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Abstract

A configuration of pebbles on the vertices of a graph is solvable

if one can place a pebble on any given root vertex via a sequence

of pebbling steps. A function is a pebbling threshold for a sequence

of graphs if a randomly chosen configuration of asymptotically more

pebbles is almost surely solvable, while one of asymptotically fewer

pebbles is almost surely not. In this paper we tighten the gap between

the upper and lower bounds for the pebbling threshold for the sequence

of paths in the multiset model. We also find the pebbling threshold for

the sequence of paths in the binomial model. Finally, we show that the

spectrum of pebbling thresholds for graph sequences in the multiset

model spans the entire range from n
1/2 to n, answering a question of

Czygrinow, Eaton, Hurlbert and Kayll. What the spectrum looks like

above n remains unknown.
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1 Introduction

Let G = (V, E) be a connected graph on n vertices and let D be a configura-
tion of t unlabeled pebbles on V (formally D is multiset of t elements from
V , with D(v) the number of pebbles on vertex v). A pebbling step consists of
removing two pebbles from a vertex v and placing one pebble on a neighbor
of v. A configuration is called r-solvable if it is possible to move at least one
pebble to vertex r by a sequence of pebbling steps. A configuration is called
solvable if it is r-solvable for every vertex r ∈ V . The pebbling number of G is
the smallest integer π(G) such that every configuration of t = π(G) pebbles
on G is solvable. Pebbling problems have a rich history and we refer to [6] for
a thorough discussion. Standard asymptotic notation will be used in the pa-
per. For two functions f = f(n) and g = g(n), we write f ≪ g (or f ∈ o(g))
if f/g approaches zero as n approaches infinity, f ∈ O(g) (f ∈ Ω(g)) if there
exist positive constants c, k such that f < cg (f > cg) whenever n > k. In
addition, f ∈ Θ(g) when f ∈ O(g) and g ∈ O(f). We will also use f ∼ g if
f/g approaches 1 as n approaches infinity. Finally to simplify the exposition
we shall always assume, whenever needed, that our functions take integer
values.

We will be mainly interested in the following random model considered
in [2]. A configuration D of t pebbles assigned to G is selected randomly and
uniformly from all

(

n+t−1
t

)

configurations. The problem to investigate, then,
is to find what values of t, as functions of the number of vertices n = n(G),
make D almost surely solvable. More precisely, a function t = t(n) is called a
threshold of a graph sequence G = (G1, . . . , Gn, . . .), where Gn has n vertices,
if the following conditions hold as n tends to infinity:

1. for t1 ≪ t the probability that a configuration of t1 pebbles is solvable
tends to zero, and

2. for t2 ≫ t the probability that a configuration of t2 pebbles is solvable
tends to one.

We denote by τM(G) the set of all threshold functions of G in the multiset
model. It is not immediately clear, however, that τM(G) is nonempty for all
G. Nonetheless it is proven to be the case in [1]. In this paper, we will study
thresholds in the case when G is the family of paths. First let us note that
the pebbling number of a path on n vertices is equal to 2n−1. However, most
of the configurations on t pebbles with t much smaller than 2n−1 will still be
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solvable and so not surprisingly the threshold of the family of paths is much
smaller than 2n−1. Let P = (Pn)∞n=1 be the sequence of paths. In [1] it is
showed that

τM(P) = O(n22
√

lg n) (1)

and
τM(P) = Ω(n2c

√
lg n) (2)

for any constant c < 1/
√

2. The upper bound (1) was improved by Godbole,
et al. [5], to

τM(P) = O(n2C
√

lg n) (3)

for any constant C > 1. Our main result of the paper improves the lower
bound from [1], showing a lower bound which almost matches the upper
bound from [5].

Theorem 1 Let P = (Pn)∞n=1 be the sequence of paths. For any δ > 0, let
w = (1 − δ)

√
lg n. Then τM(P) = Ω (n2w).

Clearly the random pebbling model from [2] is only one of many that can
be considered. In particular, if pebbles are distinguishable and each of them
selects independently at random a vertex to be placed on then we obtain a
completely different model, which we call the binomial model. We can define
the threshold τB(G) in this model in the same way that τM(G) is defined for
the multinomial model. Then it is easy to see that τB(P) = O(n lnn) (since
the probability that every vertex contains a pebble tends to 1) but in fact
the threshold is slightly smaller.

Theorem 2 Let P = (Pn)
∞
n=1 be the sequence of paths. Then

τB(P) =

(

1

2
+ o(1)

)

n
ln n

lg ln n
.

It turns out that to prove Theorem 1 it is convenient to consider one more
model, the geometric one. In this model each vertex on a path generates the
number of pebbles that it contains according to the geometric distribution
with p = t/(t + n), where t is some function of n — that is, the probability
that exactly C pebbles sit on a fixed vertex equals pC(1 − p). Conveniently,
the geometric model can be used to approximate the multinomial one from
[2]. It is this observation that allows us to generalize the technique from [1]
and prove a better lower bound.
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The rest of the paper is organized as follows. We prove Theorem 1 in
Section 2, and in Section 3 we show Theorem 2. Finally, Section 4 is devoted
to investigating which functions t = t(n) can be pebbling thresholds in the
multiset model for some sequence of graphs. In particular, we verify the
following conjecture posed in [2].

Conjecture 3 For every Ω(n1/2) ∋ t1 ≪ t2 ∈ O(n) there exists a graph
sequence G = (G1, . . . , Gn, . . .) such that τM(G) ⊂ Ω(t1) ∩ O(t2).

Let m be an positive integer, P = {v1, v2, . . . vm} and, S = {vm+1, . . . , vn}.
Consider the graph Bm,n = (V, E), where the set of vertices V = P∪S and the
set of edges E is defined as follows: for every i = 1, . . . , m− 1, {vi, vi+1} ∈ E
and for i = m + 1, . . . , n, {vi, vm} ∈ E. In other words Bm,n is a path on
m vertices with the center of a star on n − m + 1 vertices identified with
one of its endpoints. (These graphs are called brooms in [4], with handle P
and bristles S.) Finally, for m a function of n, define the graph sequence
Bm = (Bm,1, . . . , Bm,n, . . .).

Theorem 4 Let ǫ = ǫ(n) > 1/2 be any function such that nǫ ≪ n. Then for
m = (2ǫ − 1) lg n we have τM(Bm) = Θ(nǫ).

Note that Theorem 4 implies Conjecture 3. Indeed, for given t ∈ Ω(t1) ∩
O(t2) it is enough to consider Bm with m = lg t2

n
.

2 Paths in the multinomial model

In this section, we will prove Theorem 1. As mentioned in the introduction,
it is convenient to introduce a different probabilistic pebbling model. For
t = t(n), in the geometric model the number of pebbles on a vertex v has
the geometric distribution with probability p = t/(t + n) and the random
variables are independent. Therefore,

PrG[D(v) = C] =

(

t

t + n

)C (
n

t + n

)

,

where C = 0, 1, . . .. On the other hand in the multinomial model, we have

PrM[D(v) = C] =

(

t+n−C−2
t−C

)

(

t+n−1
t

)
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and the random variables are dependent. Let Fi denote the event that
D(vi) = Ci.

Lemma 5 Let w = w(n) and let t = n2w. If k ≪ √
n and k +

∑k
i=1 Ci ≪

n22w then
PrM[∧k

i=1Fi] = (1 + o(1))PrG[∧k
i=1Fi] .

Proof. We will prove the lower bound. The upper bound can be proved in
a similar way. First define Sk =

∑k
i=1 Ci and note that

PrM[∧k
i=1Fi] =

(

t+n−1−k−Sk

t−Sk

)

(

t+n−1
t

) . (4)

Further, by repeatedly using the inequality a
b
≥ a−1

b−1
for 0 < a < b, we can

bound the right hand side of (4) as follows

PrM[∧k
i=1Fi] ≥

(

t − (k + Sk)

t + n − (k + Sk)

)Sk
(

n − k

t + n − k

)k

.

Therefore,

PrM[∧k
i=1Fi] ≥ e−(k+Sk)2n/t2−k2/n

(

t

t + n

)Sk
(

n

t + n

)k

= (1 − o(1))

(

t

t + n

)Sk
(

n

t + n

)k

.

2

Let Li denote the event that D(vi) ≤ Ci.

Corollary 6 Let w = w(n) and let t = n2w. If k ≪ √
n and k +

∑k
i=1 Ci ≪

n22w then
PrM[∧k

i=1Li] = (1 + o(1))PrG[∧k
i=1Li] .

2

In the argument from [1] the authors consider blocks on a path and use
the second moment method to prove that at least one of the blocks is empty.
We need a natural generalization of an empty block. Let m = 2(a + w)
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and consider a contiguous block of m vertices B = {u1, . . . , um}. Let k
be a positive integer such that k|w. We define an (a, k)-partition of B by
Π = {A, J0, . . . , Jk−1}, where vj ∈ A if and only if |(a + w + 1/2) − j| < a,

and vj ∈ Ji if and only if a+ iw
k

< |(a+w+1/2)− j| ≤ a+ (i+1)w
k

(see Figure
1). The block B is called an (a, k)-bowl for the configuration D if

• D(v) = 0 for v ∈ A , and

• D(v) ≤ Ci for v ∈ Ji, where Ci = 2iw/k for 0 ≤ i < k.

We define E(a, k) to be the event that the block B is an (a, k)-bowl.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

a+w+0.5

Figure 1: (a, k)-bowl.

Lemma 7 Let 0 < δ < 1 and w = (1 − δ)
√

lg n. In addition let k be a
positive integer such that k ≥ (1 − δ)/δ and let a ≪ w. Then if t = n2w

pebbles are distributed in the multiset model then PrM[E(a, k)] = Ω(n−1+δ/2).

Proof. By Corollary 6, PrM[E(a, k)] = (1 + o(1))PrG[E(a, k)]. In the
geometric model,

PrG[D(v) ≤ C] = 1 −
(

t

t + n

)C+1

. (5)

As (1 − a)l ≤ 1 − la + l2a2 for nonnegative integer l and 0 < a < 1,

PrG[D(v) ≤ C] = 1 −
(

1 − n

t + n

)C+1

≥ (C + 1)n

t + n

(

1 − (C + 1)n

t + n

)

,

7



and for C = 2(1−α)w with 0 < α < 1, one gets

PrG[D(v) ≤ C] ≥ 1

2αw+1
, (6)

In addition, for C = 0,

PrG[D(v) ≤ 0] =
n

n + t
. (7)

Combining (6) and (7) with the independence of the D(v)’s in the geometric
model shows that PrG[E(a, k)] is at least

(

n

t + n

)2a k−1
∏

i=0

2−2((1−i/k)w+1)w/k . (8)

We can further simplify (8) to get that the above probability is at least

(

n

t + n

)2a

2−
Pk−1

i=0
2((1−i/k)w+1)w/k (9)

=

(

n

t + n

)2a

2−2(wk−(k−1)w/2+k)w/k

=

(

n

t + n

)2a

2−((1+1/k)w2+2w) .

Since
(

n
t+n

)2a
= Θ (2−2aw), we have

PrG[E(a, k)] = Ω
(

2−w2(1+1/k)−2w(1+a)
)

.

But a ≪ w and w = (1 − δ)
√

lg n, so by the assumption on k

PrG[E(a, k)] = Ω
(

n−1+δ2−2w(1+a)
)

≥ n−1+δ/2 ,

since 2w(1 + a) < (δ lg n)/2 for large enough n. 2

Let a = lg k + lg ln n + 2 where k ≥ (1 − δ)/δ. With m = 2(a + w)
we partition the path on n vertices into ⌊n/m⌋-blocks B1, . . . , Bn/m, each of
length m, and the final block B∞ of the remaining n mod m vertices. We
show that with probability tending to one there is a block which is an (a, k)-
bowl. To that end let Xi = 1 if Bi is an (a, k)-bowl and Xi = 0 otherwise.
We will need the following correlation inequality.
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Lemma 8 For i 6= j,

E[XiXj] ≤ E[Xi]E[Xj] .

As our proof requires tedious but trivial computations we will present it in
the appendix.

Lemma 9 If X =
∑⌊n/m⌋

i=1 Xi then PrM[X = 0] → 0.

Proof. First observe that by Lemma 7.

E[X] = Ω

(

n

2(a + w)
n−1+δ/2

)

= Ω

(

nδ/2

2(a + w)

)

→ ∞ .

Since E[XiXj ] ≤ E[Xi]E[Xj], by Lemma 8, the second moment method
applies. Consequently PrM[X = 0] → 0. 2

The next lemma shows that with large probability every vertex will have
at most t(ln n)/n pebbles in the multiset model.

Lemma 10 Let α > 0 and let C = (1 + α)( t
n
) lnn, with t = n2w as above.

Then
PrM[∃vD(v) ≥ C] → 0 .

Proof. For fixed v,

PrM[D(v) ≥ C] =

(

t+n−2−C
t−C

)

(

t+n−1
t

) ≤
(

t

t + n

)C

.

Therefore, the probability that there is a vertex v with D(v) ≥ C is at most

n

(

t

t + n

)C

≈ eln n−Cn/(t+n) → 0 .

2

Finally, we can show that it is not possible to pebble to the middle vertex
of a (a, k)-bowl. Indeed, suppose Bj is a block which is a (a, k)-bowl. If
V (Bj) = u1, . . . um then let u = uw and v = uw+2a+1. We show that we
cannot accumulate too many pebbles on u and on v.
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Lemma 11 With probability tending to one (in the multiset model), we can
accumulate on each of u and v at most 2k + 4 lnn pebbles.

Proof. Consider the vertex u (the proof for v is identical). By the definition
of an (a, k)-bowl and by Lemma 10, we can accumulate at most

1 +
k−1
∑

i=0

∑

j≥iw/k

2iw/k

2j
+ 2 lnn

∑

j≥w

t

n2j

pebbles on u. This quantity is at most 2k + 4 lnn, since t = n2w. 2

2.1 Proof of Theorem 1

By Lemma 7, with large probability, there is a block Bj on m = 2(a + w)
vertices that is an (a, k)-bowl. If V (Bj) = u1, . . . um and u = uw, v = uw+2a+1

then by Lemma 11, we can accumulate at most 2k + 4 lnn pebbles on each
u and v. However, a = lg k + lg ln n + 2, and so a > lg (2k + 4 lnn) when
δ < 1/2 (which we may assume is the case). Thus it is not possible to pebble
to one of the middle vertices (uw+a) of Bj . 2

3 Proof of Theorem 2

The proof follows the lines of path threshold proof in [1]. We will need
the following two Chernoff tail bounds for the tails of random variable with
binomial distribution Bi[m, p].

Lemma 12 If X ∈ Bi[m, p] then for 0 < δ < 1 we have

Pr[X < (1 − δ)E[X]] ≤
(

e−δ

(1 − δ)(1−δ)

)E[X]

.

Lemma 13 If X ∈ Bi[m, p] then for C ≥ 7E[X] we have

Pr[X ≥ C] ≤ e−C .

10



3.1 Theorem 2 Lower Bound

To prove the lower bound, fix α > 2 and let t = n ln n
α lg ln n

. Let 2 < β <

α and partition path Pn into n/k blocks B1, . . . Bn/k each of length k =
β lg ln n. (Here we assume that k divides n by otherwise throwing away
n mod k vertices from the end.) Let Yj be equal to one if the jth block has
no pebbles, and zero otherwise. Then

PrB[Yj = 1] =

(

1 − k

n

)t

≈ e−kt/n , (10)

and so the expected number of empty blocks is

E





n/k
∑

j=1

Yj



 ≈ n

k
e−kt/n → ∞ . (11)

Also, for j 6= i we have E[YjYi] < E[Yj]E[Yi], and so the second mo-
ment method applies: PrB [Y = 0] ≤ Var [Y ] /E[Y ]2 ≤ 1/E[Y ], where

Y =
∑n/k

j=1 Yj. Consequently,

PrB





n/k
∑

j=1

Yj > 0



 → 1 . (12)

For a vertex v, the number of pebbles on v, D(v) has binomial distribution
Bi[t, 1/n] with E[D(v)] = t/n = ln n

α lg lnn
. Thus, by Lemma 13

PrB[D(v) ≥ (lnn)β/2/2] ≤ e−(ln n)β/2/2 . (13)

Hence, with probability tending to one, all vertices v will have D(v) <
1
2
(ln n)β/2. Then (12) implies that there is a block Bj with no pebbles. The

number of pebbles that can be accumulated on each of the endpoints of Bj

is at most
∑

j≥0

D(vj)

2j
< (ln n)β/2 .

Because we have 2k/2 = (ln n)β/2, it is not possible to pebble to the middle
vertex of Bj . ⋄
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3.2 Theorem 2 Upper Bound

Consider the path v1, v2, . . . , vn. Fix 0 < ǫ < 0.5 and let t =
(

1
2

+ ǫ
)

n lnn
lg ln n

.
In addition let δ < 1 be a positive number such that

e−δ

(1 − δ)(1−δ)
≤ e−(1−ǫ/2) . (14)

We will also assume that n is sufficiently large whenever needed. Let k =
lg ln n − lg lg ln n + lg (1 − δ) − 1 and let A be the event that at least one
of the vertices from {v1, . . . , vk, vn, . . . , vn−k+1} has zero pebbles. Clearly,
P (A) ≤ 2k(1 − 1/n)t ∼ 2ke−t/n → 0. For vi with k < i < n − k let B(i)
denote the block vi−k+1, . . . , vi, . . . , vi+k−1 of length 2k − 1 and let T (i) be
the number of pebbles in B(i). Then T (i) ∈ Bi[t, 2k/n] and in particular

E[T (i)] = t

(

2k

n

)

= (1 + 2ǫ)
k lnn

lg ln n
. (15)

Consequently, we have

(1 + ǫ) ln n ≤ E[T (i)] ≤ (1 + 2ǫ) ln n . (16)

We apply Lemma 12 with δ defined in (14) to conclude that

PrB [T (i) < (1 − δ) ln n] ≤ PrB [T (i) < (1 − δ)E[T (i)]] (17)

≤ e−(1−ǫ/2)(1+ǫ) ln n . (18)

The right-hand side of (18) is less than or equal to e−(1+ǫ/4) lnn = 1/n1+ǫ/4.
Hence, the probability that there is a vertex vi such that T (i) < (1 − δ) lnn
goes to zero. In addition, observe that (2k − 1)2k ≤ (1 − δ) lnn and so with
probability tending to one for every i, T (i) ≥ (2k − 1)2k. Thus there is a
vertex v in B(i) such that D(v) ≥ 2k, and so we can place at least one pebble
on vi. ⋄

This completes the proof of Theorem 2. 2

4 Proof of Theorem 4

We return to the multiset model and divide the argument into two propo-
sitions. In the first one we show the upper bound, and in the second we
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show the lower bound. Let Bm,n = (P ∪ S, E) be a broom, as defined in the
introduction. Assume that t ≪ n and let D be a configuration of t pebbles
on B. Since D(v1) + D(v2) + . . .D(vn) = t, we have the expectation

E[D(vi)] =
t

n
. (19)

First, for a fixed vertex v and i ≥ 1, we compute the probability

PrM[D(v) = i] =

(

n+t−i−2
t−i

)

(

n+t−1
t

) .

We next compute

(

n + t − i − 2

t − i

)

=

[(

t − i + 1

n + t − i − 1

)

· · ·
(

t

n + t − 2

)](

n + t − 2

t

)

=

[(

t − i + 1

n + t − i − 1

)

· · ·
(

t

n + t − 2

)](

n − 1

n + t − 1

)(

n + t − 1

t

)

.

This yields

(

n − 1

n + t − 1

)(

t − i

n + t − i − 2

)i(
n + t − 1

t

)

≤
(

n + t − i − 2

t − i

)

≤
(

t

n

)i(
n + t − 1

t

)

.

Therefore,

(

n − 1

n + t − 1

)(

t − i

n + t − i − 2

)i

≤ Pr[D(v) = i] ≤
(

t

n

)i

. (20)

Proposition 14 Let ǫ = ǫ(n) ≤ 1 and let ω = ω(n) → ∞ be such that
t = ω(n)nǫ ≪ n. Let m = (2ǫ − 1) lg n and let C be a random configuration
of t pebbles on Bm,n. Then

PrM[D is solvable] → 1

as n→∞.
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Proof. Let Bm,n = (P ∪ S, E), where m = (2ǫ − 1) lg n, P = {v1, . . . , vm}
and S = {vm+1, . . . , n}. Let L2 = {v | D(v) = 2} and consider X = |S ∩L2|.
Then X =

∑n
i=m+1 Xi, where Xi = 1 if and only if D(vi) = 2. By (20),

E[X] ≤ |S|
(

t

n

)2

and

E[X] ≥ |S|
(

n − 1

n + t − 1

)(

t − 2

n + t − 2

)2

.

Since t ≪ n, we have

E[X] ∼ (n − (2ǫ − 1) lg n)(ω(n)nǫ−1)2 ∼ ω(n)2n2ǫ−1 . (21)

Recall that vm denotes the center of the set S. We shall show that Pr[X ≥
n2ǫ−1] → 1. Then we can accumulate n2ǫ−1 pebbles on vm, and since m =
(2ǫ − 1) lg n we can pebble from vm to any other vertex of Bm,n. Indeed,

σ2
X = E[X2] − E[X]2 =

n
∑

i=m+1

E[X2
i ] +

∑

i6=j

E[XiXj] − E[X]2 ,

and since E[XiXj ] ≤ E[Xi]E[Xj ] we obtain

σ2
X ≤

n
∑

i=m+1

E[Xi] = E[X] .

Using (21), we have Pr[X < n2ǫ−1] ≤ Pr[ |X − E[X]| > E[X]/2 ], which by
Chebyshev’s inequality is at most

4

E[X]
→ 0 .

2

Proposition 15 Let 1/2 < ǫ = ǫ(n) ≤ 1 and ω = ω(n) → ∞. Let t = ⌊nǫ

ω
⌋

and m = (2ǫ − 1) lg n and let D be a random configuration of t pebbles on
Bm,n. Then

PrM[D is solvable] → 0

as n approaches infinity.
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Proof. Let Bm,n = (P ∪ S, E), where m = (2ǫ − 1) lg n, P = {v1, . . . , vm}
and S = {vm+1, . . . , vn}. Set Li = {v | D(v) = i} . Then E[|Li∩S|] ≤ |S|( t

n
)i

and so

E[|Li ∩ S|] ≤ n − (2ǫ − 1) lg n

[ωn1−ǫ]i
. (22)

Let A be the number of pebbles that can be accumulated on vm using the
pebbles assigned to vertices from S. Then

E[A] = E[|S ∩L2|] + E[|S ∩L3|] + 2E[|S ∩L4|] + . . . ⌊ t

2
⌋E[|S ∩Lt|] . (23)

Using (22) we can bound E[A] from above by

E[A] <
n − (2ǫ − 1) lg n

[ωn1−ǫ]2

∑

k≥0

(k + 1)

[ωn1−ǫ]k
(24)

<
2(n − (2ǫ − 1) lg n)

[ωn1−ǫ]2
(25)

<
2n2ǫ−1

ω2
. (26)

Define the following random variable

Y =
m−1
∑

k=0

D(vk+1)

2k
+

A

2m−1

and note that Y ≥ 1 if and only if D is v1-solvable. Then by (19)

E[Y ] ≤ 2

n1−ǫω
+

E[A]

2m−1
,

and by (24-26)

E[Y ] <
2

n1−ǫω
+

n2ǫ−1

ω22m−2
=

2

n1−ǫω
+

4

ω2
→ 0 .

Therefore, by Markov’s inequality,

Pr[Y ≥ 1] ≤ E[Y ] → 0 .

2

Proof of Theorem 4. By Proposition 14 and Proposition 15, for m =
(2ǫ − 1) lg n,

τM(Bm,n) = Θ(nǫ) .

2
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5 Appendix

In this section we will give a proof of Lemma 8.

Proof of Lemma 8. Let l = 2(a + w), C =
∑l

i=1 Ci, C̄ =
∑l

i=0 C̄i and
recall that t = n2w, w = (1 − δ)

√
lg n, a = lg k + lg ln n. It is enough to

prove that, for distinct vertices v1, . . . vl, w1, . . . , wl and for C ≤ 2w+2 and
C̄ ≤ 2w+2, we have

PrM[∧l
i=1(D(vi) = Ci) ∧l

i=1 (D(wi) = C̄i)] ≤

PrM[∧l
i=1(D(v1) = C1)]PrM[∧l

i=1(D(wi) = C̄i)] .

Also,

PrM[∧l
i=1(D(vi) = Ci) ∧l

i=1 (D(wi) = C̄i)] =

(

t+n−1−2l−C−C̄
t−C−C̄

)

(

t+n−1
t

) ,

PrM[∧l
i=1(D(v1) = C1)] =

(

t+n−1−C−l
t−C

)

(

t+n−1
t

)

and

PrM[∧l
i=1(D(wi) = C̄i)] =

(

t+n−1−C̄−l
t−C̄

)

(

t+n−1
t

) .

Therefore it is enough to prove that
(

t + n − 1 − 2l − C − C̄

t − C − C̄

)(

t + n − 1

t

)

≤

(

t + n − 1 − C − l

t − C

)(

t + n − 1 − C̄ − l

t − C̄

)

,

which can be re-written as
(

t+n−1
t

)

(

t+n−1−C−l
t−C

) ≤
(

t+n−1−C̄−l
t−C̄

)

(

t+n−1−2l−C−C̄
t−C−C̄

)
. (27)

The left-hand side of (27) is equal to
(

l−1
∏

i=0

t + n − 1 − i

n − 1 − i

)(

C−1
∏

j=0

t + n − 1 − l − j

t − j

)

16



and the right-hand side equals

(

C−1
∏

j=0

t + n − 1 − C̄ − l − j

t − C̄ − j

)(

l−1
∏

i=0

t + n − 1 − C − C̄ − l − i

n − 1 − l − i

)

.

Clearly, for any j as above, we have

t + n − 1 − l − j

t − j
≤ t + n − 1 − C̄ − l − j

t − C̄ − j
.

In addition, since n(C + C̄) ≪ lt, for any i as above we have

t + n − 1 − i

n − 1 − i
≤ t + n − 1 − C − C̄ − l − i

n − 1 − l − i
.

The result follows. 2
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[4] P. Erdős, R.J. Faudree and R.H. Schelp, Ramsey numbers for brooms,
Congr. Numer. 35 (1982), 283–293.

[5] A. Godbole, M. Jablonski, J. Salzman and A. Wierman, An improved
upper bound for the pebbling threshold of the n-path, Discrete Math. 275

(2004), 367–373.

[6] G.H. Hurlbert, A survey of graph pebbling, Congress. Numer. 139

(1999), 41–64.

17


