with u.5 K and the magnitude of C consistent with the
Co2+ state. Only forT,5 K, some deviations from the para-
magnetism were observed. In a more recent study,11 we pre-
pared Co0.1Ti0.9O2−d sanatased powder by the sol-gel tech-
nique and found it to be paramagnetic in the 2–370 K range
with m=4.1 mB for the Co2+ ion. This is consistent with the
high spin state of the Co2+ ion which substitutes for Ti4+

ions, with the balance of the charge compensated by O2−d.
We also showed that this sample, when hydrogenated at 573
K in pure H2 gas, acquires RTFM withTc.470 K.

Here we report that this acquired RTFM in the hydro-
genated sample is reversible to paramagnetismsPd if the

sample is reheated in airsoxygend at 573 K. Subsequent
hydrogenation at 673 K produces RTFM again, confirming
the reversible nature of FM�P state. We also report EMR
selectron magnetic resonanced studies of these samples
which confirm an EMR line due to the Co2+ state in theP
state and a broad EMR line in the FM state. Details of these
results and their discussions are presented below.

The procedures for the synthesis of the sol-gel samples
of Co0.1Ti0.9O2−d are described in our recent paper.11 For hy-
drogenation experiments, we followed a slightly different
procedure in that hydrogenation was carried out in a
H2/Ar s5% /95%d mixture using a thermogravimetric
analysis microbalance by maintaining the pelleted sample
temperature at 673 K for 5 hsthe H2/Ar mixture is safer to
handle than pure H2d. After hydrogenation, the sample was
cut into two pieces and one piece was reheated in air at 673
K for 6 h. After completing magnetic studies on this reheated
sample, this sample was rehydrogenated using the same pro-
cedure. Here we present data on these three samples: sample
1 sfirst hydrogenationd; sample 2 sreheated in aird; and
sample 3srehydrogenationd. Studies reported here include
room temperature x-ray diffractionsXRDd using CuKa ra-
diation with l=0.15418 nm, temperaturesTd, and magnetic
field sHd dependence of the magnetizationM and the mag-
netic susceptibilityx=M /H using a commercial supercon-
ducting quantum interference device magnetometer and
EMR studies at 5 K and frequencyf =9.28 GHz using a con-
ventional spectrometer.

In Fig. 1 the room temperature XRD patterns of samples
1, 2, and 3 described above are shown. Although anatase is
the dominant phase, small amounts of the rutile and brookite
phase of TiO2 are also present. The room temperatureM
versusH variations for the samples 1 and 2 are shown in Fig.
2, with the inset showing the full hysteresis-loop for sample
3 whose magnetization is much larger than that of sample 1
obtained after first hydrogenation. It is evident that hydro-
genated samples 1 and 3 have a FM component although to
different degrees whereas sample 2 obtained by heating
sample 1 in air is completely paramagnetic just like the par-
ent sample discussed in detail in Ref. 11. The larger value ofadElectronic mail: amanivan@wvu.edu
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M for sample 3sas compared to sample 1d is most likely due
to its more complete hydrogenation because of smaller size,
i.e., a large fraction of sample 3 has undergone transforma-
tion to the FM state. On the other hand, only a small fraction
smainly surfaced of sample 1 is ferromagnetic, the rest being
still paramagnetic. This is evident from theM versusH data
of Fig. 3 taken at 5 and 300 K in which the higherH linear
behavior is due to theP component.

To establish the paramagnetic nature of the reheatedsin
aird sample 2, we show itsx versusT variation in Fig. 4, with
the inset showing theM versusH variations at 300 and 2 K.
The x-T variation fits the Curie–Weiss lawssolid lined with
C=1.76310−3 emu K/g Oe,x0=4.55310−6 emu/g Oe and
u=5 K, quite similar to the behavior of the parent sol-gel
prepared sample discussed in Ref. 11. The non-linearM ver-
sus H curve of Fig. 4 at 2 K, without the presence of a
hysteresis, is characteristic of the Brillouin-type variation ex-

pected for a paramagnet,12 although the data does not quite
fit the Brillouin functionsnot shownd possibly because of the
presence of strong Co2+–Co2+ exchange interaction forT
,5 K.

To obtain additional information on the nature of the
electronic state of Co in samples 1, 2, and 3, we carried out
EMR studies at 5 K for the three samples. The observed
EMR spectra are shown in Fig. 5, along with the data taken
in Co doped with MgO and 1%Co/TiO2 prepared by the
sol-gel technique. For the 1%Co/MgO sample, the eight line
hyperfine structure centered aroundg=4.3 sg=hf/mBHd due
to Co2+ is clearly evident.13 For 1%Co/TiO2, we observe a
similar eight-line patters clearly showing the presence of
Co2+ ion. For samples 1 and 2, theg=4.3 line is still present,

FIG. 1. Room temperature XRD patterns of sample 1shydrogenatedd,
sample 2sheated in aird, and sample 3srehydrogenatedd. The expected po-
sitions of the Bragg lines for the three forms of TiO2 are shown.

FIG. 2. M vs H plots at 300 K for the three samples. The inset shows the
M-H plot of sample 3.

FIG. 3. M-H plot of sample 1 at 300 and 5 K, with the inset showing the full
loop at 5 K.Hc is the coercivity.

FIG. 4. Temperature variation of the magnetic susceptibilityx for sample 2.
The solid line is fit to the Curie–Weiss law:x=x0+C/ sT+ud with C
=1.76310−3 emu K/g Oe,x0=4.55310−6 emu/g Oe andu=5 K. The inset
shows theM vs H variations at 300 and 2 K.
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although considerably broadened and without the hyperfine
structure; the latter effects being due to the strong Co2+–Co2+

interaction present because of the highers10%d Co doping of
these samples. For sample 3, which was nearly completely
hydrogenated as evident from its largerM, we observed a
very broad line superposed on which is the weakerg=4.3
line. The additional weaker EMR lines observed in these
samples are not yet identified, except the line marked with an
asterisk which is due to the background signal from the
quartz sample holder. As the temperature of the samples are
increased above 5 K, theg=4.3 line becomes weaker disap-
pearing completely above 40 K. This is understandable in
terms of the faster relaxation time of Co2+ at higher
temperatures.13

Why does hydrogenation produce RTFM whereas heat-
ing in air restores the paramagnetic state? This can be ex-
plained if heating in H2 extracts oxygen from the sample,

producing oxygen holes. These oxygen holes can then pro-
vide the necessary exchange coupling between the Co2+ ions,
leading to the FM state, as suggested by the calculations of
Parket al.9 Is the FM state due to Co0 nanoparticles which
are not easily detected by XRD? If Co0 nanoparticles were
present, their oxidation should lead to CoO and Co3O4 both
of which will show a linearM versusH variation at room
temperature, similar to paramagnetism. However, both CoO
sRef. 14d and Co3O4 sRef. 15d are antiferromagnets with
Néel temperaturesTN=290 and 40 K, respectively. There-
fore, in thex versusT variations, peaks at their respective
TN’s should have been observed in Fig. 4. The absence of
these peaks suggests the absence of CoO and Co3O4 and
consequently Co0. Therefore, based on the evidence pre-
sented in this article, we are led to conclude that RTFM in
our hydrogenated samples prepared by the sol-gel technique
is not due to Co0 but it is intrinsic in nature, confirming the
model of Parket al.9 and in line with the recent results of
Shutthanandanet al.8 in Co-implanted TiO2 films.
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FIG. 5. EMR spectra at 5 K of the various samples shown. The line atg
=4.3 is due to Co2+ and the line marked with an asterisk is due to an
impurity in the sample holder tube.
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