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Abstract

A pebbling move on a graph consists of taking two pebbles off of
one vertex and placing one pebble on an adjacent vertex. In the tradi-
tional pebbling problem we try to reach a specified vertex of the graph
by a sequence of pebbling moves. In this paper we investigate the case
when every vertex of the graph must end up with at least one pebble
after a series of pebbling moves. The cover pebbling number of a graph
is the minimum number of pebbles such that however the pebbles are
initially placed on the vertices of the graph we can eventually put a
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pebble on every vertex simultaneously. We find the cover pebbling
numbers of trees and some other graphs. We also consider the more
general problem where (possibly different) given numbers of pebbles
are required for the vertices.
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1 Introduction

The game of pebbling was first suggested by Lagarias and Saks, and intro-
duced to the literature in a paper of Chung [1]. A pebbling move consists of
taking two pebbles ”off” of one vertex and placing one pebble on an adjacent
vertex. Given a graph G, a specified number of pebbles, and a configuration
of the pebbles on the vertices of G, the goal is to be able to move at least
one pebble to any specified target vertex using a sequence of pebbling moves.
The pebbling number π(G) is the minimum number of pebbles that are suf-
ficient to reach any target vertex regardless of the original configuration of
the pebbles. In the present context it is naturally assumed that all graphs

considered are connected. Moews [5] found the pebbling number of trees by
using a clever path partition of the tree. For a survey of additional results
see [3].

In this paper we investigate the following question: How does the pebbling
problem change if instead of having a specified target vertex we need to place
a pebble simultaneously on every vertex of the graph? In some scenarios this
seems to be a more natural question, for example if information needs to be
transmitted to several locations of a network, or if army troops need to be
deployed simultaneously. We define the cover pebbling number γ(G) to be
the minimum number of pebbles needed to place a pebble on every vertex
of the graph using a sequence of pebbling moves, regardless of the initial
configuration. We establish the cover pebbling number for several classes
of graphs, including complete graphs, paths, fuses (a fuse is a path with
leaves attached at one end), and more generally, trees. We also describe the
structure of the largest non-coverable configuration on a tree.

More generally, let a weight function w be given that assigns an integer
w(v) to each vertex v of G. We say that w is positive if w(v) > 0 for all
v. We define the weighted cover pebbling number γw(G) to be the minimum
number k ensuring that, from any initial configuration with k pebbles there
is a sequence of pebbling moves after which all the vertices v simultaneously
have w(v) pebbles on them. Our main result on trees in Section 4 determines
γw(T ) for every tree T and every positive weight function w.

Given a configuration C of pebbles, we will use the following notation.
The size |C| of the configuration, denotes the number of pebbles in C. The
support σ(C) of the configuration is the set of support vertices, i.e. those on
which there is at least one pebble of C. The number of pebbles on v in C
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is denoted by C(v) (hence, v ∈ σ(C) if and only if C(v) > 0). We call a
configuration simple if its support consists of a single vertex. We say that
a configuration is cover-solvable, or simply coverable (resp. w-coverable),
if it is possible to transport at least one pebble (resp. w(v) pebbles) to
every vertex v of the graph simultaneously (and non-coverable otherwise).
As is customary, we denote the vertex set and edge set of G by V (G) and
E(G), respectively. If G is of order n, we sometimes denote its vertices by
v1, v2, . . . , vn.

2 Preliminary Results

We begin with the cover pebbling number of the complete graph Kn on n
vertices. Note that the pebbling number for Kn, π(Kn), is n (see [3]).

Theorem 1 γ(Kn) = 2n − 1.

Proof. If 2n− 2 pebbles are placed on vertex vn, then 2 pebbles will be used
to cover each of the n − 1 other vertices. Thus no pebbles will remain to
cover vn. Hence γ(Kn) ≥ 2n − 1.

Now suppose that at least 2n − 1 pebbles are placed on the vertices.
We may suppose that some vertex, say vn, has no pebbles on it, otherwise
the graph is already covered. The pigeonhole principle says that some other
vertex has at least two pebbles on it; we use those to cover vn. Since there
are now at least 2n−3 pebbles among the remaining n−1 vertices, induction
says we can cover them (of course, γ(K1) = 1). Hence γ(Kn) ≤ 2n − 1. 2

A similar inductive proof works also for weighted covering, and yields
the following result. Denote the total weight by |w| =

∑
v w(v) and define

min w = minv w(v).

Theorem 2 γw(Kn) = 2|w| − min w for every positive weight function w.

Next we find the cover pebbling number of the path Pn on n vertices
v1, . . . , vn, with vivi+1 ∈ E for 1 ≤ i < n. Note that π(Pn) = 2n−1 (see [3]).

Theorem 3 γ(Pn) = 2n − 1.
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Proof. If 2n−2 pebbles are placed at vertex vn, then covering v1 will use 2n−1

pebbles, covering v2 will use 2n−2 pebbles, . . ., and covering vn−1 will use 2
pebbles. Then no pebbles will remain to cover vn. Hence γ(Pn) ≥ 2n − 1.

Now suppose that at least 2n − 1 pebbles are placed on the vertices. If
there are no pebbles on vn then we may use at most 2n−1 pebbles to cover it,
since π(Pn) = 2n−1. By induction, the remaining 2n−1 − 1 or more pebbles
can cover Pn−1 (of course, γ(P1) = 1). If there are pebbles on vn then move
as many of them as possible to vn−1, leaving 1 or 2 on vn. Either at least
2n−1 − 1 pebbles have been moved to vn−1, or at most 2n−1 − 2 moves have
been made and at most two pebbles stay on vn. In any case, at least 2n−1−1
pebbles remain on Pn−1. Again, induction shows that γ(Pn) ≤ 2n − 1. 2

Note that the upper bound is also mentioned in [2].
Among all graphs on n vertices, the complete graph has the smallest

pebbling number (n) and the path has the largest pebbling number (2n−1).
In both cases, we have γ(G) = 2π(G) − 1. While this might lead one to
guess that such a relation holds for all (connected) graphs, this couldn’t be
farther from the truth. As the following theorem shows, the ratio γ(G)/π(G)
is unbounded, even within the class of trees. The subclass of fuses is defined
as follows. The vertices of Fl(n) (l ≥ 2 and n ≥ 3) are v1, . . . , vn, so that
the first l vertices form a path from v1 to vl, and the remaining vertices are
independent and adjacent only to vl. (The path is sometimes called the wick,
while the remaining vertices are sometimes called the sparks.) For example,
F2(n) is the star Sn on n vertices. The fact that γ(Sn) = 4n − 5 serves as
the base case for the following result.

Theorem 4 γ(Fl(n)) = (n − l + 1)2l − 1.

Proof. Following the arguments for the path given above, it is easy to see
that so many pebbles are required of a simple configuration sitting on v1.

Likewise, induction on l shows that so many pebbles suffice to cover the
fuse. Indeed, consider the cases whether or not v1 has pebbles on it and
argue as was done for paths, above.

Regarding the base case l = 2, we point out that F2(n) is the star on n
vertices, so we can let any leaf play the role of v1. If all the pebbles are on
v2 then we can cover the star easily. Otherwise, some leaf has at least one
pebble on it, and we label that vertex v1. Now we pebble as many as possible
from v1 to v2, leaving 1 or 2 on v1. Induction on the number of leaves finishes
the proof. 2
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We define the covering ratio of G to be ρ(G) = γ(G)/π(G). For a class
F of graphs we define ρ(F) = supG∈F ρ(G) if it exists, and ρ(F) = ∞
otherwise. Thus, for the families K of complete graphs and P of paths, we
have ρ(K) = ρ(P) = 2.

Theorem 5 Let Tn be the family of all trees on n vertices. Then ρ(Tn) = ∞.

Proof. Since π(Fl(n)) = 2l + n − l − 1 (see [5]), we see that, for n = 2l + l,
ρ(Fl(n)) > (n − l)2l/(n − l + 2l) > (n − lg n)/2. 2

3 The Transition Digraph

The main goal of this section is to prove that any sequence of pebbling moves
can be replaced by one which is cycle-free in a well-defined sense. For this,
we introduce the following concept.

Definition. Given a sequence S of pebbling moves on graph G, the transition

digraph is a directed multigraph denoted T (G, S) that has V (G) as its vertex
set, and each move s ∈ S along edge vivj (i.e., where two pebbles are removed
from vi and one placed on vj) is represented by one directed edge vivj.

Theorem 6 Let S be a sequence of pebbling moves on G, resulting in a con-

figuration C. Then there exists a sequence S∗ of pebbling moves, terminating

with a configuration C∗, such that

1. On each vertex v, the number of pebbles in C∗ is at least as large as

that in C, and

2. T (G, S∗) does not contain any directed cycles.

Proof. We apply induction on the number of directed cycles in T (G, S). The
assertion is trivially true for every S where this number is zero.

Let now S be arbitrary, and consider the shortest prefix S ′ of S that
contains a directed cycle. That is, the last move in S ′ creates a cycle, say
C ′ = v1v2 · · ·vk, in T (G, S ′). For i = 1, 2, . . . , n, let us denote by d−

i and
d+

i the in-degree and out-degree, respectively, of vertex vi in T (G, S ′). In
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the initial configuration, each vi has to contain at least 2d+
i − d−

i pebbles,
otherwise some move of S ′ could not be performed at vi.

Let us consider the edge set F ′ = E(T (G, S ′)) \ E(C ′). By the choice of
S ′, this F ′ does not contain any directed cycles, hence it contains a vertex
vi of in-degree zero. It means d−

i = 0 if vi /∈ C ′, and d−
i = 1 otherwise.

In the former case, vi initially has at least 2d+
i pebbles and is incident with

precisely d+
i edges in F ′; while in the latter, the number of pebbles at vi

is at least 2d+
i − 1 and that of its incident edges is just d+

i − 1. In either
case, vi has sufficiently many pebbles so that the pebbling moves for all of its
incident edges in F ′ are feasible before any move belonging to C ′ has been
performed. We now rearrange S ′ to make all moves of F ′ involving vi at the
beginning. Analogously, F ′−vi has a vertex vj of zero in-degree in F ′, hence
after the rearrangement of moves at vi, the moves of edges incident with vj

are feasible completely before C ′. Eventually we obtain a rearrangement, say
S ′′, of S ′ where the moves of C ′ are performed at the very end, and of course
the concatenation of S ′′ and S − S ′ terminates in configuration C. Now it is
immediately seen that the concatenation S+ of S ′′−C ′ and S−S ′ is a feasible
sequence of moves that ends up with a configuration C+ where the vertices
v1, . . . , vk have one more pebble than in C, and the other vertices have the
same number of pebbles in C and C+. Since the number of directed cycles
in T (G, S+) is strictly smaller than that in T (G, S), the assertion follows by
induction. 2

4 Trees

In this section we determine the (weighted) cover pebbling number for an
arbitrary tree T . For v ∈ V (T ) define

s(v) =
∑

u∈V (T )

2d(u,v) ,

where d(u, v) denotes the distance from u to v, and let

s(T ) = max
v∈V (T )

s(v) .

Analogously, if a positive weight function w is given, we define

sw(v) =
∑

u∈V (T )

w(u) · 2d(u,v)
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and
sw(T ) = max

v∈V (T )
sw(v) .

Clearly, for a simple configuration sitting on v, sw(v) pebbles are necessary
and sufficient to cover T . Thus γw(T ) ≥ sw(T ) for every T and every positive
w. We are going to prove that this obvious lower bound is in fact tight.

Theorem 7 For positive weight functions w we have γw(T ) = sw(T ).

Proof. The theorem can be reformulated in the following equivalent form:

For every non-coverable configuration C there exists a simple non-

coverable configuration C∗ such that |C∗| = |C|.

The proof of this latter assertion is essentially induction, where we either
reduce the tree to another tree with fewer vertices or keep T unchanged but
decrease the support σ(C) of C without making its size |C| decrease.

We shall use the following terminology concerning a configuration C. We
say that a vertex v is a

• D-vertex with demand D(v) = w(v) − C(v) if w(v) − C(v) > 0.

• N-vertex (neutral) if C(v) = w(v). Then we define D(v) = 0.

• S-vertex with supply S(v) = C(v) − w(v) if C(v) − w(v) > 0.

It is immediate by definition that every non-coverable configuration con-
tains at least one D-vertex.

Case 1. T = K1 or T = K2.

These are trivial initial cases, handled already in the more general context
of Theorem 2.

Case 2. Some leaf of T is not an S-vertex.

Let v be such a leaf, and let u be its neighbor in T . We now delete v from T
(with all its pebbles), and increase w at u to the value w′(u) = w(u)+2D(v).
Keeping w′(x) = w(x) unchanged for all x /∈ {u, v}, the configuration C ′ =
C − v on the tree T ′ = T − v with the weight function w′ is coverable if and
only if so is C on T with w. This follows from Theorem 6, which implies that
if T is coverable, then there is a sequence of pebbling moves where no pebble
gets moved from v to u. (To make v properly covered, we need to place at
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least D(v) additional pebbles on it; and this requires taking 2D(v) pebbles
off of u.)

Case 3. Every leaf of T is an S-vertex.

For a given leaf v = v1, define the path v1v2 · · · vm so that vm is the other
leaf if T is a path and is the only vertex of the path having degree at least 3
in T otherwise. In the latter case we call vm the split vertex of v1. If there is
a support vertex other than v1 on this path, we call the one having minimum
subscript the nearest support vertex of v1.

Since v1 is an S-vertex we can move s1 = bS(v1)/2c pebbles to v2. More-
over, if s1 > w(v2)−C(v2) then we can further transmit s2 = b(s1 + C(v2)−
w(v2))/2c pebbles to v3, and so on. For a vertex vk on this path we say
that v1 supplies vk if at least one of the pebbles from v1 can reach vk in this
way. There are three possibilities for v1, namely, v1 supplies its split vertex,
v1 supplies its nearest support vertex, or v1 supplies neither of these. We
consider these possibilities in reverse order.

Subcase A. Some leaf supplies neither its split nor its nearest support ver-

tices.

We follow a similar argument as in Case 2. Let v1 be such a leaf and let
k be the largest subscript so that v1 supplies vk (then k < m and vi is not
a support vertex for any 2 ≤ i ≤ k). Let C ′ and w′ be the restrictions of C
and w to T ′ = T −{v1, . . . , vk}, except that w′(vk+1) = w(vk+1)+2D′, where
D′ = w(vk) − sk−1 is the resulting demand on vk after being supplied by v1.
Then C ′ is non-w′-coverable on T ′, and since |T ′| < |T | there is a simple non-
w′-coverable configuration of size |C ′| on T ′. This yields a non-w-coverable
configuration C ′′ of size |C| on T that sits on two vertices. If T has at least
three leaves then some leaf is not an S-vertex and we are done by Case 2.
Otherwise T is a path and σ(C ′′) = {v1, vn}. Non-w-coverability now means
that vn can supply vk with strictly fewer than D′ pebbles. Finally we test if
k − 1 ≥ n − k. If so, then for every j in the range k ≤ j ≤ n, d(v1, vj) ≥
d(vj, vk). Thus, defining C∗(vn) = 0 and C∗(v1) = C ′(v1) + C ′(vn) = |C|, we
obtain a simple non-coverable configuration, as required. If k− 1 < n−k we
do the opposite.

Subcase B. Some leaf supplies its nearest support vertex.

Let v1 be such a vertex and vk its nearest support vertex (then vi /∈ σ(C)
for 1 < i < k). We define C ′(vk) = 0 and C ′(v1) = C(v1)+C(vk), keeping C ′

identical to C on every other vertex. Then |C ′| = |C|, |σ(C ′)| < |σ(C)|, and
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C ′ is non-coverable whenever C is, because the supply from v1 yields fewer
pebbles on vk in C ′ than in C.

Subcase C. Every leaf supplies its split vertex.

By Subcase B we may assume that no leaf supplies its nearest support
vertex. There must be some vertex v that is the split vertex for two different
leaves (indeed, choose any leaf and let v be any vertex of degree at least 3 at
farthest distance from it – the two leaves past v witness this). Label these
leaves v1 and v` so that P = v1 · · · vm · · · v` is the unique path between them
and v = vm. Recall that vi is not a support vertex for any 1 < i < ` and that
both v1 and v` supply vm. Let us denote by sm their total supply for vm.

If sm > w(vm), then P can supply T − P with s′ = b1
2
(sm − w(vm))c

pebbles (at most); and otherwise it needs to receive at least s′′ = w(vm)−sm

pebbles from T − P . In both cases we consider the problem restricted to P ,
where w(vi) is kept unchanged for all i 6= m, and w(vm) is modified to sm +1.
This configuration on P is non-coverable. Thus, according to Subcase A, the
C(v1)+C(v`) pebbles can be placed on one vertex (v1 or v`), keeping P non-
coverable. It follows that the modified configuration, too, either supplies
T − P with at most s′ pebbles or needs to receive at least s′′ pebbles from
T − P . In either case, the new configuration on T is non-coverable and has
at least one D-vertex leaf, thus we are done by Case 2.

2

From this proof we see that a non-coverable configuration of maximum
size can be assumed to be simple. The next result shows that the single
support vertex must be an end of a longest path. (This is the case even for
weight functions w where the longest paths are not of maximum weight.)

Theorem 8 Given a tree T and a positive weight function w, let C be a non-

coverable simple configuration of maximum size, with σ(C) = {v}. Then v
is a leaf of a longest path in T .

Proof. Since γw(T ) = sw(v) for some v, we need to show that the maximum
value of sw(v) is attained only on some endpoints of the longest path(s) of T .
We are going to prove something stronger: every longest path has at least
one endpoint x whose sw(x) is larger than sw(u) for every u which is not the
endpoint of some longest path.

Suppose first that T is just a path v1v2 · · ·vn. Consider any internal vertex
vk (1 < k < n). We compare the partial sums s− =

∑
1≤i<k w(vi) · 2

d(vi,vk)
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and s+ =
∑

k<i≤n w(vi) · 2
d(vi,vk). If s− ≤ s+, then sw(vk−1) > sw(vk); and if

s− ≥ s+, then sw(vk+1) > sw(vk). Thus, sw(k) can never be largest.
Suppose next that T is a tree with precisely three leaves. Applying the

previous idea, from any non-leaf vertex we can move to one of its neighbors
and find there a larger value of sw. Hence, let v, v′, v′′ be the three leaves,
and suppose that the longest path P in T is the one connecting v ′ with
v′′. We need to show sw(v) < max {sw(v′), sw(v′′)}. Let u be the unique
degree-3 vertex of T . We have d(u, v) < d(u, v ′) and d(u, v) < d(u, v′′) (for
otherwise the v–v′ path or the v–v′′ path were at least as long as the v′–v′′

path, contrary to the assumption on v). From this it is easily seen that for
every vertex x, at least one of d(v′, x) and d(v′′, x) is at least d(v, x) + 1.
Consequently, sw(v′) + sw(v′′) > 2sw(v), i.e. sw(v) cannot be largest.

Finally, let T be a tree with more than three leaves. Let P be one of its
longest paths, v∗ a leaf that does not belong to any longest path of T , and
v 6= v∗ a leaf not on P (but maybe on some other longest path of T ). We apply
the transformation on v as described in Case 2 of the proof of Theorem 7.
This modification keeps the function sw unchanged on all vertices of T − v,
moreover P remains a longest path and v∗ does not become the endpoint of
any longest path in T − v. Thus, by induction on the number of vertices, sw

is larger on some endpoint of P than on v∗. This completes the proof. 2

5 Open Problems

There are several natural problems and questions to ask.

Problem 9 Find γ(G) for other graphs G, for example cubes, complete r-
partite graphs, etc.

For progress on this question during the year of the refereeing process see
[4] and [8].

Question 10 Is it true for all graphs G that at least one of the largest non-

coverable configurations on G is simple?

For progress on this question during the year of the refereeing process see
[6] and [7].
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Problem 11 Find classes of graphs F whose covering ratio ρ(F) is bounded.

Question 12 Can the question, “Is ρ(G) ≤ k?” be answered efficiently?

These questions extend to positive weight functions in a natural way. Let
us note, however, that the situation drastically changes when “positive” is
replaced by “nonnegative” for w. This fact is already shown by the complete
graph Kn (n ≥ 3) where only one vertex is required to be covered, which cor-
responds to the weights 1, 0, 0, . . . , 0. Here the unique maximal non-coverable
configuration has the pebble distribution 0, 1, 1, . . . , 1, in striking contrast to
the case where w > 0 and all pebbles may be concentrated on a suitably
chosen single vertex. Such considerations must be tackled in order to pursue
the weighted pebbling number of a graph G, defined as πw(G) = maxw γw(G),
where the maximum is taken over all nonnegative weight functions w of size
|w| = w. The pebbling number π(G) is the case w = 1.

Problem 13 Find πw(T ) for any tree T and weight w.
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