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Abstract

The t-fold pebbling number, πt(G), of a graph G is defined to be the minimum number m so that, from

any given configuration of m pebbles on the vertices of G, it is possible to place at least t pebbles on any

specified vertex via pebbling moves. It has been conjectured that the pebbling numbers of pyramid-free

chordal graphs can be calculated in polynomial time.

The kth power G(k) of the graph G is obtained from G by adding an edge between any two vertices

of distance at most k from each other. The kth power of the path Pn on n vertices is an important

class of pyramid-free chordal graphs, and is a stepping stone to the more general class of k-paths and

the still more general class of interval graphs. Pachter, Snevily, and Voxman (1995) calculated π(P
(2)
n ),

Kim (2004) calculated π(P
(3)
n ), and Kim and Kim (2010) calculated π(P

(4)
n ). In this paper we calculate

πt(P
(k)
n ) for all n, k, and t.

For a function D : V (G)→N, the D-pebbling number, π(G,D), of a graph G is defined to be the

minimum number m so that, from any given configuration of m pebbles on the vertices of G, it is

possible to place at least D(v) pebbles on each vertex v via pebbling moves. It has been conjectured

that π(G,D) ≤ π|D|(G) for all G and D. We make the stronger conjecture that every G and D satisfies

π(G,D) ≤ π|D|(G)− (s(D)− 1), where s(D) counts the number of vertices v with D(v) > 0. We prove

that trees and P
(k)
n , for all n and k, satisfy the stronger conjecture.

The pebbling exponent eπ(G) of a graph G was defined by Pachter, et al., to be the minimum k for

which π(G(k)) = n(G(k)). Of course, eπ(G) ≤ diam(G), and Czygrinow, Hurlbert, Kierstead, and Trotter

(2002) proved that almost all graphs G have eπ(G) = 1. Lourdusamy and Mathivanan (2015) proved

several results on πt(C
2
n), and Hurlbert (2017) proved an asymptotically tight formula for eπ(Cn). Our

formula for πt(P
(k)
n ) allows us to compute eπ(Pn) within additively narrow bounds.
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1 Introduction

Graph pebbling has an interesting history, with many challenging open problems. Calculating pebbling

numbers of graphs is a well known computationally difficult problem (in ΠP
2 -complete [19]). See [11, 13] for

more background. It has been asked (e.g. [12]) for what families of graphs G the pebbling number π(G)

(defined below) can be calculated in polynomial time. One possible family posited in [1] is that of chordal

graphs, most likely with some restriction, such as bounded diameter or treewidth, for example. This paper

follows a sequence ([1, 2, 3, 4]) intended to provide at least a partial answer to this line of inquiry, which has

led us to make the following conjecture. We define the pyramid to be the triangulated 6-cycle abcdef with

interior triangle bdf , and say that a graph is H-free if it does not contain H as an induced subgraph.

Conjecture 1. If G is a pyramid-free chordal graph then π(G) can be calculated in polynomial time.

A configuration C of pebbles on the vertices of a connected graph G is a function C : V (G)→N (the

nonnegative integers), so that C(v) counts the number of pebbles placed on the vertex v. A vertex v is

empty if C(v) = 0 and big if C(v) ≥ 2. We write |C| for the size
∑
v C(v) of C; i.e. the number of pebbles in

the configuration. A pebbling step from a big vertex u to one of its neighbors v (denoted u 7→v) reduces C(u)

by two and increases C(v) by one. Given a specified target vertex r we say that C is t-fold r-solvable if some

sequence of pebbling steps places t pebbles on r. We are concerned with determining πt(G, r), the minimum

positive integer m such that every configuration of size m on the vertices of G is t-fold r-solvable. The

t-pebbling number of G is defined to be πt(G) = maxr∈V (G) πt(G, r). We adopt the natural interpretation

that π0(G) = 0, and avoid writing t when t = 1.

The kth power G(k) of the graph G is obtained from G by adding an edge between any two vertices of

distance at most k from each other. The pebbling exponent eπ(G) of a graph G was defined in [21] to be

the minimum k for which π(G(k)) = n(G(k)). For example, Class 0 graphs (graphs G with π(G) = n(G))

have pebbling exponent eπ(G) = 1. In a very strong probabilistic sense (see [8]) almost all graphs G have

eπ(G) = 1. Of course, eπ(G) ≤ diam(G), and the authors of [21] ask specifically about the cycle Cn on n

vertices. In [14] it was shown that n/(2 lg n) ≤ eπ(Cn) ≤ n/[2(lg n − lg lg n)], which determines its exact

value for n ≤ 9, bounds it within a factor of two always, and a factor of one asymptotically. Here we write

lg for the base 2 logarithm. Lourdusamy and Mathivanan [18] proved several results on πt(C
2
n).

Denote the path on n vertices by Pn. Pachter, et al. [21] proved that π(P
(2)
n ) = 2d

n−1
2 e+ ((n− 2) mod 2)

for n ≥ 2. Kim [16] proved that π(P
(3)
n ) = 2d

n−1
3 e + ((n − 2) mod 3) for n ≥ 8 (and equals n for n ≤ 7).

Kim and Kim [17] proved that π(P
(4)
n ) = 2d

n−1
4 e + ((n − 2) mod 4) for n ≥ 14 (and equals n for n ≤ 13).

We generalize these results in Theorem 6, below, calculating πt(P
(k)
n ) for all k and all t. This allows us to

compute eπ(Pn) very tightly in Corollary 8.
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We generalize the traditional pebbling model as follows. A pebbling function F is any function F : V→N;

its size is |F | =
∑
v∈V F (v). For a pebbling function F , define Ḟ to be the multiset {vF (v)}v∈V (the

exponent F (v) is the multiplicity of v). Configurations C (of pebbles) and distributions D (of targets) are

both pebbling functions. However, we think of Ċ as a multiset of pebbles, labeled by their vertex locations,

while we think of Ḋ as a multiset of target vertices. Furthermore, we think of vi,j as the label of jth pebble

(or target) sitting on vertex vi. For m ∈ N and x ∈ V , define the function mx by mx(v) = m if v = x and 0

otherwise. Thus, the symbol x can represent a vertex or a pebbling function, depending on its context. In

particular, if F = mx then Ḟ = {xm}.

For a configuration C and distribution D, we say that C is D-solvable (or that there is a (C,D)-solution,

or that G has a (C,D)-solution) if some sequence of pebbling steps places at least D(v) pebbles on each

vertex v. The D-pebbling number, π(G,D), of a graph G is defined to be the minimum number m such that

G is (C,D)-solvable whenever |C| ≥ m. Thus we can write πt(G, r) as π(G, tr) in this generalized notation.

(We note that the D-pebbling number was first introduced in [7] for the case D = V (G), and was called the

cover pebbling number.)

Just as the t-fold pebbling number can be used inductively to prove results about the pebbling number

(e.g. [6, 3]), the D-pebbling number can be used inductively to prove results about the t-fold pebbling

number. It is also thought that this might be a powerful tool in attacking Graham’s Conjecture on the

pebbling number of the cartesian product of graphs (see [6]). The following Weak Target Conjecture was

conjectured in [9].

Conjecture 2. [9] Every graph G satisfies π(G,D) ≤ π|D|(G) for every target distribution D.

The authors of [9] verified this conjecture for trees, cycles, complete graphs, and cubes, and the authors

of [15] verified this conjecture for 2-paths and Kneser graphs K(m, 2) with m ≥ 5.

Define supp(D) to be the set of vertices v with D(v) > 0, and denote s(D) = |supp(D)|. We make the

following Strong Target Conjecture.

Conjecture 3. Every graph G satisfies π(G,D) ≤ π|D|(G)− (s(D)− 1) for every target distribution D.

We prove that trees satisfy this stronger conjecture in Theorem 4. We prove in Theorem 5 that P
(k)
n

satisfies this stronger conjecture for all n and k.

Another reason to study pebbling on powers of paths is the following. Czygrinow, et al. [8], proved

that, for each d ≥ 1, there is a least positive integer k(d) such that if G has diameter d and connectivity at

least k(d) then G is Class 0. They showed that k(d) ≤ 22d+3 and k(d) ∈ Ω(2d/d). We note that P
(k)
n has

connectivity equal to k and that Theorem 6 shows that π(P
(k)
n ) = n when k ≥ (2d − 2)/(d− 1). Thus P

(k)
n
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witnesses the tightness of the lower bound on k(d); we believe that the upper bound on k(d) is weak and

should be improved. Furthermore, at the other extreme when t is large, a theorem of [10] states that every

graph G satisfies limt→∞ πt(G)/t = 2d, where d = diam(G). Our Theorem 6 formula for t ≥ k(d−1)/(2d−2)

is more precise, that πt(P
(k)
n ) = t2d + ((n− 2) mod k).

The final and, for our current purposes, most important motivation for investigating πt(P
(k)
n ) for 2 ≤

k ≤ diam(P
(k)
n ) = b(n− 2)/kc+ 1 is that P

(k)
n is chordal. This case is a key stepping stone toward the graph

classes k-paths and interval graphs. At each stage of the sequence of papers [1, 2, 3, 4] mentioned above we

have discovered new hurdles that have required new techniques which have expanded our understanding of

pebbling in chordal graphs, such as the technical lemmas found in Section 3. The critical pieces of the puzzle

in this paper are the new chordal lemmas found in Section 3.3, as well as the careful interplay between the

t-wide and t-long cases in the inductive proof of Section 5. In particular, Conjecture 3 plays a crucial role

and may be the most important contribution of this work, as a powerful technique in future research.

We describe our results in the next section, introduce the important machinery in Section 3, and prove

Theorems 4–6 in order in Sections 4–6.

2 Main Theorems

For positive integers n and k, the path power P
(k)
n is the graph with vertex set V = {v1, ...vn}, and vi ∼ vj

whenever 1 ≤ |i− j| ≤ k. The diameter d of P
(k)
n is completely determined by n and k; in fact,

d = b(n− 2)/kc+ 1.

We let b = (n− 2)− k(d− 1), then 0 ≤ b < k. For n ≥ 2 and t ≥ 1, define the following functions, where the

above formula for d is assumed:

lt(n, k) = t2d + n− 2− k(d− 1) = t2d + b,

wt(n) = 2t+ n− 2,

pt(n, k) = max{lt(n, k), wt(n)}.

We have wt(n) ≥ lt(n, k) if and only if t(2d − 2) ≤ (d− 1)k; in other words

pt(n, k) =

 2t+ n− 2 if t ≤ t0, and

t2d + b if t ≥ t0,

where t0 = 1 if d = 1, and t0 = t0(k, d) = k(d − 1)/(2d − 2) otherwise. We say that P
(k)
n is t-wide when

t ≤ t0 and t-long when t ≥ t0. More finely, we say that P
(k)
n is barely t-long when t0 < t = dt0e, and strictly

4



t-long if t > dt0e. Thus, the formula names wt and lt match the t-wide and t-long terminology. We will

occasionally make use of the fact that, for d ≥ 2 and fixed k, t0(k, d) is a strictly decreasing function of d.

For k ≥ n−1, P
(k)
n is a complete graph, and it is t-wide for any t ≥ 1. Therefore, πt(P

(k)
n , r) = πt(P

(k)
n ) =

2t+ n− 2 = wt(n) = pt(n, k) for any vertex r. Notice that in this case all vertices are simplicial (i.e. their

neighborhoods induce complete graphs). For 1 ≤ k < n−1, the vertices v1 and vn are the only two simplicial

vertices of P
(k)
n ; the non simplicial vertices will be called interior vertices. Note that the connectivity of

P
(k)
n equals k. Moreover, when 1 ≤ (n− 1)/2 ≤ k, P

(k)
n contains a universal vertex (adjacent to every other

vertex); then the present work extends that of [4], which computes the pebbling numbers of k-connected

graphs with universal vertices. For practical purposes, when n = 1, we define pt(1, k) = t− 1 for any k.

The next three theorems will be proved in Sections 4–6.

The following theorem verifies the Strong Target Conjecture for trees. The cost of a solution refers to

the total number of pebbles that are lost when performing the steps of the solution, the formal definition is

given in the next section.

Theorem 4. Let T be a tree of diameter d and D be a target distribution of size t. Then π(T,D) ≤

πt(T )− s(D) + 1. Furthermore, if C is a configuration on T of size |C| ≥ πt(T )− s(D) + 1, then C solves

any target v ∈ Ḋ with cost at most 2eccT (v).

The following theorem verifies the Strong Target Conjecture for powers of paths.

Theorem 5. Let D be a t-multiset of target vertices of P
(k)
n . Then π(P

(k)
n , D) ≤ pt(n, k)− s(D) + 1.

Analogous to Theorem 4, as part of the proof of Theorem 5, we show in the t-long case that if C is a

configuration on G = P
(k)
n of size |C| ≥ pt(n, k)− s(D) + 1 then C solves any target v ∈ Ḋ with cost at most

2eccG(v).

Theorem 6. πt(P
(k)
n ) = pt(n, k).

As a result we obtain the following two corollaries.

Corollary 7. The t-fold pebbling number πt(P
(k)
n ) can be calculated in polynomial time (constant time if k

is known and linear time otherwise).

The constant time follows from simply comparing t(2d − 2) with k(d − 1), while the linear time follows

from knowing that k = δ(P
(k)
n ) (which equals the degree of a simplicial vertex).

Corollary 8. Define the functions M(n) = b(n−2)/(dlg ne−2)c and m(n) = b(n−2)/(dlg ne−2)2c. Then the

pebbling exponents of paths are eπ(P2) = 1, eπ(P3) = eπ(P4) = eπ(P5) = 2, eπ(P6) = eπ(P7) = eπ(P8) = 3,

and, for n ≥ 9, M(n)−m(n) ≤ eπ(Pn) ≤M(n).
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We prove this in Section 7. We also note that the upper bound is tight at n = 33, 65, 257, and many

other values, typically of the form n = 2i+ j for a few small values of j. In fact, numerical evidence suggests

that it may be tight at n = 2i + 1 for most values of i ≥ 5. Moreover, except for values of n in the range of

something like [2i, 2i+ i2), it appears that the tighter bounds M(n)−m(n)+2 ≤ eπ(Pn) ≤M(n)−m(n)+3

may hold.

3 Technical Lemmas

3.1 General Lemmas

Given a configuration C of pebbles, a potential move is either a pair of pebbles sitting on the same vertex,

or a single pebble sitting on a target vertex, which in either case is called potential vertex. When counting

the number of potential moves of C in relation to a target D, we must be careful about counting too many

singletons on a target vertex v: min{C(v), D(v)} of the pebbles there are singleton potentials, while the

other C(v)−D(v) pebbles must be counted in pairs (since they would need to move to solve other targets).

To say that C has j potential moves means that the j pairs and singletons are pairwise disjoint. For example,

the configuration C on 5 vertices (v1, . . . , v5) with values (0, 1, 1, 2, 7) has 4 potential moves if the target D

has values (2, 0, 0, 0, 0), and 5 potential moves if D has values (1, 0, 0, 0, 2). The potential of C, pot(C), is

the maximum j for which C has j potential moves. Because every solution that requires a pebbling move

uses a potential move, the following fact is evident.

Fact 9. Let r be an empty vertex in a configuration C with pot(C) < t. Then C is not t-fold r-solvable.

Another useful tool is the following lemma.

Lemma 10. (Potential Lemma) Let G be a graph on n vertices. If C is a configuration on G of size

n+ y (y ≥ 0) having z zeros, then pot(C) ≥
⌈
y+z
2

⌉
.

A (induced) slide from a potential vertex v to a vertex r is a (induced) path between v and r with a

pebble on each interior vertex. Two slides are disjoint if the corresponding sets of pebbles are disjoint.

Let C be a configuration of c pebbles p1, p2, . . . , pc on a graph G. Let S be a t-fold r-solution of C moving

pebbles p1, p2, . . . , pt into the target vertex r. This means that S is a sequence σ1, σ2, . . . , σh of pebbling

steps after which a configuration with the pebbles p1, p2, . . . , pt on r is obtained. Assume that σi moves the

pebble pσi
from vertex vσi

to vertex v′σi
and discards the pebble p′σi

. We define the directed multigraph G(S)

to have the same vertex set as G, with a directed edge (vσi , v
′
σi

) for each pebbling step σi. The following

lemma of [20] is very useful. (It was given its descriptive name in [5].)
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Lemma 11. (No-Cycle Lemma) [20] If C is r-solvable then there is an r-solution S for which G(S) is

acyclic.

Another simplifying concept may be assumed by the next lemma. For 1 ≤ j ≤ t, let sj be the subsequence

of S moving the pebble pj from its original position (say a vertex vj) to the target r (i.e. the subsequence

of movements σi such that pσi
= pj) , and let s be the subsequence of S formed by the remaining pebbling

steps. We say that S is a tidy solution if S = s, s1, . . . , st, with each subsequence sj consisting of moving the

pebble pj along an induced slide from the vertex vj to r.

We say that S ′ is a tidy rearrangement of S if S ′ is a permutation of the pebbling steps of S and S ′ is

tidy. Since none of the pebbles p1, p2, . . . , pt is discarded in the solution S, the pebbling steps of S can be

permuted to create a new t-fold r-solution sequence S ′, namely, s,s1,. . .,st. Notice that when S is minimum

(i.e., using the fewest pebbling steps), the No-Cycle Lemma 11 implies that each subsequence sj consists of

moving the pebble pj along an induced slide from the vertex vj to r. That is, S ′ is tidy. We record this as

follows.

Lemma 12. (Tidy Lemma) If S is a t-fold r-solution of a configuration C on the graph G, then there is

a tidy rearrangement S ′ of S.

For an r-solution σ = σ1, . . . , σc, we define its cost to equal cost(σ) = c + 1. The idea is that we lose

one pebble in each step, plus one more pebble that is placed on r — these pebbles cannot be used in

subsequent r-solutions. We say that σ is cheap if cost(σ) ≤ 2d (and super-cheap if cost(σ) < 2d), and define

the parameter q(G, r) to be the minimum number of pebbles m so that every configuration of m pebbles

has a cheap r-solution. Of course we always have q(G, r) ≥ π(G, r). For the particular graph G = P
(k)
n with

simplicial target r we instead use the notation q(n, k).

We say that a graph G is r-(semi)greedy if every configuration of size at least π(G, r) has a (semi)greedy

r-solution; that is, every pebbling step in the solution decreases (does not increase) the distance of the moved

pebble to r.

Lemma 13. (Cheap Lemma) [3] Given the graph G with target r let G∗ be an r-greedy spanning subgraph

of G preserving distances to r. Then any configuration of G of size at least π(G∗, r) is cheap; i.e. q(G, r) ≤

π(G∗, r).

In particular, if T is a breadth-first-search spanning tree of G, rooted at r, then q(G, r) ≤ π(T, r). In our

case we can choose T to be a caterpillar with main path of length d, so that π(T, r) = 2d + n− d− 1; that

is, q(n, k) ≤ 2d + n− d− 1.

Another useful lemma is the following. The proof given in [3] for the case t = 1 extends to all t.
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Lemma 14. (Edge Removal Lemma) [3] Given the graph G with target r, if e is an edge between two

neighbors of r then πt(G, r) = πt(G− e, r).

Let Si be the slide from vn to v1 with interior vertices vi1 , vi2 , . . . , vimi
. Clearly, if j > j′, then ij ≤ ij′ .

If Si and S` are slides such that i1 ≤ `1, then we can assume that for every j, ij ≤ `j .

Finally, we note a key property of k-connected graphs that follows from Menger’s Theorem and Dirac’s

Fan Lemma (see Exercise 4.2.28 in [25].)

Lemma 15. Let X and Y be disjoint sets of vertices in a k-connected graph G. For each x ∈ X and y ∈ Y ,

let u(x) and w(y) be non-negative integers such that
∑
x∈X u(x) =

∑
y∈Y w(y) = k. Then G has k pairwise

internally disjoint (X,Y )-paths such that, for each x ∈ X and y ∈ Y , u(x) of them start at x and w(y) of

them end at y.

From Lemma 15 we obtain the following simple corollary.

Corollary 16. Let X and Y be disjoint sets of vertices in a k-connected graph G. For each x ∈ X and

y ∈ Y , let u(x) and w(y) be non-negative integers such that
∑
x∈X u(x) ≥ j and

∑
y∈Y w(y) ≥ j for some

j ≤ k. Then G has j pairwise internally disjoint (X,Y )-paths such that, for each x ∈ X and y ∈ Y , at most

u(x) of them start at x and at most w(y) of them end at y.

Proof. Since G is k-connected it is also j-connected. Choose any set of u′(x) ≤ u(x) and w′(y) ≤ w(y) such

that
∑
x∈X u

′(x) =
∑
y∈Y w

′(y) = j. Then apply Lemma 15.

3.2 Cutting Lemmas

Theorem 17. Let r be a vertex of a graph G and denote by Er some set of edges between neighbors of

r. Suppose that G − r − Er has connected components G1, . . . , Gj for some j > 1, and define G′i to be the

subgraph of G induced by V (Gi) ∪ {r}. Then

πt(G, r) = max∑j
i=1 ti=t+j−1

j∑
i=1

πti(G
′
i, r)− j + 1.

Proof. We begin by letting r and Er be as described in the hypothesis, namely, thatG−r−Er has components

G1, . . . , Gj , for some j > 1. By the Edge Removal Lemma 14, πt(G, r) = πt(G− Er, r).

For any positive t1, . . . , tj such that
∑j
i=1 ti = t + j − 1 (i.e.

∑j
i=1(ti − 1) = t − 1), there exist ti-

fold r-unsolvable configurations Ci on G′i of size πti(G
′
i, r) − 1. The union C = ∪ji=1Ci is therefore t-fold
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r-unsolvable, showing that πt(G− Er, r) ≥ 1 +
∑j
i=1(πti(G

′
i, r)− 1) =

∑j
i=1 πti(G

′
i, r)− j + 1. Hence

πt(G− Er, r) ≥ max∑j
i=1 ti=t+j−1

j∑
i=1

πti(G
′
i, r)− j + 1.

Let C be a configuration of maximum size on G that is not t-fold r-solvable, and let Ci denote the

restriction of C to G′i. Without loss of generality C(r) = 0, and so |C| =
∑j
i=1 |Ci|. For each i, Ci is

(ti − 1)-fold but not ti-fold r-solvable on G′i; thus |Ci| ≤ πti(G
′
i, r) − 1 and

∑j
i=1(ti − 1) ≤ t − 1 (i.e.∑j

i=1 ti ≤ t+ j − 1).

Now the maximality of |C| (and independence of {Ci}; that is, G′i and G′i′ intersect only on r and

so no Ci can affect another Ci′) implies that
∑j
i=1(ti − 1) = t − 1 and |Ci| = πti(G

′
i, r) − 1. Hence

|C| =
∑j
i=1(πti(G

′
i, r)− 1) and consequently

πt(G− Er, r) ≤ max∑j
i=1 ti=t+j−1

j∑
i=1

πti(G
′
i, r)− j + 1.

This finishes the proof.

Because every interior vertex of P
(k)
n satisfies the hypothesis of Theorem 17, we obtain the following

corollary.

Corollary 18. Let r = vi be an interior vertex of P
(k)
n . By removing the edges vhvj between vertices of

N(r) with h < i < j, we obtain two graphs P
(k)
n1 and P

(k)
n2 , with n1 + n2 = n+ 1, that are joined at r, which

is simplicial in both of them. Then

πt(P
(k)
n , r) = max

t1+t2=t+1
πt1(P (k)

n1
, r) + πt2(P (k)

n2
, r)− 1.

3.3 Chordal Lemmas

Lemma 19. Let r, v and u be three vertices of a chordal graph G. If v belongs to an induced path between

u and r, then any path between u and r contains either v or a neighbor of v. Accordingly, N [v] \ {r, u}

separates r from u.

Proof. Since v belongs to an induced path between r and u, there is a minimal r-u-separator containing v.

Since minimal separators in chordal graphs are cliques, every path between r and u contains either v or a

neighbor of v.

Lemma 20. Chordal graphs are semi-greedy.
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Proof. Let C be an r-solvable configuration on a chordal graph G. Suppose that S is a minimum r-solution

and that S is not semi-greedy. Then, after a tidy rearrangement of S if necessary (by the Tidy Lemma

12), we can assume S ends by moving a pebble p along an induced slide Q : (u = v1, v2, . . . , vh = r) where

dist(vi, r) < dist(vi+1, r) for some i ∈ {1, . . . , h − 2}. By Lemma 19, and the fact that i + 1 < h − 1 (else

dist(vi, r) < dist(vi+1, r) = 1, which would imply that vi = r), the path vi+1, vi+2, . . . , vh = r has an interior

vertex adjacent to vi, in contradiction with the fact that Q is an induced slide.

Lemma 21. Let v be a potential vertex of a configuration C on a graph G. Let u be any other vertex which

is separated from r by N [v] \ {r, u}. Let C ′ be the same configuration as C except that the potential vertex

v is changed to u; that is, C ′(v) = C(v)− 2, C ′(u) = C(u) + 2, and C ′(x) = C(x) otherwise. If C is t-fold

r-unsolvable, then C ′ is t-fold r-unsolvable.

Proof. Suppose otherwise that C ′ is t-fold r-solvable and let S be a minimum t-fold r-solution; by Lemma 20,

S is semi-greedy. We can assume that S takes a pebble p from u to r. Therefore, by a tidy rearrangement if

necessary (by the Tidy Lemma 12), we can also assume that S ends with a subsequence sp moving the pebble

p along an slide Q between u and r. Since N [v] \ {r, u} separates u from r, there exists an interior vertex of

Q, say x, that belongs to N [v]. This implies that replacing in S the subsequence sp by the movement of the

pebble p from v to r along the part of the slide Q between x and r, we obtain a semi-greedy t-fold r-solution

of the original configuration C, a contradiction.

The following theorem is not used in this paper, but is likely to be useful in future work.

Theorem 22. If G is chordal and C is t-fold r-unsolvable then there is a t-fold r-unsolvable configuration

C ′ with |C ′| = |C| and every potential vertex is simplicial.

Proof. Suppose that C is t-fold r-unsolvable and has a non-simplicial potential vertex v. If v is adjacent to

r, the proof is trivial. Otherwise, there exists a simplicial vertex u such that N [v] \ {r, u} separates u from

r. Therefore, the proof follows by Lemma 21.

3.4 Pebbling Number for Trees

We will make use of the following well known theorem of Chung [6] on the t-fold pebbling number of a

tree with target vertex r, using the notion of a maximum r-path partition P. One can compute such a P

iteratively as follows. Beginning with H = T , W = {r}, and P = ∅, we choose a longest path P in H having

one endpoint in W . Then we add P to P, add its vertices to W , remove its edges from H, and repeat.

The construction yields P = {P1, . . . , P`}, with subscripts signifying the order of inclusion in P, and with
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length(Pi) ≥ length(Pi+1). Note that the number of leaves of T equals `+ 1. In general, we write P(T, r) for

the maximum r-path partition of T .

Theorem 23. [6] Let T be a tree with maximum r-path partition P = {P1, . . . , P`}, with each Pi having

length ai. Then πt(T, r) = (t2a1 − 1) +
∑`
i=2(2ai − 1) + 1 = t2a1 +

∑`
i=2 2ai − `+ 1.

The pebbling number πt(T ) is given by choosing r to be a leaf of a longest path of T . We write P(T )

for the maximum path partition of T , equal to P(T, r) for this choice of r.

3.5 Path Power Lemma

Lemma 24. For 1 ≤ i ≤ 2, let ni ≥ 1 and ti ≥ 1. If n1 + n2 = n + 1 and t1 + t2 = t + 1, then

pt1(n1, k) + pt2(n2, k)− 1 ≤ pt(n, k).

Proof. Let di be the diameter of P kni
, and d be the diameter of P kn . Observe that d ≤ d1 + d2 ≤ d + 1.

Consider the following three cases.

1. t1 ≥ t0(n1, d1) and t2 ≥ t0(n2, d2).

Suppose, without loss of generality, that d1 ≥ d2. If either d ≤ 2 or d1 = d (which implies d2 = 1),

the proof is simple, so assume d ≥ 3 and d1 < d. Because d1 + d2 ≥ d we have

pt1(n1, k) + pt2(n2, k)− 1 = lt1(n1, k) + lt2(n2, k)− 1

= t12d1 + n1 − 2− k(d1 − 1) + t22d2 + n2 − 2− k(d2 − 1)− 1

≤ (t12d1 + t22d2) + (n− 4)− k(d− 2)

= (t12d1 + t22d2) + (n− 4)− k(d− 1) + k

≤ (t2d1 + 2d2) + (n− 4)− k(d− 1) + k

≤ (t2d−1 + 21) + (n− 4)− k(d− 1) + k since d1 < d

= (t2d−1 + k) + (n− 2)− k(d− 1).

Note that since d ≥ 3 we have d1 ≥ d/2 > 1. Thus, because t1 ≥ t0(n1, d1), we know that k ≤

t1(2d1−2)/(d1−1) ≤ t1(2d1−2) ≤ t2d−1, and so the above amount is at most t2d+(n−2)−k(d−1) =

lt(n, k) ≤ pt(n, k).

2. t1 ≤ t0(n1, d1) and t2 ≤ t0(n2, d2).

11



Here we have

pt1(n1, k) + pt2(n2, k)− 1 = wt1(n1) + wt2(n2)− 1

= 2t1 + n1 − 2 + 2t2 + n2 − 2− 1

= 2(t+ 1) + (n+ 1)− 5

= 2t+ n− 2

= wt(n)

≤ pt(n, k).

3. t1 > t0(n1, d1) and t2 < t0(n2, d2), or t1 < t0(n1, d1) and t2 > t0(n2, d2).

Without loss of generality, we may assume for former, in which case we have t1(2d1 −2) > k(d1−1)

and t2(2d2 −2) < k(d2−1). In particular, each di ≥ 2, and so we will make use of the fact that
(

2j−2
j−1

)
is an increasing function for j ≥ 2. Since t1 > t0(n1, d1), this implies that

k < t1

(
2d1 − 2

d1 − 1

)
< t

(
2d − 2

d− 1

)
, (1)

which means that pt(n, k) = lt(n, k) = t2d + n− 2− k(d− 1). Now we compute

pt(n, k)− [pt1(n1, k) + pt2(n2, k)− 1]− 1 =
[
t2d + (n− 2)− k(d− 1)

]
−
[
t12d1 + (n1 − 2)− k(d1 − 1) + 2t2 + (n2 − 2)

]
− 1

=
[
t2d − k(d− 1)

]
−
[
t12d1 − k(d1 − 1) + 2t2

]
≥
[
t(2d − 2)− k(d− 1)

]
−
[
t1(2d1 − 2)− k(d1 − 1)

]
,

which we will show is positive. Indeed, because of the second inequality in (1) we know that

t

(
2d − 2

d− 1

)
≥ t1

(
2d1 − 2

d1 − 1

)
,

so that

t(2d − 2)− k(d− 1) ≥ t1(2d1 − 2)

(
d− 1

d1 − 1

)
− k(d− 1),

which we will show is greater than t1(2d1 − 2)− k(d1− 1) as follows, using the first inequality of (1) in

12



the final step.

[
t1(2d1 − 2)

(
d− 1

d1 − 1

)
− k(d− 1)

]
−
[
t1(2d1 − 2)− k(d1 − 1)

]

= t1(2d1 − 2)

[
d− 1

d1 − 1
− 1

]
− k(d− d1)

=

[
t1

(
2d1 − 2

d1 − 1

)
− k
]

(d− d1)

=
[
t1(2d1 − 2)− k(d1 − 1)

](d− d1
d1 − 1

)
> 0.

This completes the proof.

4 Proof of Theorem 4

In this section we verify the Strong t-Target Conjecture 3 for trees. For a (C,D)-solution σ, define C[σ] to

be the subconfiguration of C consisting of only those pebbles used by σ, and, for v ∈ Ḋ, define σ[v] to be

the pebbling moves of σ consisting of only those pebbles used to solve v.

Proof. The result is trivially true when s(D) = 1, which means it is true also for t = 1 and for |V (T )| = 1,

so we assume that s(D) ≥ 2. We now proceed by induction on any of these parameters. Throughout, we

will use the fact that every tree T satisfies πt(T ) ≥ πt−1(T ) + 2; this is evident from Theorem 23 because

2a1 ≥ 2.

Let |C| = πt(T )− s(D) + 1. Then |C| = π(T ) + (t− 1)2d − s(D) + 1 ≥ π(T ) + (t− 1)(2d − 1) ≥ π(T ). If

some r ∈ Ċ ∩ Ḋ, then s(D − r) ≥ s(D)− 1 and so

|C − r| = |C| − 1

= (πt(T )− s(D) + 1)− 1

≥ πt(T )− s(D − r)− 1

≥ πt−1(T )− s(D − r) + 1.

If some r ∈ Ḋ has ecc(r) < d, then induction on t implies that C has an r-solution σ with cost at most

13



2ecc(r) ≤ 2d − 1. Then s(D − r) ≥ s(D)− 1 and so

|C − C[σ]| = |C| − cost(σ)

≥ (πt(T )− s(D) + 1)− (2d − 1)

≥ πt−1(T )− s(D − r) + 1.

Similarly, if some r2 ∈ Ḋ (i.e. D(r) ≥ 2) has ecc(r) = d, then induction implies that C has an r-solution σ

with cost at most 2d. Then s(D − r) = s(D) and so

|C − C[σ]| = |C| − cost(σ)

≥ (πt(T )− s(D) + 1)− 2d

= πt−1(T )− s(D − r) + 1.

In all three cases, induction on t implies that C − C[σ] is (D − r)-solvable, making C r-solvable, and any

target can be solved with cost at most 2eccT (v).

Therefore we may assume that Ċ ∩ Ḋ = ∅ and that if r ∈ Ḋ then r is a singleton leaf with ecc(r) = d.

Note that πt(T ) ≥ πt(T − v) + 1 for any leaf v, because each ai ≥ 1. Since t ≥ 2 we may choose distinct

targets r and v in Ḋ. Then

|C| = πt(T )− s(D) + 1

≥ (πt−1(T )− s(D) + 1) + 1

= πt−1(T )− s(D − v) + 1,

and so, by induction on t, there is an r-solution σ of cost at most 2d. Therefore

|C − C[σ]| ≥ (πt(T )− s(D) + 1)− 2d

= πt−1(T )− s(D) + 1

= πt−1(T )− s(D − r)

≥ πt−1(T − r)− s(D − r) + 1,

which implies, by induction on t and |V (T )|, that C − C[σ] is (D − r)-solvable and that any u ∈ Ḋ − r has

a solution of cost at most 2ecc(u). Combined with the prior r-solution, this proves the theorem.
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5 Proof of Theorem 5

In this section we verify the Strong t-Target Conjecture 3 for powers of paths. We begin by introducing

some important notation.

For pebbling functions F1 and F2, define the function F1±F2 by (F1±F2)(v) = F1(v)±F2(v), as well as

the functions F1∧F2 and F1∨F2 by (F1∧F2)(v) = min{F1(v), F2(v)} and (F1∨F2)(v) = max{F1(v), F2(v)}.

(Thus, if F = F1 ∧ F2 we have Ḟ = Ḟ1 ∩ Ḟ2, while if F = F1 ∨ F2 we have Ḟ = Ḟ1 ∪ Ḟ2.)

Let F be a pebbling function on G = P
(k)
n . Denote by G[i,j] the subgraph of G induced by the vertices

{vi, vi+1, ..., vj}, and define F[i,j] to be the restriction of F to G[i,j]. Define the pebbling arrangement of F ,

A(F ) = 〈a1, . . . , am〉, where m = n+ |F |, to be the sequence

〈v1, v1,1, . . . , v1,F (v1), v2, v2,1, . . . , v2,F (v2), . . . , vn, vn,1, . . . , vn,F (vn)〉.

Also, define the labeling of Ḟ to be the sequence

L(F ) = (v1,1, . . . , v1,F (v1), v2,1, . . . , v2,F (v2), . . . , vn,1, . . . , vn,F (vn)).

For 1 ≤ i ≤ n, we write Vi = {vi, vi,1, . . . , vi,F (vi)}. Given a pebbling arrangement A = 〈a1, . . . .am〉, define

A〈i,j〉 to be 〈ai, . . . .aj〉 if ai = vh, for some h, and 〈vh, ai, . . . , aj〉 if ai ∈ Vh−{vh}, for some h. Define F〈i,j〉

to be the pebbling function whose pebbling arrangement A(F〈i,j〉) equals A〈i,j〉.

Given a size t distribution D with s(D) < n, let j be the least index with D(vj) = 0 and define the

configuration WD by WD(v) = 0 for all v ∈ Ḋ, WD(vj) = 2t − 1, and WD(v) = 1 otherwise. Because

pot(WD) = t−1, WD is D-unsolvable. Notice also that |WD| = n− s(D) + 2t−2 = (pt(n, k)− s(D) + 1)−1.

In general, call a configuration C D-small if pot(C) = |D| − 1, and a graph G D-small if some D-

unsolvable configuration of maximum size is D-small. We say that G is t-small if it is D-small for all |D| = t.

In addition, define a maximum-size D-small configuration C to be canonical whenever the following holds:

if s(D) < n then C(v) = 0 for all v ∈ Ḋ and C(v) is odd for all v 6∈ Ḋ; if s(D) = n then, for some v

with D(v) = a = minuD(u), C(v) = 2t − a − 1 and C(u) = 0 for all u 6= v. A configuration C is called

stacked if there is some vertex v such that C(v) > 0 and C(u) = 0 for all u 6= v. Observe that the canonical

configuration in the s(D) = n case above is stacked. In [7], the following theorem was proven by using the

appropriate stacked configuration.

Theorem 25. If s(D) = n then π(Kn, D) = 2|D| −minuD(u).

This yields the following corollary.
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Corollary 26. If s(D) = n then Kn has a canonical D-small configuration.

Theorem 25 is part of the following, more general “Stacking Theorem” proved in [23] and [24].

Theorem 27. For every graph G, if s(D) = n(G) then there exists a D-unsolvable configuration of maximum

size that is stacked.

Lemma 28. If π(P
(k)
n , D) ≤ n + 2|D| − 2 − s(D) + 1 and if s(D) < n then P

(k)
n has a canonical D-small

configuration.

Proof. Suppose that s(D) < n and let C be a configuration of size n+2|D|−2−s(D) such that C(v) = 0 for

all v ∈ Ḋ and C(v) odd for all v 6∈ Ḋ. Such a configuration exists because, for t = |D|, we can place (t− 1)

pairs of pebbles the vertices not in Ḋ, and then one additional pebble on each such vertex, which amounts

to 2(t − 1) + (n − s(D)) = |C| pebbles in total. Now, such a C then clearly has pot(C) = pot(C ′) = t − 1;

that is, C is D-small. Moreover, this implies that π(P
(k)
n , D) ≥ |C| + 1 = n + 2|D| − 2 − s(D) + 1, and so

|C| = π(P
(k)
n , D)− 1; that is, C is maximal D-unsolvable, and hence canonical.

Fact 29. Suppose that P
(k)
n is t-wide, and let d = diam(P

(k)
n ) and D be a distribution of size t. If d ≥ 2

then s(D) < n. Contrapositively, if s(D) = n then d = 1; i.e. P
(k)
n = Kn.

Proof. This follows immediately from the inequality s(D) ≤ t ≤ k(d− 1)/(2d − 2) ≤ k/2 < n.

We prove Theorem 5 by proving the following stronger result.

Theorem 30. Let k, n and t be positive integers. Assume that D is a target distribution on G = P
(k)
n of

size t. Then π(G,D) ≤ pt(n, k) − s(D) + 1. In addition, if G is t-wide then it is D-small, while if G is

strictly t-long then any configuration C on G of size |C| ≥ pt(n, k)− s(D) + 1 solves any target v ∈ Ḋ with

cost at most 2eccG(v).

Proof. For given k, n and t, let D be a target distribution on P kn with t = |D| and s = s(D). Observe

that the D-unsolvable configuration WD witnesses that π(P
(k)
n , D) ≥ pt(n, k)− s(D) + 1. Hence, when P

(k)
n

is t-wide and s(D) < n, showing that π(P
(k)
n , D) ≤ pt(n, k) − s(D) + 1 will also imply that π(P

(k)
n , D) =

pt(n, k)− s(D) + 1 = |WD|+ 1, and so the second statement of the theorem follows immediately. Anyway,

in the arguments that follow, sometime we first prove the second statement and then we use it to prove the

upper bound.

We start using induction on k. The case k = 1 is a path, which has been proven in Theorem 4 (the only

t-wide path is the 1-wide P2), so we may assume that k > 1.

Now we proceed by induction on n.
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5.1 Base Step: n ≤ k + 1

Here P
(k)
n = Kn and d = 1, so pt(n, k) = 2t + n − 2. Let C be a pebbling configuration with |C| ≥

2t + n − 2 − s(D) + 1 and let H = C ∧ D, with |H| = h. Define C ′ = C − H and D′ = D − H, so that

|C ′| = |C|−h and |D′| = |D|−h. Observe that C ′ has at least s(D′) zeros, so that, by the Potential Lemma

10,

pot(C ′) ≥
⌈

(2t− s(D)− 1− h) + s(D′)

2

⌉
= (t− h) +

⌈
h− 1 + s(D′)− s(D)

2

⌉
≥ (t− h),

since s(D′) ≥ s(D)−h. Hence we can solve the h targets of H identically and then solve the remaining t−h

targets of D−H with the t− h potential of C −H. This completes the upper bound for the case n ≤ k+ 1.

As a consequence, P
(k)
n is D-small in this case. In addition, every minimal solution has cost at most 2 = 2d.

5.2 Induction Step: n ≥ k + 2

Here we have d ≥ 2. We use induction on t.

5.2.1 Base Case: t = 1

Here G can be t-long, but never strictly so; thus we will not need to calculate the cost of a solution.

In this case we have s = 1. Thus, if d = 2 then the result holds by Theorem 3 of [4] because G has a

universal vertex. So we will assume that d ≥ 3. In addition, if k = 2, then the result holds by Theorem 3.3

of [2], so we will assume that k ≥ 3.

Let r be the target vertex and suppose that r is internal. Then P
(k)
n − r consists of two components

G1 and G2 such that, for each i, the subgraph of P
(k)
n induced by V (Gi) ∪ {r} is isomorphic to P

(k)
ni , with

n1 + n2 = n+ 1. Now Corollary 18 states that (since the only solution to t1 + t2 = 2 is t1 = t2 = 1)

π(P (k)
n , D) = π1(P (k)

n , r) = π1(P (k)
n1
, r) + π1(P (k)

n2
, r)− 1,

which we can write as

π(P (k)
n , D) ≤ p1(n1, k) + p1(n2, k)− 1,
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by using induction on n. Then Lemma 24 reveals that this is at most p1(n, k) , as required.

Thus we may assume that r is simplicial; i.e. that D(v1) = 1. Let C be of size p1(n, k) − 1 + 1;

clearly we can assume C(v1) = 0. Hence there is a big vertex u, which means that there is an empty

(v1, u)-separator; i.e, there are k consecutive empty vertices vi+1, · · · , vi+k, for some i ≥ 1. Recall that

t0 = t0(k, d) = k(d− 1)/(2d − 2).

1. Near Case: i = 1.

Here we have C(v2) = · · · = C(vk+1) = 0. To put a pebble on v1, it is enough to put two pebbles on

vk+1. Let G′ = G[k+1,n], with configuration C ′ = C[k+1,n]. Notice that G′ = P
(k)
n′ , where n′ = n − k

and d′ = d− 1, and that |C ′| = |C|.

(a) Subcase: 1 ≤ t0(k, d).

In this case we have |C| = w1(n) = n. If 2 ≤ t0(k, d − 1) then, by induction on n, we have

π2(G′) = w2(n′) = n− k + 2 < n = |C ′|, and so we can place two pebbles on vk+1.

On the other hand, if 2 > t0(k, d− 1) then 2(2d−1 − 2) > k(d− 2) and so, by induction on n,

we have π2(G′) = 2(2d−1) + (n− k)− k(d− 2)− 2 = n+ [(2d − 2)− k(d− 1)] ≤ n = |C ′|; thus we

can place two pebbles on vk+1.

We can also conclude that in this case G is D-small.

(b) Subcase: 1 > t0(k, d).

In this case we have |C| = l1(n, k) = 2d + n− 2− k(d− 1). Because k ≥ 3, we know that k ≥ 2.

Thus −k(d−2) ≥ 2−k(d−1), which implies that 2(2d−1−2)−k(d−2) ≥ (2d−2)−k(d−1) > 0.

Hence 2 > t0(k, d− 1).

By induction on n we have π2(G′) = l2(n′, k) = 2(2d−1) + (n− k)− 2− k(d− 2) = |C ′|, and

so we can place two pebbles on vk+1.

2. Far Case: i ≥ 2.

Now we have that the first empty cutset is vi+1, · · · , vi+k, for some i > 1. Hence C(vi) > 0 and

there is a slide from vi to v1, so we may assume that C(vi) = 1. Therefore, to put a pebble on v1, it is

sufficient to put one more pebble on vi from the configuration C ′ = C[i,n]−vi = C[i+1,n] on G′ = G[i,n].

Notice that G′ = P
(k)
n′ , where n′ = n− i+ 1, and that |C ′| ≥ |C| − i+ 1.

18



The diameters of G and G′ are related by

k(d′ − 1) + b′ = n′ − 2 = n− i+ 1− 2 = k(d− 1) + b− i+ 1,

so that k(d− d′) = i+ (b′ − b)− 1.

(a) Subcase: 1 ≤ t0(k, d).

In this case we have |C| = w1(n) = n. Because, for d ≥ 2 and fixed k, t0(k, d) is a strictly

decreasing function of d, and d′ ≤ d, we have 1 ≤ t0(k, d′). Then, by induction on n, we have

π1(G′) = w1(n′) = n− i+ 1 ≤ |C ′|, and so we can place a pebble on vi.

Again, we can conclude that in this case G is D-small.

(b) Subcase: 1 > t0(k, d).

In this case we have |C| = l1(n, k) = 2d +n− 2− k(d− 1) and (2d− 2) > k(d− 1). If 1 ≤ t0(k, d′)

then, by induction on n, we have π2(G′) = w2(n′) = n−i+1 < [2d+n−2−k(d−1)]−i+1 ≤ |C ′|,

and so we can place two pebbles on vk+1.

On the other hand, if 1 > t0(k, d′) then (2d
′ − 2) > k(d′ − 1). Because t0(k, d) is decreasing in

d, and d′ ≤ d, we have

(
2d
′ − 2

d′ − 1

)
− k ≤

(
2d − 2

d− 1

)
− k

≤
(

2d − 2

d′ − 1

)
− k

(
d− 1

d′ − 1

)
,

which implies that (2d
′ − 2)− k(d′ − 1) ≤ (2d − 2)− k(d− 1). Hence, by induction on n, we have

π1(G′) = 2d
′
+ (n− i+ 1)− k(d′ − 1)− 2 ≤ [2d + n− 2− k(d− 1)]− i+ 1 ≤ |C ′|, and so we can

place two pebbles on vk+1, each at cost at most 2eccG′ (vk+1), and therefore at total cost at most

2eccG(vk+1).

This completes the proof for the case t = 1.

5.2.2 Inductive Case: t ≥ 2.

Let C be of size pt(n, k)− s(D) + 1. We will prove C solves D. If C(x) ∧D(x) > 0 for some x, then we use

a pebble on x to solve a target on x, and then use C − x to solve D − x by induction on t. This is possible
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because pt(n, k) > pt−1(n, k) + 2 for all d ≥ 2 and all t, and because s(D − x) ≥ s(D)− 1, so that

|C − x| = (pt(n, k)− s(D) + 1)− 1

≥ pt−1(n, k)− s(D − x) + 1 .

Hence we may assume that Ċ ∩ Ḋ = ∅ (which in turn implies that s(D) < n), and no vertex adjacent to a

target vertex is big.

If C(v1) = D(v1) = 0, then we use induction on n, since

|C[2,n]| = pt(n, k)− s(D) + 1

≥ [pt(n− 1, k)− s(D[2,n]) + 1] + 1 .

The same can be said by symmetry for vn. Hence we may assume that each of v1 and vn have either a pebble

or a target on it.

We consider three cases regarding the size of t. Recall that t0 = t0(n, k) = k(d− 1)/(2d − 2).

1. Wide Case: t ≤ t0.

We consider two cases regarding the size of d.

(a) Subcase: d = 2.

Here we have t ≤ k(d− 1)/(2d − 2) = k/2. Let n = k + 2 + b and |C| = 2t+ n− 2− s+ 1, where

s = s(D). Define M = {vb+2, . . . , vk+1} and note that every vertex in M is dominating. This

means that every pair of potentials can solve any target via pebbling steps through any vertex in

M . Because Ċ ∩ Ḋ = ∅, we first observe that z ≥ s, where z is the number of zeros of C, which,

by Lemma 10, implies that

pot(C) ≥
⌈

(2t− 2− s+ 1) + s

2

⌉
= t .

Since t ≥ 2 and any pair of potentials solves any root r through any vertex of M , we have a

solution at cost 4 = 2ecc(r), because any root has eccentricity 2.

Next, for each x ∈ Ḋ, define u(x) = 2D(x) and, for each potential vertex y of C, define

w(y) = 2bC(y)/2c (i.e. twice the number of potentials at y). Then, since t ≤ k/2, Corollary 16

(with j = 2t ≤ k) yields 2t internally disjoint (D,B)-paths P, where B is the set of potentials of
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C. Let ρ be the number of targets in Ḋ that have a path in P with no zeros on it. Then there

are t− ρ targets in Ḋ, all of whose paths in P contain at least one zero; that is, there are at least

2(t− ρ) zeros of C different from supp(D). Hence

pot(C) ≥
⌈

(2t− 2− s+ 1) + (s+ 2t− 2ρ)

2

⌉
=

⌈
4t− 1− 2ρ

2

⌉
= 2t− ρ

= ρ+ 2(t− ρ) .

Thus we can solve the remaining t− ρ targets via pairs of potentials, which solves D. This com-

pletes the upper bound for the subcase d = 2 of the case t ≤ t0. As a consequence, P
(k)
n is D-small

in this subcase.

(b) Subcase: d ≥ 3. Notice that, if t′ ≤ t and n′ ≤ n, then P
(k)
n′ is t′-wide: d′ = diam(P

(k)
n′ ) ≤

diam(P
(k)
n ) = d, and so

t′ ≤ t ≤ k
(
d− 1

2d − 2

)
≤ k

(
d′ − 1

2d′ − 2

)
,

since d ≥ 3 and the function (x− 1)/(2x − 2) is decreasing for x > 1. Because P
(k)
n′ is t′-wide, we

may assume that P
(k)
n′ is t′-small for all such n′ and t′ (except for when n′ = n and t′ = t); that is,

given any target configuration D′ of size t′, among the D′-unsolvable configurations of maximum

size there exist at least one with t′ − 1 potential movements.

Before proving that C solves D, we will prove that P
(k)
n is D-small; i.e. we will prove that

there exists a pebbling configuration C∗ of maximum size among the D-unsolvable configurations

s.t. pot(C∗) = |D| − 1 = t− 1.

Write D = {vi1 , . . . , vit}, with ij ≤ ij+1 for all 1 ≤ j < t, and let C ′ be D-unsolvable of

maximum size. Moreover, among all such configurations, we may choose C ′ to have the fewest

pebbles in G[1,k]; i.e. c = |C ′[1,k]| is minimum. Also, since C ′ is D-unsolvable, we have |C ′| ≥

|WD| ≥ wt(n)− s(D) + 1, and so, from above, we can assume that Ċ ′ ∩ Ḋ = ∅, that no big vertex

of C ′ is adjacent to a vertex of D, and that each of v1 and vn have either a target or a pebble.

Observe that C ′ is (D − vij )-solvable for all 1 ≤ j ≤ t. Let A = 〈a1, . . . , am〉 be the pebbling

arrangement of C ′+D, with m = n+|C ′|+|D|. Denote by C ′〈i,j〉 the portion of C ′ that is in A〈i,j〉.

For each 1 ≤ j ≤ t define ιj such that vij = aιj , and define C ′Lj
= C ′〈1,ιj〉 and C ′Rj

= C ′〈ιj ,n〉, with

21



v1 v2 v3 v4 v5 v6
× D = {v21 , v23 , v4}

# C = {v42 , v35 , v6}

A(C +D) = 〈v1, v1,1, v1,2, v2, v2,1, v2,2, v2,3, v2,4, v3, v3,1, v3,2, v4, v4,1, v5, v5,1, v5,2, v5,3, v6, v6,1〉

j ιj
1 2
2 3
3 10
4 11
5 13

D′L1
= {v1}

D′L2
= {v21}

D′R4
= {v3, v4}

C ′L1
= {}

C ′R2
= {v42 , v35 , v6}

C ′L4
= {v42}

Figure 1: Example for G = P
(2)
6 with t = 5, vi5 = v4, and D does not precede C.

DLj = {vi1 , . . . , vij} and DRj = {vij , . . . , vit}. See an example in Figure 1.

If some 1 < j < t has C ′Lj
DLj -unsolvable and C ′Rj

DRj -unsolvable then, by induction on

t there exist maximum DLj
-unsolvable C∗Lj

that is DLj
-small, and maximum DRj

-unsolvable

C∗Rj
that is DRj

-small. By Corollary 26 and Lemma 28, we may choose both C∗Lj
and C∗Rj

to

be canonical. Because Ċ ′ ∩ Ḋ = ∅, we have s(D) < n, which implies that either s(DLj ) < ij

or s(DRj
) < n − ij + 1. By symmetry, we will assume the former, from which follows that

C∗Lj
(vij ) = 0. This implies that Ċ∗Lj

∩ Ċ∗Rj
= ∅. Then C∗ = C∗Lj

+ C∗Rj
is D-unsolvable and

D-small, since pot(C∗) = pot(C∗Lj
) + pot(C∗Rj

) = (j − 1) + (t− j) = t− 1. And it is of maximum

size, since |C∗| = |C∗Lj
| + |C∗Rj

| ≥ |C ′Lj
| + |C ′Rj

| = |C ′| and C ′ is maximum D-unsolvable (the

second equality holds because C ′(vij ) = 0, by assumption).

Thus, for all 1 < j < t, either C ′Lj
is DLj

-solvable or C ′Rj
is DRj

-solvable. The same holds

true if j ∈ {1, t} and vij is not simplicial, although induction is on n instead of t.

If vi1 is not simplicial, then C ′L1
must solve DL1 . Let h be the biggest j such that C ′Lj

solves

DLj
. Clearly, h < t and C ′Rh+1

does not solve DRh+1
, which implies that either h + 1 = t and

vit = vn is simplicial, or C ′Lh+1
solves DLh+1

in contradiction to the choice of h. We conclude that

if vi1 is not simplicial, then vit is. Therefore, we may assume that the graph is labeled so that

v1 ∈ Ḋ.

First suppose that c = 0 and set C ′′ = C ′[k+1,n] = C ′. For G = P
(k)
n , let G′ = G[k+1,n]

∼= P
(k)
n−k;

then G′ has diameter d′ = d − 1. In this case we use induction on n. We simplify notation

somewhat; DL = D[1,k], DR = D[k+1,n], tL = |DL|, and tR = |DR| = t− tL. Then set n′ = n− k

and t′ = t+ tL.
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If G′ is t′-wide then define D′ = DR + 2tLvk+1; then |D′| = t′. Note that s(D′) = s(D) −

s(DL) + ε for some ε ∈ {0, 1}. Hence s(D) − s(D′) + 2tL = s(DL) − ε + 2tL ≤ 3tL ≤ 3t ≤ k, so

that −s(D) ≥ −k + 2tL − s(D′). Therefore we have

|C ′′| = |C ′|

≥ n+ 2t− 2− s(D) + 1

≥ (n− k) + 2(t+ tL)− 2− s(D′) + 1

= n′ + 2t′ − 2− s(D′) + 1,

and so C ′′ is D′-solvable in G′, which implies that C ′ solves D in G, a contradiction.

If G′ is t′-long then define D′ = DR + 2D+k
L , where D+k

L =
∑k
i=1D(vi)vk+i so that s(D′) =

s(D)− s(D+k
L ∩DR). Now we have

|C ′′| = |C ′|

≥ n+ 2t− 2− s(D) + 1

= k(d− 1) + b+ 2t− s(D) + 1

≥ t(2d − 2) + b+ 2t− s(D) + 1

≥ t2d + b− s(D′) + 1

= (t+ tL)2d−1 + tR2d−1 + b− s(D′)− s(D+k
L ∩DR) + 1

= [t′2d
′
+ b− s(D′) + 1] + [tR2d

′
− s(D+k

L ∩DR)]

≥ [t′2d
′
+ b− s(D′) + 1] + [4tR − 3tR]

≥ t′2d
′
+ b− s(D′) + 1.

Hence C ′ is D′-solvable in G′, which implies that C ′ solves D in G, a contradiction.

These contradictions imply that c > 0. We now define j to be minimum so that vj ∈ Ċ ′, with

C ′′ = C − vj and D′ = D + vj − v1. If D(v1) = 1 then s(D′) = s(D) and D′(v1) = 0, so set

G′ = G− v1 ∼= P
(k)
n′ , where n′ = n− 1. Then

|C ′′| = |C ′| − 1

= (n+ 2t− 2− s(D) + 1)− 1

= n′ + 2t− 2− s(D′) + 1,
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which means, since P
(k)
n′ is t-wide, that C ′′ is D′-solvable on G′ by induction on n. If instead

D(v1) > 1 then s(D′) = s(D) + 1 and c′ = |C ′′[it+1,k+1]| = c− 1, and so

|C ′′| = |C ′| − 1

= (n+ 2t− 2− s(D) + 1)− 1

= n+ 2t− 2− s(D′) + 1,

which means that C ′′ is D′-solvable on G by minimality of c. In either case, because j ≤ k + 1,

the pebble placed by C ′′ on vj , along with the pebble of C ′ already on vj , can reach v1, which

makes C ′ D-solvable, a contradiction.

This final contradiction implies that C ′ is D-small, which completes the proof that P
(k)
n is

D-small.

We complete the proof of this subcase of Theorem 5 as follows. Since P
(k)
n is D-small, we

have that π(P
(k)
n , D) = 1 + |C ′| s.t. C ′ is D-small. It is easy to see that if C ′ is D-small, then

|C ′| ≤ n−s(D)+2pot(C ′) ≤ n−s(D)+2(t−1), and thus π(P
(k)
n , D) ≤ 1+n−s(D)+2(t−1) = |C|,

which implies the result.

2. Intermediate Case: t0 < t = dt0e.

(a) Subcase: d = 2.

We note that this case follows the same argument as in the d = 2 subcase of the wide case t ≤ t0;

only the size of C is different.

Here we have t = (k+ 1)/2 for some odd k. Let n = k+ 2 + b and |C| = 4t+ b− s+ 1, where

s = s(D). Define M = {vb+2, . . . , vk+1} and note that every vertex in M is dominating. This

means that every pair of potentials can solve any target via pebbling steps through any vertex in

M . We first observe that z ≥ s , which implies that

pot(C) ≥
⌈

(4t+ b− s+ 1− n) + s

2

⌉
= t+

⌈
2t+ b+ 1− n

2

⌉
= t .

Since t ≥ 2 and any pair of potentials solves any root r through any vertex of M , we have a
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solution at cost 4 = 2ecc(r), because any root has eccentricity 2.

Next, for each x ∈ Ḋ, define u(x) = 2D(x) and, for each potential vertex y of C, define

w(y) = 2bC(y)/2c (i.e. twice the number of potentials at y). Then, since t = (k+ 1)/2, Corollary

16 (with j = 2t− 1 ≤ k) yields 2t− 1 = k internally disjoint (D,B)-paths P, where B is the set

of potentials of C. Let ρ be the number of targets in Ḋ that have a slide in P. Then there are

t − ρ targets in Ḋ, all of whose paths in P contain at least one zero; that is, there are at least

2(t− ρ)− 1 zeros of C different from supp(D). Hence

pot(C) ≥
⌈

(4t+ b− s+ 1− n) + (s+ 2t− 2ρ− 1)

2

⌉
=

⌈
4t− 2ρ− 1

2

⌉
= 2t− ρ

= ρ+ 2(t− ρ) .

Thus we can solve the remaining t− ρ targets via pairs of potentials, which solves D.

(b) Subcase: d ≥ 3.

Now we have pt(n, k) = lt(n, k) = t2d + b = t2d + (n− 2)− k(d− 1). Let |C| = lt(n, k)− s(D) + 1.

Note that, because t = dt0e, for any n′ = k(d′ − 1) + 2 + b for some 0 ≤ b < k, P
(k)
n′ is t′-wide

for all t′ ≤ t and d′ = diam(P
(k)
n′ ) ≤ diam(P

(k)
n ) = d, provided that either t′ < t or d′ < d:

(
d− 1

2d − 2

)
≤
(
d′ − 1

2d′ − 2

)
,

and thus

t′ ≤ t = dt0(k, d)e =

⌈
k

(
d− 1

2d − 2

)⌉
≤
⌈
k

(
d′ − 1

2d′ − 2

)⌉
= dt0(k, d′)e.

Notice that we get a strict inequality if either t′ < t or d′ < d, which would then imply that

t′ ≤ t0(k, d′); i.e. P
(k)
n′ is t′-wide.

Let A = 〈a1, . . . , am〉 be the pebbling arrangement for the pebbling function C ∨ D. For

1 ≤ i < j ≤ m, let C〈i,j〉 (resp., D〈i,j〉) refer to only those pebbles (resp., targets) of (C ∨D)〈i,j〉

that correspond to C (resp., D). Now set s〈i,j〉 = |supp(D〈i,j〉)|, let hj be such that aj ∈ Vhj
, and

define

∆(j) = |C〈1,j〉| − p|D〈1,j〉|(hj , k) + s〈1,j〉 − 1
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Notice that 1 ≤ hj ≤ n− b− 1 implies that

∆(j) = |C〈1,j〉| − 2|D〈1,j〉| − hj + s〈1,j〉 + 1,

because G[1,hj ] is |D〈1,j〉|-wide in that range. Similarly, the analogous formula holds for G〈j+1,m〉

for b ≤ hj+1 ≤ n because it is |D〈j+1,m〉|-wide in that range. The function ∆ serves as an indicator:

∆(j) ≥ 0 implies that C〈1,j〉 solves D〈1,j〉. If ∆(j) is too large, |C〈j+1,m〉| may be too small to

solve D〈j+1,m〉. However, if ∆(j) = ε ∈ {0, 1} for some j for which both G〈1,j〉 is |D〈1,j〉|-wide

and G〈j+1,m〉 is |D〈j+1,m〉|-wide, then we can show that C〈j+1,m〉 solves D〈j+1,m〉. Indeed,

|C〈j+1,m〉| = |C| − |C〈1,j〉|

= (t2d + b− s(D) + 1)− (2|D〈1,j〉|+ hj − s〈1,j〉 − 1 + ε)

≥ (2t+ n− 2− s(D) + 2)− (2|D〈1,j〉|+ hj − s〈1,j〉 − 1 + ε)

= 2(t− |D〈1,j〉|) + (n− hj)− (s(D)− s〈1,j〉) + (1− ε)

≥ 2|D〈j+1,m〉|+ (n− hj + 1)− 2− s〈j+1,n〉 + 1

≥ p|D〈j+1,m〉|(G〈j+1,m〉)− s〈j+1,m〉 + 1

≥ π(P
(k)
n−hj−1+1, D〈j+1,m〉).

Therefore, we aim to show that such a j exists. Let j∗ be maximum such that G〈1,j∗〉 is

|D〈1,j∗〉|-wide. Then G〈1,j〉 is |D〈1,j〉|-wide for all 1 ≤ j ≤ j∗. Thus

∆(j)−∆(j − 1) =



−1 for aj = vh, for some h,

+1 for aj ∈ Ċ,

−1 for aj ∈ Ḋ and aj = vh,1, for some h, and

−2 for aj ∈ Ḋ and aj = vh,`, for some h and some ` > 1.

(2)

Moreover, for j > j∗, even in the cases for which G〈1,j〉 is |D〈1,j〉|-long, one can see that

∆(j)−∆(j − 1) > 0 if and only if aj ∈ Ċ, in which case ∆(j)−∆(j − 1) = 1. (3)

Indeed, assume that G〈1,j〉 is t-long.

• Consider when |D〈1,j−1〉| = t. If G〈1,j−1〉 is t-long then aj ∈ V (G)∪ Ċ since D〈j,m〉 is empty.
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In this case,

∆(j)−∆(j − 1) =

 −1 for aj = vh, for some h, and

+1 for aj ∈ Ċ.

If G〈1,j−1〉 is t-wide then aj ∈ V(d−1)k+2, and so ∆(j)−∆(j−1) ≤ (d−1)k−t(2d−2)−1 ≤ −2.

• Now consider when |D〈1,j−1〉| < t. Then G〈1,j−1〉 is (t− 1)-wide, and so aj ∈ Ḋ. In this case,

∆(j)−∆(j − 1) ≤

 −2 for aj ∈ Ḋ and aj = vh,1, for some h, and

−3 for aj ∈ Ḋ and aj = vh,`, for some h and some ` > 1.

This proves (3).

Suppose that D(v1) > 0 and D(vn) > 0. Then ∆(2) = −1 and ∆(m) = 0. Let j′ be minimum

such that ∆(j′) = 0, with aj ∈ Vh. Because of Equations (2) and (3), we must have both aj′−1

and aj′ in Ċ. Indeed, ∆(j′) = 0 implies that ∆(j′−1) = −1 and ∆(j′−2) = −2 by the definition

of j′. This means that ∆(j′)−∆(j′−1) = 1 and ∆(j′−1)−∆(j′−2) = 1, so that aj′ and aj′−1 are

both pebbles; i.e. vh is big. Since no big vertex is adjacent to a target, we have k+1 < h < n−k,

which proves the existences of the desired j.

Now suppose that D(v1) = 0 or D(vn) = 0. By symmetry we will assume that D(v1) = 0.

Suppose that vh ∈ Ḋ for some 1 < h ≤ k+1. Because no big vertex is adjacent to a target vertex,

C(vi) ≤ 1 for all i < h; thus |C[1,h−1]| ≤ h− 1. Therefore

|C[h,n]| = |C| − |C[1,h−1]|

≥ (t2d + n− 2− k(d− 1)− s(D) + 1)− (h− 1)

= t2d + (n− h+ 1)− 2− k(d− 1)− s(D) + 1.

If h ≤ b then Pn−h+1 is t-long, and so this value equals pt(P
(k)
n−h+1) − s(D) + 1, implying that

C[h,n] solves D by induction on n. If b < h ≤ k + 1 then Pn−h+1 is t-wide, and so this value is at

least (n− h+ 1) + 2t− 2− s(D) + 1 = pt(P
(k)
n−h+1)− s(D) + 1, implying that C[h,n] solves D by

induction on n.

Thus we may assume that D[1,k+1] is empty. Notice that the above arithmetic also proves that

if h is the minimum index such that vh ∈ Ḋ, then |C[1,h−1]| ≥ h: if |C[1,h−1]| ≤ h− 1 then remove

G[1,h−1]; then C[h,n] solves D by induction on n, because G[h,n] is t-wide, since h > k + 1. We

will make use of this below.

Let j0 be minimum so that aj0 ∈ Ḋ; thus aj0 ∈ Vh. Because |C〈1,j0〉| = |C[1,h−1]| ≥ h ≥
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π(G〈1,j0〉, vh) (G〈1,j0〉 is 1-wide because 1 < t), we have ∆(j0) ≥ 0. If ∆(j0) ∈ {0, 1} then we

are done; thus we will assume that ∆(j0) > 1. Now let j∗ be maximum so that aj∗ ∈ Ḋ and let

h∗ be such that aj∗ ∈ Vh∗ . Of course, if ∆(j∗) ≥ 0 then we are done, so assume otherwise; i.e.

∆(j∗) < 0.

By the definition of j∗, we have that G〈1,j〉 is |D〈1,j〉|-wide for all 1 ≤ j < j∗. Thus Equation (2)

applies. Because ∆ never decreases by more than 2, this implies the existence of some j0 ≤ j′ < j∗

with ∆(j′) ∈ {0, 1}, completing the proof in this case.

3. Long Case: t > dt0e.

Here we have pt(n, k) = lt(n, k) = t2d + (n− 2)− k(d− 1). Let |C| = lt(n, k)− s(D) + 1. In this case,

t−1 ≥ dt0e, and so (t−1)(2d−2) ≥ k(d−1), which implies that t2d−k(d−1) ≥ 2d−2+2t ≥ 2d−d+1

since 2t+ d ≥ 3. Hence

t2d + n− 2− k(d− 1) ≥ 2d + n− d− 1. (4)

Let Ti be a breadth-first-search spanning tree of G, rooted at vi (with T1 isomorphic to a caterpillar

with main path of length d), then π(Ti, vi) ≤ π(T1, v1) = 2d + n − d − 1. Then inequality (4) implies

that |C| ≥ π(T1, v1)−s(D)+1 ≥ π(Ti, vi)−s(D)+1 and so, by Theorem 4, C solves any target vi ∈ Ḋ

along Ti with cost at most 2eccTi
(vi).

If some x ∈ Ḋ has D(x) ≥ 2 or has eccTi
(x) < d, then

|C − C[σx]| ≥ (pt(n, k)− s(D) + 1)− 2eccTi
(x)

= (pt−1(n, k)− s(D − x) + 1) + (2d − 2eccTi
(x)) + (s(D − x)− s(D))

≥ π(G,D − x),

(5)

and so C − σx solves D − x.

Hence D consists of singleton targets only, each with eccentricity d. That is, D = D[1,b+1]∪D[n−b,n];

i.e. Ḋ ⊆ V[1,b+1] ∪ V[n−b,n]. Without loss of generality, we may assume that Ḋ[1,b+1] 6= ∅. In addition,

if cost(σvi) = 2d for i ∈ [1, b+ 1] then every potential vertex vj in C[σvi ] is at distance d from vi; that

is, j ∈ [n − b + i − 1, n]. Since no big vertex is adjacent to a target, we then have Ḋ[n−b,n] = ∅; i.e.

D = D[1,b+1]. Furthermore, if any length-d path P from a huge (C(v) ≥ 2dist(v,r) for some r ∈ Ḋ)

vertex v to some target r contains an interior pebble, then there is a super-cheap r-solution from v

along P . The calculations of Inequality (5) show that the existence of a cheap solution yields a t-fold

solution by induction on t.
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Now, if vj is big, then j ∈ [n− b+ i− 1, n], so define C ′ by C ′(vj) = C(vj)− 2, C ′(vn) = C(vn) + 2,

and C ′(v) = C(v) otherwise. Then any (C ′, D)-solution can be converted to a (C,D)-solution because

N(vn)⊆N [vj ]. Thus, if C is not D-solvable, then neither is C ′. In other words, we may assume that

the only big vertex of C is vn.

This implies that, for every vi ∈ Ḋ, the rail Ri = (vi, vi+k, . . . , vi+(d−1)k) has no pebbles. Let j

be minimum such that vj ∈ Ḋ. Now define the graph G′ = G − {Ri}vi∈Ḋ−vj , with corresponding

configuration C ′ = CG′ , and notice that G′ ∼= P
(k′)
n′ , where n′ = n− (t− 1)d and k′ = k − (t− 1). In

addition, b′ = b− (t− 1) and d′ = d. By induction on n, we have that

|C ′| = |C|

= (t2d + b)− s(D) + 1

= t2d
′
+ b′

= pt(n
′, k′).

which implies that C ′ is t-fold vj-solvable on G′. Equivalently, C is t-fold vj-solvable on G, using only

the vertices of G′. Because G[1,k+1] is a clique, any step vi′ 7→vj can be converted instead to vi′ 7→vj′

for any vj′ ∈ Ḋ, thus solving D.

This completes the proof.

6 Proof of Theorem 6

Lemma 31. If r is a simplicial vertex of P
(k)
n , then πt(P

(k)
n , r) ≥ pt(n, k).

Proof. Let r be the simplicial vertex v1 of P
(k)
n . For t ≥ 1 we define the configurations W = Wt,n and

L = Lt,n,k on P
(k)
n with target r as follows.

W (vi) =


0, for i = 1;

1, for 2 ≤ i ≤ n− 1;

2t− 1, for i = n.

L(vi) =


0, for 1 ≤ i ≤ (d− 1)k + 1;

1, for (d− 1)k + 1 < i ≤ n− 1;

t2d − 1, for i = n.

Notice that |W | = wt(n)− 1 and |L| = lt(n, k)− 1. Let Vi denote the vertices at distance i from v1.

Since pot(W ) = t− 1, Fact 9 shows that W is t-fold r-unsolvable.
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Since pot(L) = t2d−1−1, L can only place at most t2d−1−1 pebbles on Vd−1. If d = 1 then pot(L) = t−1,

so Fact 9 shows that L is t-fold r-unsolvable. If d > 1 then, by induction on d, L can only place at most

t2d−j − 1 pebbles on Vd−j for each 1 ≤ j ≤ d. Thus L can only place at most t − 1 pebbles on r, showing

that L is t-fold r-unsolvable.

Proof of Theorem 6. Lemma 31 provides the lower bound. Theorem 5 provides the upper bound. 2

7 Proof of Corollary 8

Proof. The values for n ≤ 8 are easy to check, so we assume that n ≥ 9. We know that k and d must be

related to n by k(d− 1) = n− 2− b, for some 0 ≤ b < k; that is,

n− 2− k < k(d− 1) ≤ n− 2. (6)

Then eπ(Pn) is the least value of k for which this relation holds with

k ≥ (2d − 2)/(d− 1). (7)

Given n ≥ 9, define κ = M(n) + 1 = b(n − 2)/(dlg ne − 2)c + 1 and δ = b(n − 2)/κc + 1, so that when

k = κ we have d = δ. Thus the upper bound follows by showing that (7) also holds with these values of k

and d.

We first observe that the definition of κ implies that

n− 2 = (κ− 1)(dlg ne − 2) + `, (8)

for some 0 ≤ ` < dlg ne − 2. Define ` = (dlg ne − 2)− `; then

κ =
n− 2− `
dlg ne − 2

+ 1 =
(n− 2) + `

dlg ne − 2
,

so that

n− 2

κ
=

(n− 2)(dlg ne − 2)

(n− 2) + `

= (dlg ne − 2)− `(dlg ne − 2)

(n− 2) + `
,
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and

dlg ne − 3 ≤ (dlg ne − 2)− (dlg ne − 2)2

n
≤ (dlg ne − 2)− `(dlg ne − 2)

(n− 2) + `
< dlg ne − 2.

Hence δ − 1 = b(n− 2)/κc = dlg ne − 3. This yields 2δ = 2dlgne−2 ≤ 2lgn−1 = n/2. Therefore, when n ≥ 9

we have

κ

⌊
n− 2

κ

⌋
=

(⌊
n− 2

dlg ne − 2

⌋
+ 1

)(
dlg ne − 3

)
>

(
n− 2

dlg ne − 2

)(
dlg ne − 3

)
≥ (n− 4)/2

≥ 2δ − 2,

finishing the proof of the upper bound.

For the lower bound, the values for n ≤ 210 can be checked by computer, so we assume that n > 210.

Given n, we define λ = dlg ne − 2 ≥ 9, N = n − 2λ+1, M = b(n − 2)/λc, and L = (n − 2) mod λ. Then

n− 2 = Mλ+ L, 0 < N ≤ 2λ+1 and 0 ≤ L < λ. Furthermore, we define m = b(n− 2)/λ2c, and ` = (n− 2)

mod λ2, so that n− 2 = mλ2 + `, with 0 ≤ ` < λ2. Finally, define κ′ = M −m− 1 and δ′ = b(n− 2)/κ′c+ 1,

so that (6) holds when k = κ′ and d = δ′. Thus the lower bound follows by showing that (7) fails with these

values of k and d.

We begin by rewriting κ′ as

κ′ =
2λ+1 − 2− L+N

λ
− 2λ+1 − 2− `+N

λ2
− 1

=
λ(2λ+1 − 2− L+N)− (2λ+1 − 2− `+N)− λ2

λ2
.

Then we show that δ′ − 1 = λ+ 1 as follows. For the upper bound we use the fact that `− λL ≥ −(λ− 1)2,

while for the lower bound we use `−λL ≤ λ(λ− 1). Additionally, we use the following inequality, which can

be easily checked to hold for λ ≥ 6:

λ2(2λ+1 − 2)

(λ− 1)(2λ+1 − 2)− (λ− 1)2 − λ2
< λ+ 2. (9)
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Then

δ′ − 1 =

⌊
λ2(2λ+1 − 2 +N)

λ(2λ+1 − 2− L+N)− (2λ+1 − 2− `+N)− λ2

⌋
=

⌊
λ2(2λ+1 − 2 +N)

(λ− 1)(2λ+1 − 2 +N) + (`− λL)− λ2

⌋
≤
⌊

λ2(2λ+1 − 2 +N)

(λ− 1)(2λ+1 − 2 +N)− (λ− 1)2 − λ2

⌋
≤
⌊

λ2(2λ+1 − 2)

(λ− 1)(2λ+1 − 2)− (λ− 1)2 − λ2

⌋
≤ λ+ 1,

the last inequality because of (9). Also

δ′ − 1 =

⌊
λ2(2λ+1 − 2 +N)

(λ− 1)(2λ+1 − 2 +N) + (`− λL)− λ2

⌋
≥
⌊

λ2(2λ+1 − 2 +N)

(λ− 1)(2λ+1 − 2 +N)− λ

⌋
≥
⌊

λ2

(λ− 1)

⌋
≥
⌊
λ2 − 1

(λ− 1)

⌋
= λ+ 1.

Now we show that inequality (7) fails when k = κ and d = δ. To do this, recall from above that N ≤ 2λ+1

and l − λL ≤ λ(λ− 1). Also, we note that 2λ3 + λ2 − λ+ 2 < 2λ+2 for λ ≥ 9. Then

κ′(δ′ − 1) =

(
λ(2λ+1 − 2− L+N)− (2λ+1 − 2− `+N)− λ2

λ2

)
(λ+ 1)

=
(λ2 − 1)(2λ+1 − 2 +N) + (λ+ 1)(`− λL+ λ2)

λ2

≤ (λ2 − 1)(2λ+2 − 2) + (λ+ 1)(λ(λ− 1) + λ2)

λ2

= 2λ+2 − 2− (2λ+2 − 2)− (2λ3 + λ2 − λ)

λ2

= 2λ+2 − 2− 2λ+2 − (2λ3 + λ2 − λ+ 2)

λ2

< 2λ+2 − 2

= 2δ
′
− 2.

This finishes the proof of the lower bound and, hence, the corollary.
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8 Comments

We observe the following simple corollary.

Corollary 32. Suppose that P
(k)
n is t-wide, d = diam(P

(k)
n ), and D is a distribution of size t. Then

π(P (k)
n , D) =

 2t−minvD(v) if s(D) = n, and

n+ 2t− 1− s(D) if s(D) < n.

Proof. The s(D) = n case follows from Fact 29 and Theorem 25, while the s(D) < n case follows from

Theorem 30 and Lemma 28.

We finish with a few comments, conjectures, and open problems that are driven by this work.

1. It would be interesting to calculate a precise formula for π(P
(k)
n , D) when P

(k)
n is t-long.

2. Does the above proof yields an efficient algorithm for D-solving pebbling configurations of size at least

πt(P
(k)
n )− s(D) + 1?

3. Is there a formula for π(T,D) for any distribution D on any tree T (akin to the |D| = 1 case)? If so,

what is it and how is it constructed?

4. We conjecture that the pebbling number of a chordal graph is always witnessed at a simplicial vertex;

that is, if G is chordal then there is some simplicial r such that π(G) = π(G, r).

5. What is the right generalization of Theorem 22 for a general target D on a chordal graph?

6. Note that π(Pd+12Kk) = k2d was proved in [6]. For n = k(d+1), we have Pd+12Kk ⊂ P (k)
n ⊂ Pd�Kk,

so that

πt(Pd+1 �Kk) ≤ πt(P (k)
n ) ≤ πt(Pd+12Kk) ≤ tπ(Pd+12Kk) = tk2d.

One can view Pd+1 �Kk as a “blow-up” of the path Pd by cliques Kk: each vertex of Pd is replaced

by a clique of size k, and vertices from consecutive cliques are adjacent. More generally we could blow

up the path vertices by different amounts, using the notation Kk0 1 Kk2 1 · · · 1 Kkd , which is what is

studied by Sieben in [22]. In this context, for n = k(d−1)+ b+2 and G = K1 1 Kk 1 · · · 1 Kk 1 Kb+1,

we have P
(k)
n ⊂ G, so that π(P

(k)
n ) = π(G), since the arguments of Lemma 31 work on G as well.

7. Might some of the methods developed here be useful in lowering the upper bound of k(d) ≤ 22d+3 from

[8] mentioned in the Introduction?
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