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Abstract. Graph pebbling is a game played on graphs with pebbles
on their vertices. A pebbling move removes two pebbles from one
vertex and places one pebble on an adjacent vertex. The pebbling
number π(G) is the smallest t so that from any initial configuration
of t pebbles it is possible, after a sequence of pebbling moves, to place
a pebble on any given target vertex. In this paper, we provide the
first results on the pebbling numbers of snarks.
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1 Introduction

Graph pebbling is a mathematical game or puzzle that involves moving
pebbles around a connected graph, subject to certain rules. The objective
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of the game is to place a certain number of pebbles on specific vertices of
the graph, typically with the aim of reaching a particular configuration of
pebbles or minimizing the number of moves required to achieve a given
configuration. Various forms of graph pebbling have applications in num-
ber theory, computer science, physics, and combinatorial optimization, and
have been studied extensively in mathematics (see [9]).

In this paper, G = (V,E) is always a simple connected graph. The
numbers of vertices and edges of G and its diameter are denoted by n(G),
e(G), and D(G), respectively. For a vertex w and positive integer k, denote
by Nk[w] the set of all vertices that are at a distance at most k from w.

1.1 Pebbling number

A configuration C on a graph G is a function C : V (G) → N. The
value C(v) represents the number of pebbles at vertex v. The size |C| of
a configuration C is the total number of pebbles on G. A pebbling move
consists of removing two pebbles from a vertex and placing one pebble
on an adjacent vertex. For a target vertex r, C is r-solvable if one can
place a pebble on r after a sequence of pebbling moves, and is r-unsolvable
otherwise. Also, C is solvable if it is r-solvable for all r. The pebbling
number π(G, r) is the minimum number t such that every configuration of
size t is r-solvable. The pebbling number of G equals π(G) = maxr π(G, r).
A vertex with zero, one, or at least two pebbles on it is called empty, a
singleton, or big, respectively.

The basic lower and upper bounds for every graph are max{n(G),

2D(G)} ≤ π(G) ≤ (n(G) −D(G))(2D(G) − 1) + 1 [4, 7]. A graph is called
Class 0 if π(G) = n(G). It is not yet known whether or not there exist
necessary and sufficient conditions for a graph to be Class 0.

1.2 Snarks

We define the important family of snark graphs which are cubic, bridge-
less, 4-edge-chromatic graphs. (In particular, we allow for arbitrary girth.)
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They are important for being related to the Four Color Theorem, which
holds if and only if no snark is planar [14]. In [1] we find the origins of
the study of the pebbling numbers of chordal graphs. Here we begin the
systematic study of the pebbling numbers of snarks.

The Petersen graph is the smallest snark, having 10 vertices, and was
discovered in 1898 [11]. Since then, many others have been discovered (see
[12] for a thorough history and Table 5.1 for the complete list).
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Figure 1.1: The graph J5 and its (green) v0-unsolvable configuration C of
size 22, which equals the configuration C∗ with an extra pebble on z−1.

For odd m = 2k+1, we define the mth flower snark Jm as follows (see
Figure 1.1) [2]. For each i ∈ ±{0, 1, . . . , k} we have vertices vi, xi, and yi

all adjacent to zi. Thus the number of vertices of the mth flower snark is
n(Jm) = 4m. The vertices {vi} form the natural cycle, with adjacencies
given by consecutive indices modulo m. The vertices {xi} (resp. {yi})
form a path given by the natural cycle without the edge xkx−k (resp.
yky−k). Finally, we add the edges xky−k and ykx−k. It is easy to see
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that Jm has a rotational symmetry, with a necessary twist; that is, the
automorphisms of Jm yield three vertex orbits. Thus the only targets
necessary to contemplate are, without loss of generality, v0, z0, and x0.

1.3 Results

It is known that the Petersen graph is Class 0 [7]. It is the smallest
snark and was the only one whose pebbling number was known (we now
also know π(J3).) We use the Small Neighborhood Lemma presented in
Section 2 to prove that the Petersen graph is the only Class 0 snark with
at least 23 vertices or girth at least 5.

Theorem 1.1. The only Class 0 snark of girth at least 5 is the Petersen
graph. Moreover, if G is a Class 0 snark with girth at most 4, then n(G) ≤
22.

We also prove the following bounds on the pebbling numbers of snarks.

Theorem 1.2. We have π(J3) = 13, 23 ≤ π(J5) ≤ 45, 40 ≤ π(J7) ≤ 84,
and for all k ≥ 4 with m = 2k + 1, we have 2k+2 + 8 ≤ π(Jm) ≤ (93 ·
2k−1 + 2)/5 + 2k − 3.

This corrects a claim of [10] that π(Jm) = 4m+ 1.

2 Techniques

The following lemma (SNL) is used to provide a lower bound on π(G).

Lemma 2.1 (Small Neighborhood Lemma [5]). Let G be a graph and
u, v ∈ V (G). If Na[u] ∩Nb[v] = ∅ and |Na[u] ∪Nb[v]| < 2a+b+1, then G is
not Class 0.

Given a graph G that satisfies the hypothesis of Lemma 2.1, define
the configuration C∗ = C∗

u,v by C∗(v) = 2a+b+1 − 1, C∗(x) = 0 for all
x ∈ (Na[u] ∪ Nb[v]) − {v}, and C∗(x) = 1 otherwise. The authors of [5]
use the first hypothesis to prove that C∗ is u-unsolvable and the second
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hypothesis to show that |C∗| ≥ n(G). In fact, we will use this configuration
to get even larger lower bounds below.

One can see how SNL is, in some sense, a sharpening of the basic
exponential lower bound. One consequence we will use here is the following
corollary.

Corollary 2.2 ([5]). If G is an n-vertex Class 0 graph with diameter at
least 3, then e(G) ≥ 5

3n− 11
3 .

Let T be a subtree of a graph G rooted at vertex r, with at least two
vertices. For a vertex v ∈ V (T ) let v+ denote the parent of v; i.e. the
T -neighbor of v that is one step closer to r (we also say that v is a child
of v+). We call T an r-strategy when we associate with it a non-negative
weight function w with the property that w(r) = 0 and w (v+) ≥ 2w(v)

for every other vertex v that is not a neighbor of r (and w(v) = 0 for
vertices not in T ). Let T be the configuration with T (r) = 0,T (v) = 1

for all other v ∈ V (T ), and T (v) = 0 everywhere else. We now define the
weight of any configuration C (including T ) by w(C) =

∑
v∈V w(v)C(v).

The following lemma (WFL) is used to provide an upper bound on π(G).

Lemma 2.3 (Weight Function Lemma [8]). Let T be an r-strategy of
G with associated weight function w. Suppose that C is an r-unsolvable
configuration of pebbles on V (G). Then w(C) ≤ w(T ).

3 Proof of Theorem 1.1

Note that every snark has 3n/2 edges and diameter at least 3. Then,
by Corollary 2.2, if n(G) > 22 we get 3n/2 < (5n−11)/3. Therefore, every
snark with n(G) > 22 is not Class 0. The remaining non-Petersen snarks
with fewer vertices and girth at least 5 (the flower J5, the Blanušas, and
the Loupekines) all have diameter 4 > 2 + 1, so for any vertices u and v

at distance 4 from each other we have |N2[u]| = 10 and |N1[v]| = 4. Thus
|N2[u] ∪N1[v]| = 14 < 16 = 22+1+1, and so none of these graphs are Class
0 by SNL. 2
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4 Proof of Theorem 1.2

First we prove the lower bounds. For these we only need to display
a configuration, of size one less than the lower bound, that cannot reach
some target.

For J3, define the size 12 configuration C by C(x1) = 7, C(u) = 1

for u ∈ {y0, y1, z−1, x−1, y−1}, and C(u) = 0 otherwise. We claim that C

cannot reach v0. Indeed, 7 pebbles cannot reach v0 at distance 3 without
the assistance of other pebbles. If we move a pebble from x1 to its only
nonempty neighbor y−1 it can continue through other nonempty vertices
until it reaches z0, z1, or v−1, none of which can help the remaining 5

pebbles on x1 to reach v0. Otherwise, we do not move to y−1, and the
analysis is simpler.

For J5, the v0-unsolvable configuration C∗
v0,x2

that is provided by SNL
for a = 2 and b = 1 has size 21. Notice that we can add a pebble to z−1 to
obtain the configuration C in Figure 1.1. It is not difficult to argue that
C is also v0-unsolvable, since any supposed solution would need to use the
pebble at z−1.

For m ≥ 7 (i.e. k ≥ 3), we will use C∗ = C∗
v0,xk

only. One can verify
that, for any vertex u of Jm and integer 2 ≤ i ≤ k, we have |Ni[u]| =
2(4i − 5) + 4 = 8i − 6. From this we can compute |C∗| = (2a+b+1 − 1) +

(n − |Na[v0]| − |Nb[xk]|). In the case that k is even we use a = k/2 and
b = a + 1, while if k is odd we use a = b = (k + 1)/2. In either case we
obtain |C∗| = 2k+2 + 8.

Now we prove the upper bounds, using WFL. For J3, we define three
v0-strategies T 0, T 1, and T−1 by

• T 0(z0, x0, y0, x1, y1, x−1, y−1, z1, z−1) = (8, 4, 4, 2, 2, 2, 2, 1, 1),
• T 1(v1, z1, x1, y1, x0, x−1, y−1) = (8, 4, 2, 2, 1, 1, 1) and
• T−1(v−1, z−1, x−1, y−1, y0, x1, y1) = (8, 4, 2, 2, 1, 1, 1),

giving rise to the inequality |C| ≤ 1
5(T 0 + T 1 + T−1) ≤ 64/5 whenever C

is v0-unsolvable. Hence π(J3, v0) ≤ 13. Similar strategies can be found for
targets z0 and x0 as well, and so π(J3) ≤ 13.
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For m ∈ {5, 7}, we define v0-strategies similarly. For m ≥ 9 (i.e.
k ≥ 4), we instead define three z0-strategies (see Figure 4.1) by

• T 0(v0, v1, v−1, v2, v−2, . . . , vk, v−k, zk, z−k, xk, yk, x−k, y−k)

= (2k+2, 2k+1, 2k+1, 2k, 2k, . . . , 2, 2, 1, 1, 1, 1) and
T 0(z1, z−1, . . . , zk−2, z2−k, zk−1, z1−k) = (5, 5, . . . , 5, 5, 4, 4);

• T 1(x0, x1, x−1, . . . , xk, x−k, zk, vk)

= (2k+2, 2k+1, 2k+1, . . . , 4, 4, 2, 1) and T 1(z2−k, z1−k) = (1, 1); and

• T−1(y0, y1, y−1, . . . , yk, y−k, z−k, v−k)

= (2k+2, 2k+1, 2k+1, . . . , 4, 4, 2, 1) and T−1(zk−2, zk−1) = (1, 1).
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Figure 4.1: The graph J11 and its three z0-strategies T 0 (in red), T 1 (in
blue), and T−1 (in green).

The sum T 0 +T 1 +T−1 has 3 vertices with coefficient 2k+2, 6 with 2i

(for each 3 ≤ i ≤ k + 1), and 2k + 6 with coefficient 5, giving rise to the
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inequality

5|C| ≤ T 0 + T 1 + T−1

= 6(23 + · · ·+ 2k+2)− 3(2k−1) + 5(2k + 6)

= 48(2k − 1)− 3(2k−1) + 10k + 30

= 93(2k−1) + 10k − 18,

whenever C is v0-unsolvable. Hence |C| ≤ (93 · 2k−1 + 2)/5 + 2k − 4, and
so π(Jm, z0) ≤ (93 · 2k−1 + 2)/5 + 2k − 3. Similar strategies can also be
found for targets v0 and x0, and so π(Jm) ≤ (93 · 2k−1 + 2)/5 + 2k− 3. 2

5 Final remarks

Table 5.1 shows the state of art of the pebbling numbers of several
well known snarks, using the basic bounds mentioned in the introduction,
as well as Theorems 1.1 and 1.2. We also note that the Watkins lower
bound comes from a more complicated argument that will be included in
a follow-up article, correcting a claim of [13] that π(W50) = 166.

Snark n(G) D(G) π(G)

Petersen 10 3 10
Flower J3 12 3 13
Flower J5 20 4 23 ≤ π(J5) ≤ 45

Flower J7 28 5 40 ≤ π(J7) ≤ 84

Flower Jm (m ≥ 9) 4m (m− 1)/2 2k+2 + 8 ≤ π(Jm) ≤ (93 · 2k−1 + 2)/5 + 2k − 3

Blanuša (1 and 2) 18 4 20 ≤ π(G) ≤ 211

Loupekine (1 and 2) 22 4 23 ≤ π(G) ≤ 271

Double-Star 30 4 31 ≤ π(G) ≤ 391

Szekeres 50 7 128 ≤ π(G) ≤ 5462

Watkins 50 7 169 ≤ π(G) ≤ 5462

Table 5.1: Bounds on the pebbling numbers of several well known snarks.
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