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Abstract

The pebbling number of a graph is the smallest number t such that

from any initial configuration of t pebbles one can move a pebble to

any prescribed vertex by a sequence of pebbling steps. It is known

that graphs whose connectivity is high compared to their diameter have

pebbling number as small as possible. We will use the above result to

prove two related theorems. First, answering a question of the second

author, we show that there exist graphs of arbitrarily high constant girth

and least possible pebbling number. In the second application, we prove

that the product of two graphs of high minimum degree has pebbling

number equal to the number of vertices of the product. This shows

that Graham’s product conjecture is true in the case of high minimum

degree graphs. In addition, we consider a probabilistic variant of the

pebbling problem and establish a pebbling threshold result for products

of paths. The last result shows that the sequence of paths satisfies the

probabilistic analog of Graham’s product conjecture.
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1 Introduction

1.1 Pebbling

A pebbling configuration C on a graph G is a distribution of pebbles on the
vertices of G. Given a particular configuration, one is allowed to move the
pebbles about the graph according to this simple rule: if two or more vertices
sit at vertex v, then one of them can be moved to a neighbor provided another
is removed from v. Given a specific root vertex r, we say that C is r-solvable
if one can move a pebble to r after a finite number of pebbling steps, and that
C is solvable if it is r-solvable for every r. The pebbling number is the least
number π = π(G) so that every configuration of π pebbles on G is solvable.

The two most obvious pebbling facts are for complete graphs and paths.
The pigeonhole principle implies that π(Kn) = n, and π(Pn) = 2n−1 fol-
lows by induction or a simple weight function method. In fact, π(G) ≥
min{n(G), 2diam(G)} for every G. Results for trees (a formula based on the
maximum path partition of a tree in [12], see also [3]), d-dimensional cubes Qd

(see [3]), and many other graphs with interesting properties are known (see
the survey [11]).

A probabilistic version of pebbling was introduced in [6]. Let G = (Gi)
∞
i=1

be a sequence of graphs with strictly increasing numbers of vertices N = n(Gi).
For a function t = t(N) let Ct denote a configuration on Gi that is chosen
uniformly at random from all configurations of t pebbles. The sequence G has
pebbling threshold τ = τ(G) if, for every ω � 1, (1) Pr[Ct is solvable]→0 for
t = τ/ω and (2) Pr[Ct is solvable]→1 for t = ωτ .

It was proven in [4] that the sequence of cliques has threshold τ(K) =
Θ(N1/2). Bekmetjev, et al. [1], showed recently that every graph sequence
has a pebbling threshold. Bounds on the sequence of paths have undergone
several improvements, the results of which are summarized as follows.

Result 1 The pebbling threshold for the sequence of paths P = (Pn)
∞
n=1 satis-

fies

τ(P) ∈ Ω
(

N2c
√

lg N
)

∩ O
(

N2c′
√

lg N
)

for every c < 1/
√

2 and c′ > 1.

The lower bound is found in [1] and the upper bound is found in [9].
It is important to draw a distinction between this random pebbling model

and the one in which each of t pebbles independently chooses uniformly at
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random a vertex on which to be placed. In the world of random graphs, the
analogs of these two models are asymptotically equivalent. However, in the
pebbling world, they are vastly different. For example, in the independent
model the pebbling threshold for paths is at most N lg N since, with more
than that many pebbles, almost always every vertex already has a pebble on
it.

1.2 Results

Pachter et al. [13] proved that every graph of diameter two on N vertices
has pebbling number either N or N + 1. Graphs G with π(G) = n(G) are
called Class 0, and in [5] a characterization of diameter two Class 0 graphs was
found and used to prove that diameter two graphs with connectivity at least 3
are Class 0. The authors also conjectured that every graph of fixed diameter
and high enough connectivity was Class 0. This conjecture was proved by
Czygrinow, Hurlbert, Kierstead and Trotter [7] in the following result.

Result 2 Let d be a positive integer and set k = 22d+3. If G is a graph of
diameter at most d and connectivity at least k, then G is of Class 0.

In this note, we present two applications of this result. Our first application
concerns the following girth problem posed in [11].

Question 3 Does there exist a constant C such that if G is a connected graph
on n vertices with girth(G) > C then π(G) > n?

We answer the above question in the negative. Let g0(n) denote the max-
imum number g such that there exists a graph G on at most n vertices with
finite girth(G) ≥ g and π(G) = n(G). That is, g0(n) is the highest girth, as a
function of n, among all Class 0 graphs. It is easy to see that

g0(n) ≤ 1 + 2 lg n

(because the cycle on k vertices has pebbling number at least 2bk/2c — see [13])
and we prove the following lower bound.

Theorem 4 For all n ≥ 3 we have

g0(n) ≥ b
√

(lg n)/2 + 1/4 − 1/2c .
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We prove this theorem in Section 2.1 using Result 2.
Our second application concerns the following conjecture of Graham [3].

Conjecture 5 Every pair of graphs G and H satisfy π(G2H) ≤ π(G)π(H).

Here, the Cartesian product has vertices V (G2H) = V (G) × V (H) and
edges E(G2H) = {u×E(H)}u∈V (G)∪{E(G)×v}v∈V (H). A number of theorems
have been published in support of this conjecture, including the recent work
of Herscovici [10] which verifies the case for all pairs of cycles. We show the
following.

Theorem 6 Let G and H be connected graphs on n vertices with minimum
degrees δ(G), δ(H) and let δ = min{δ(G), δ(H)}. If δ ≥ 212n/δ+15 then G2H
is of Class 0.

In particular, there is a constant c such that if δ > c n
lg n

, then G2H is of
Class 0. We prove this in section 2.2, again using Result 2. As a corollary we
obtain that Graham’s Conjecture is satisfied for graphs with minimum degree
δ > c n

lg n
.

Corollary 7 Let G and H be as in Theorem 6, with δ ≥ 212n/δ+15. Then
π(G2H) ≤ π(G)π(H).

Proof. We have π(G2H) = n(G2H) = n(G)n(H) ≤ π(G)π(H). 2

Finally, in this paper we also consider the following probabilistic analog of
Graham’s Conjecture 5, which we consider a correction of one from [11].

Problem 8 Let G = (Gn)
∞
n=1 and H = (Hn)∞n=1 be two graph sequences. De-

fine the product sequence G2H = (Gn2Hn)∞n=1. Find τ(G2H).

Let N1 = N(Gn), N2 = N(Hn) denote the number of vertices of graphs Gn and
Hn from Problem 8. It would be interesting to determine for which sequences
G = (Gn)∞n=1 and H = (Hn)

∞
n=1, we have

f(N1N2) ∈ O
(

g(N1)h(N2)
)

, (1)

where f ∈ τ(G2H), g ∈ τ(G) and h ∈ τ(H). We call pairs of sequences which
satisfy (1) well-behaved. One might conjecture that all pairs of sequences are
well-behaved, but we believe counterexamples might exist.
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We define the two-dimensional grid P 2
n = Pn2Pn, and in general the d-

dimensional grid P d
n = Pn2P d−1

n . It is easy to show that P d
n = P α

n 2P β
n for

all α and β for which α + β = d. If we denote Pd = (P d
n)∞n=1 then we have

Pd = Pα
2Pβ. Thus, for example, in light of Result 1, the truth of (1) would

imply that

τ(P2) ∈ O

(

(√
N2c′

√
lg

√
N

)2
)

= O

(

N2c′
√

2 lg N

)

.

Here we prove the following stronger theorem.

Theorem 9 Let Pd = (P d
n)∞n=1 be the sequence of d-dimensional grids, where

P d
n = (Pn)d is the cartesian product of d paths on n vertices each, and let

N = nd be the number of vertices of Pd
n. Then

τ(Pd) ⊆ Ω
(

N2cd(lg N)1/(d+1)
)

∩ O
(

N2c′d(lg N)1/(d+1)
)

for all cd < 2−d/(d+1) and c′d > d + 1.

This verifies (1) in the case of grids.

Corollary 10 Let α, β be any pair of positive integers; then for G = Pα and
H = Pβ, (1) holds.

Proof. Indeed, if g ∈ τ(G) and h ∈ τ(H) then Theorem 9 says that

g(Nα)h(Nβ) ∈ Ω
(

Nα2cα(lg Nα)1/(α+1)

Nβ2cβ(lg Nβ)1/(β+1)
)

⊆ Ω
(

N2c(lg N)1/(γ+1)
)

⊆ Ω
(

N2c(lg N)1/(d/2+1)
)

,

for some c, where γ = min{α, β}, d = α + β, α = α/d and β = β/d. On the
other hand, Theorem 9 also says that

τ(Pα+β) = τ(Pd) ∈ O
(

N2c′d(lg N)1/(d+1)
)

,

which is asymptotically smaller. 2

We prove Theorem 9 in Section 2.3.
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2 Proofs

2.1 Proof of Theorem 4

We will make use of Mader’s theorem (see [8]), below.

Result 11 Every graph having average degree at least d̄ has a subgraph of
connectivity at least bd̄/4c.

We will also make use of the following result from [2] (Chapter III, Theorem
1.1).

Result 12 For any g ≥ 3 and δ ≥ 3 there exists some graph H with girth at
least g, minimal degree at least δ, and no more than (2δ)g vertices.

Proof of Theorem 4. Set δ = 22g+1 and n = 22g(g+1); then g = b
√

(lg n)/2 + 1/4
−1/2c. Let H be a graph guaranteed to exist by Result 12. By Result 11,
H has some subgraph, F say, which is 22g−1-connected; clearly, F also has
girth at least g. Now let F̂ be an edge-maximal graph on the same vertices
as F such that F is a subgraph of F̂ and F̂ has girth at least g. F̂ can have
diameter no more than g − 2, for if there existed vertices x and y in F̂ such
that the shortest path between x and y had length g − 1 or more, adding the
edge xy to F̂ would give a graph of girth g or more, contradicting maximality.
Therefore F̂ has diameter at most g − 2 and is 22g−1-connected, so by Result
2, it is of Class 0, and it has no more than (2δ)g = 22g(g+1) vertices. 2

2.2 Proof of Theorem 6

Theorem 6 follows from the following two lemmas and Result 2.

Lemma 13 Let G be a connected graph on n vertices with minimum degree
δ. Then the diameter of G is at most 3n

δ
+ 3.

Proof. Fix two vertices x, y in G and consider the shortest path x = x1, . . . , xk =
y between x and y. Let i = bk−1

3
c. Then x1, x4, x7 . . . , x3i+1 must have disjoint

neighborhoods, and so i(δ + 1) ≤ n which yields k−3
3

≤ bk−1
3
c = i ≤ n

δ+1
, so

that k < 3n
δ+1

+ 3 ≤ 3n
δ

+ 3. 2

The next lemma was proved by Czygrinow and Kierstead. We reproduce
the proof here.
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Lemma 14 For connected graphs G and H, the product G2H has connectivity
κ(G2H) ≥ min{δ(G), δ(H)}.

Proof. Set δ = min{δ(G), δ(H)}. Let v1 = (g, h1), v2 = (g, h2), . . . , vδ =
(g, hδ), w1 = (g1, h), w2 = (g2, h), . . . , wδ = (gδ, h) be distinct vertices (other
than perhaps v1 = w1) in G2H that satisfy

distG(gi, g) ≤ distG(gi+1, g) (2)

and
distH(hi, h) ≤ distH(hi+1, h), (3)

for i = 1, . . . , δ − 1. We shall construct vertex-disjoint paths P1, . . . , Pδ such
that Pi connects vi with wi. Construct P1 as follows: let g1ḡ(1) . . . ḡ(k)g be
any shortest path in G connecting g1 with g and let hh̄(1) . . . h̄(l)h1 be any
shortest path in H connecting h with h1. Then P1 is the path:

w1 = (g1, h)(g1, h̄(1)) . . . (g1, h1)(ḡ(1), h1) . . . (g, h1) = v1.

Delete v1 and w1 and construct P2, . . . , Pδ inductively. We claim that P2, . . . , Pδ

are vertex-disjoint with P1. Indeed, suppose that V (Pj)∩ V (P1) 6= ∅ for some
j = 2, . . . , δ. There are two similar cases to consider. First, suppose that
(gj, f) ∈ V (Pj) ∩ V (P1). Since gj 6= g1, f = h1 and gj = ḡ(i) for some
i = 1, . . . , k. Then however

distG(gj, g) < distG(g1, g),

contradicting (2). Similarly, if (f, hj) ∈ V (Pj) ∩ V (P1) then f = g1 and
hj = h̄(i) for some i = 1, . . . , l which implies that

distH(hj, h) < distH(h1, h),

contradicting (3).
By induction, paths P1, . . . , Pδ are vertex-disjoint. Now, for any two dis-

tinct vertices v = (g, h̃), w = (g̃, h) ∈ V (G2H), let v1 = (g, h1), v2 =
(g, h2), . . . , vδ = (g, hδ) be neighbors of v in the H-dimension, and let w1 =
(g1, h), w2 = (g2, h), . . . , wδ = (gδ, h) neighbors of w in the G-dimension or-
dered according to (2) and (3). By the previous argument we can find vertex-
disjoint paths P1, . . . , Pδ connecting the vis with the wjs. These paths now
can be used to connect v with w by δ internally vertex-disjoint paths. Indeed,

8



if any of the paths contains v or w then it yields a shorter path between v and
w which is disjoint with other paths. Therefore the connectivity of G2H is at
least δ. 2

Proof of Theorem 6. By Lemma 13, the diameter d of G2H is at most 6n
δ

+ 6
and by Lemma 14, the connectivity k of G2H is at least δ. Since δ ≥ 212n/δ+15

the assumptions of Result 2 are satisified and so G2H is of Class 0. 2

2.3 Proof of Theorem 9

Throughout, we let N = nd. Also, we define
〈

a
b

〉

=
(

a+b−1
b

)

. Note that
〈

a
b

〉

is the number of ways to place b unlabeled balls into a labeled urns. For our
purposes, it equals the number of configurations of b pebbles on a graph of a
vertices. We will also use the fact that

〈

a
b

〉

counts the number of points in Z
a

whose coordinates are nonnegative and sum to b.
We begin by proving that a configuration with relatively few pebbles almost

always has no vertices having a huge number of pebbles. For natural numbers
a and b, define ab = a!/(a − b)!. For a configuration C of pebbles on a graph
let C(v) denote the number of pebbles on vertex v.

Lemma 15 Let s � 1 and t = sN . Let C be a random configuration of t
pebbles on the vertices of P d

n , and let p = (1 + ε)s ln N for some ε > 0. Then

Pr[C(v) < p for all v]→1 as n→∞ .

Proof. Let q be the probability that the vertex v satisfies C(v) ≥ p. Then q is
at most

〈

N
t−p

〉

〈

N
t

〉 =
tp

(N + t − 1)p

<

(

t

N + t − 1

)p

=

(

1 − 1 − 1/N

s + 1 − 1/N

)p

≤ e−p(1−1/N)/(s+1−1/N) .

Hence, the probability that some vertex v satisfies C(v) ≥ p is at most

Ne−p(1−1/N)/(s+1−1/N) = elnN(1−εs+[(1+ε)s−1]/N)/(s+1−1/N) → 0
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as n→∞. Therefore, the probability that every vertex v satisfies C(v) < p
tends to 1 as n→∞. 2

Next we show that a configuration with relatively few pebbles almost al-
ways has some large hole with no pebbles in it. For any set S of vertices,
denote by C(S) the number of pebbles on its vertices.

Lemma 16 Let N = nd, 0 < c < 2−d/(d+1), u = c(lg N)1/(d+1), s = 2u and
t = bsNc. Write c = ((1 − ε)/(2 + δ)d)1/(d+1) for some ε, δ > 0, and set
m = b(2+ δ)uc, M = md and k = bn/mcd. Let B1, . . . , Bk be a collection of k
pairwise disjoint blocks of vertices of P d

n , each having every side of length m.
Let C be a random configuration of t pebbles on the vertices of P d

n . Then

Pr[C(Bh) = 0 for some h]→1 as n→∞ .

Proof. The second moment method applies. Let Xh be the indicator variable
for the event that the block Bh contains no pebbles, and let X =

∑k
h=1 Xh.

Then Chebyschev’s inequality yields

Pr[X = 0] ≤ var[X]

E[X]2
,

and

var[X] = E[X2] − E[X]2

=
∑

h,j

E[XhXj] −
∑

h,j

E[Xh]E[Xj]

≤
∑

h

E[X2
h] ,

since E[XhXj] ≤ E[Xh]E[Xj] for h 6= j. Hence,

var[X] ≤
∑

h

E[X2
h] =

∑

h

E[Xh] = E[X] .

Moreover, we have

E[X] = k

〈

N − M

t

〉/〈

N

t

〉
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=

⌊

n

m

⌋d
(N − 1)M

(N + t − 1)M

≥
(

n

m
− 1

)d(
N − M

N + t − M

)M

&

(

N

M

) (

N − M

(s + 1)N − M

)M

>

(

N

M(s + 1)M

) (

1 − M

N

)M

∼ N

M(s + 1)M

∼ N

mdsmd(1+o(1))

=
N

md2ud+1(2+δ)d(1+o(1))

=
N

mdN (1−ε)(1+o(1))

→ ∞ .

Hence Pr[X = 0] ≤ var[X]/E[X]2 ≤ 1/E[X]→0 as n→∞. 2

The following lemma records the structure of the d-dimensional grid in
order to keep track of the results of pebbling steps.

Lemma 17 For any intervals I1, . . . , Id in Z such that each Ij contains r
integers, let B = I1 ×· · ·× Id ⊆ Z

d, and for i > 0, let Si be the set of points in
Z

d having distance i from B, where distance between a pair of points in Z
d is

defined by the sum of the absolute values of the differences of their coordinates.
Then

Ri := |Si| ≤
∑

1≤j≤d

(

d

j

)

2jrd−j

(

i − 1

j − 1

)

.
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Proof. We partition Z
d according to the number j of coordinates in which a

given point differs from its nearest neighbor in B. Given a fixed j, there are
(

d
j

)

ways to pick which j coordinates to change, each of the changed coordinates
can be to either side of B, giving 2j possibilities, and there are r ways to pick
each unchanged coordinate, giving rd−j possibilities. Given this information,
we can specify an element of Si by specifying a j-tuple of positive integers
with sum i, which can be done in

〈

j
i−j

〉

=
(

i−1
j−1

)

ways. 2

Finally, our proof of Theorem 9 in the case of the lower bound will use this
technical lemma to bound the number of pebbles that can reach the empty
hole.

Lemma 18
∑nd

i=1

(

i−1
j−1

)

2−i < 1 .

Proof. It is straightforward to use generating functions or induction to prove
∑

i≥1

(

i−1
j−1

)

2−i = 1 . 2

Turning to the case of the upper bound, we show that almost every con-
figuration with relatively many pebbles fills every reasonably large block with
plenty of pebbles.

Lemma 19 Let N = nd, c′ = d + 1 + ε for some ε > 0, u′ = c′(lg N)1/(d+1),
s′ = 2u′

, t′ = ds′Ne, m′ = d(d+1
c′

)1/d(lg N)1/(d+1)e, M ′ = (m′)d, and k′ =
dn/m′ed. Let B′

1, . . . , B
′
k′ be a collection of k′ blocks, each having every side of

length m′, that cover the vertices of P d
n . Let C be a random configuration of

t′ pebbles on the vertices of P d
n . Then

Pr[C(B′
f) ≥ M ′2dm′

for all f ] →1 as n→∞ .

Proof. Define Zf to be the event that block B ′
f contains fewer than M ∗ =

M ′2dm′

pebbles and approximate the probability Pr[∪k′

f=1Zf ] by

Pr[∪k′

f=1Zf ] ≤ k′
M∗−1
∑

f=0

〈

M ′

f

〉〈

N − M ′

t′ − f

〉/〈

N

t′

〉

.

Now use the estimate

〈

N − M ′

t′ − f

〉

≤
(

N

N + t′

)M ′〈

N

t′

〉

12



to obtain

Pr[∪Zf ] ≤ k′
(

N

N + t′

)M ′ M∗−1
∑

f=0

〈

M ′

f

〉

.

Then use the upper bound

M∗−1
∑

f=0

〈

M ′

f

〉

=

M∗−1
∑

f=0

〈

f + 1

M ′ − 1

〉

=

M∗

∑

j=1

〈

j

M ′ − 1

〉

=

〈

M∗

M ′

〉

≤ M∗M ′

to obtain

Pr[∪Zf ] ≤ k′
(

N

N + t′

)M ′

M∗M ′

.
N

M ′

(

M ′2dm′

s′

)M ′

=
1

M ′ 2
lg N−M ′(u′−lg M ′−dm′)

=
1

M ′ 2
lg N−(1+d) lg N+o(lg N)+d( 1+d

c′
)

d+1
d lg N

=
1

M ′Nd−d( 1+d
c′

)
d+1

d −o(1)

→ 0 .

Thus, almost surely, every f satisfies C(B ′
f) ≥ M ′2dm′

. 2

Proof of Theorem 9. We begin with the lower bound. Given N = nd and
0 < c < 2−d/(d+1), we write c = ((1 − ε)/(2 + δ)d)1/(d+1) for some ε, δ > 0,
and set u = c(lg N)1/(d+1), s = 2u, t = bsNc, m = b(2 + δ)uc, M = md

and k = bn/mcd. Let B1, . . . , Bk be a collection of k pairwise disjoint blocks
of vertices of P d

n , each having every side of length m. Let C be a random
configuration of t pebbles on the vertices of P d

n . By Lemma 16 we know that,
almost surely, some block Bh has no pebbles on its vertices. By Lemma 15
we know that, almost surely, no vertex has more that p pebbles on it, where
p = (1 + ε)s ln N for some ε > 0.
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Let Bh be the boundary of Bh. Any vertex v with C(v) pebbles on it can
contribute at most C(v)/2i pebbles to Bh, where i is the distance from v to
Bh. Also, the number of vertices of P d

n − Bh at distance i from Bh is at most
Ri. Thus, according to Lemmas 17 and 18, the number of pebbles that can be
amassed on Bh via pebbling steps almost surely is less than or equal to

nd
∑

i=1

pRi/2i ≤
nd
∑

i=1

p
d

∑

j=1

(

d

j

)

2jmd−j

(

i − 1

j − 1

)

2−i

≤ p

d
∑

j=1

(

d

j

)

2jmd−j
nd
∑

i=1

(

i − 1

j − 1

)

2−i

< p

d
∑

j=1

(

d

j

)

2jmd−j

< p(m + 2)d

� 2m/2 .

The last line holds because the dominant term in p(m+2)d is 2u, and we have
m = b(2 + δ)uc. Therefore, almost surely, too few vertices are amassed on
Bh to be able to move a single pebble to the center of Bh. This shows that
τ(Pd) ∈ Ω(sN), as required.

Next we prove the upper bound. Given N = nd and c′ = d + 1 +
ε for some ε > 0, set u′ = c′(lg N)1/(d+1), s′ = 2u′

, t′ = ds′Ne, m′ =
d(d+1

c′
)1/d(lg N)1/(d+1)e, M ′ = (m′)d and k′ = dn/m′ed. Let B′

1, . . . , B
′
k′ be

a collection of k′ blocks, each having every side of length m′, that cover the
vertices of P d

n . Let C be a random configuration of t′ pebbles on the vertices
of P d

n . Then Lemma 19 states that, almost surely, every block B ′
f has at least

M ′2dm′

pebbles. Since (see [6]) every graph G is solvable by n(G)2diam(G) peb-
bles, any given vertex v in P d

n almost surely is solvable by the pebbles in the
block B′

f which contains v. This shows that τ(Pd) ∈ O(s′N), as required.
2
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3 Remarks

Let l = l(n) and d = d(n) and denote by Pd
l the sequence of graphs (P

d(n)
l(n) )∞n=1,

where P d
l = (Pl)

d. For l(n) = 2, Pn
l = Q, which can be shown to have a

threshold asymptotically less than N .
We conjecture that the same result holds for all fixed l.

Conjecture 20 Let Pl denote the graph sequence (P n
l )∞n=1. Then for fixed l

we have τ(Pl) ∈ o(N).

In contrast, we have proved that τ(Pd) ∈ ω(N) for fixed d. Thus we believe
there should be some relationship between two functions l = l(n) and d = d(n),
both of which tend to infinity, for which the sequence Pd

l has threshold on the
order of N .

Problem 21 Denote by Pd the graph sequence (P
d(n)
n )∞n=1. Find a function

d = d(n)→∞ for which τ(Pd) = Θ(N). In particular, how does d compare to
n?

Acknowledgement

The authors thank one of the referees for extensive assistance in simplifying
the paper.

References

[1] A. Bekmetjev, G. Brightwell, A. Czygrinow and G. Hurlbert, Thresholds
for families of multisets, with an application to graph pebbling, Discrete
Math. 269 (2003), 21–34.

[2] B. Bollobas, Extremal Graph Theory, Academic Press, London-New York,
1978.

[3] F.R.K. Chung, Pebbling in hypercubes, SIAM J. Disc. Math. 2 (1989),
467–472.

[4] T. Clarke, Pebbling on graphs, Master’s Thesis, Arizona St. Univ. (1996).

15



[5] T. Clarke, R. Hochberg, and G.H. Hurlbert, Pebbling in diameter two
graphs and products of paths, J. Graph Th. 25 (1997), 119–128.

[6] A. Czygrinow, N. Eaton, G. Hurlbert and P.M. Kayll, On pebbling thresh-
old functions for graph sequences, Discrete Math., 247 (2002), 93–105.

[7] A. Czygrinow, G. Hurlbert, H. Kierstead and W.T. Trotter, A note on
graph pebbling, Graphs and Combin.,18 (2002) 2, 219–225.

[8] R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.

[9] A. Godbole, M. Jablonski, J. Salzman and A. Wierman, An improved
upper bound for the pebbling threshold of the n-path, Discrete Math. 275

(2004), 367–373.

[10] D. Herscovici, Graham’s pebbling conjecture on products of cycles, J.
Graph Theory 42 (2003), 141–154.

[11] G. Hurlbert, A survey of graph pebbling, Congress. Numer. 139 (1999),
41–64.

[12] D. Moews, Pebbling graphs, J. Combin. Th. (B) 55 (1992), 244–252.

[13] L. Pachter, H. S. Snevily, and B. Voxman, On pebbling graphs, Congressus
Numerantium 107 (1995), 65–80.

16


