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Abstract

A family of sets is intersecting if every pair of its sets intersect. A star is a family with some element

(a center) in each of its sets. The classical result of Erdős, Ko, and Rado (1961) states that every

intersecting family of r-subsets of [n] with r ≤ n/2 has size at most that of a star. Let G be a graph,

α(G) be its independence number, and µ(G) be the size of a smallest maximal independent set in G.

We say that G is r-EKR if, among all maximum-sized intersecting families of independent r-subsets of

vertices of G, there is a star. In 2005 Holroyd and Talbot conjectured that every graph G is r-EKR

for all 1 ≤ r ≤ µ(G)/2. We verified the conjecture in 2011 for all chordal graphs containing an isolated

vertex.

For a graph without isolated vertices it is difficult to determine a center of a largest star, which is

often necessary to prove that it is EKR. A tree has the leaf property if some largest star occurs on one

of its leaves. We proved that every tree T has the leaf property when r ≤ 4, and in 2017 Borg and other

authors gave examples of families of trees not having the leaf property when r ≥ 5. A split vertex in a

tree is a vertex of degree at least 3. A spider is a tree with exactly one split vertex. Here we prove that

all spiders T have the leaf property for all r ≤ α(T ), and we characterize which of its leaves is a center

of a maximum star. A pendant tree is one for which each of its split vertices is adjacent to a leaf. Here

we show that all pendant trees T have the leaf property for all r ≤ α(T ). We also consider pendant

trees with exactly two split vertices and provide partial results on the locations of the centers of their

maximum stars.
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1 Introduction

Let [n] = {1, . . . , n}. Let 2[n] and
(
[n]
r

)
denote the family of all subsets and r-subsets of [n] respectively. A

family F ⊆ 2[n] is intersecting if F ∩ G ̸= ∅ for F,G ∈ F . For any F ⊆ 2[n] and x ∈ [n], let Fx be all sets

in F that contain x. A classical result of Erdős, Ko and Rado [10] states that if F ⊆
(
[n]
r

)
is intersecting for

r ≤ n/2, then |F| ≤
(
n−1
r−1

)
. Moreover, if r < n/2, equality holds if and only if F =

(
[n]
r

)
x
for some x ∈ [n].

This was shown as part of a stronger result by Hilton and Milner [17] which characterized the structure of

the “second-best” intersecting families.

There have been multiple proofs of the Erdős–Ko–Rado theorem. The original proof by Erdős, Ko and

Rado devised the now-central shifting technique and used it in conjunction with an induction argument to

prove the theorem. Daykin [8] demonstrated that the theorem is implied by the Kruskal–Katona theorem

(see [26, 27]). Katona [25] provided possibly the simplest and most elegant proof, a double counting argument

using the method of cyclic permutations. More recently, Frankl and Füredi [13] gave another short proof that

relied on a result of Katona on shadows of intersecting families [24], while we [23] provided an injective proof

using the aforementioned shifting technique. There have also been algebraic proofs, one using Delsarte’s linear

programming bound (see [15] and [16] for details), and another using the method of linearly independent

polynomials due to Füredi et al. [14].

The Erdős–Ko–Rado theorem is one of the fundamental theorems in extremal combinatorics, and has

been generalized in many directions. A very fine survey of the avenues of research, pursued as extensions of

the Erdős–Ko–Rado theorem, in the 1960’s, 70’s and 80’s, is presented by Deza and Frankl [9]. In this note,

we focus on a relatively recent graph-theoretic extension of the theorem.

1.1 Erdős–Ko–Rado graphs

For a graph G and integer r ≤ α(G), where α(G) is the size of a maximum-sized independent set in G, we

define Ir(G) to be the family of all independent sets of G having size r. For any family F of subsets of V (G)

we denote by Fx those sets of F that contain the vertex x. We call Ir
x the star centered on x, and call x the

star center (use use the notation Ir
x(G) in place of Ir(G)x). Call a graph G r-EKR if, for any F⊆Ir(G),

|F| ≤ maxx∈V (G)|Ir
x(G)|.

Earlier results by Berge [2], Deza and Frankl [9], and Bollobas and Leader [3], while not explicitly stated

in graph-theoretic terms, hint in this direction. The formulation was initially motivated by a conjecture

of Holroyd and Johnson ([19],[18]), who asked if powers of the cycle graph on n vertices are r-EKR for

every r ≥ 1. This conjecture was later proved by Talbot [28]. The formulation also has connections with

a fundamental conjecture of Chvátal [7] on intersecting subfamilies of hereditary (closed under subsets) set
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systems.

Holroyd and Talbot [21] made the following interesting conjecture about the EKR property of graphs.

Let µ(G) be the size of a smallest maximal independent set in G.

Conjecture 1.1. For a graph G, let 1 ≤ r ≤ µ(G)/2. Then G is r-EKR.

Conjecture 1.1 appears hard to prove in general, but has been proven in a much more general form by

Borg [4] for µ(G) sufficiently large in terms of r. In addition, it has been verified for certain graph classes.

In the paper that introduced this graph-theoretic formulation of the EKR problem, Holroyd, Spencer and

Talbot [20] proved the conjecture for a disjoint union of complete graphs, paths and cycles containing at least

one isolated vertex. Borg and Holroyd [6] later proved the conjecture for a certain class of interval graphs

containing an isolated vertex. In [22], we extended this result and verified the conjecture for all chordal

graphs containing an isolated vertex.

One of the reasons why verifying the conjecture for graph classes without isolated vertices is harder is

that the intermediate problem of finding a center of a largest star is difficult. (It is easy to see that in a graph

containing an isolated vertex, such a center is at an isolated vertex.) In this note, we consider this problem

for trees. To that end, for a graph G we define a vertex x to be a max r-center if |Ir
x(G)| is maximum among

all stars of G.

In [22], we proved that for any tree T and r ≤ 4, some leaf is a max r-center. The authors of [11] call

such trees r-HK (and HK if r-HK for all r). We also conjectured that this is true for every r ≥ 1. However,

Baber [1], Borg [5], and Feghali, Johnson, and Thomas [12] have separately shown that this conjecture is

not true. This makes it interesting to consider trees for which the conjecture is true.

Define a vertex v of a tree to be split if deg(v) ≥ 3. The authors of [12] consider a special class of trees

called spiders: trees having exactly one split vertex. (One can think of these as obtained from the star graph

K1,n, for some n ≥ 1, by multiple subdivisions of edges.) They prove that two families of spiders, namely

the family of all spiders obtained by subdividing each edge of the star graph exactly once (i.e. every leaf has

distance two from the split vertex), and also the family of all spiders containing one leaf vertex adjacent to

the split vertex, satisfy Conjecture 1.1. Note that in both of these subfamilies of spiders, it is easy to find a

vertex that is a max r-center (for any r ≥ 1). In this note, we focus on the problem of determining the max

r-centers in all trees with at most two split vertices. In Section 2 we prove (Theorem 2.3) that some leaf of

a spider is a max r-center and, in the process, also give a complete ordering on the sizes of all leaf stars. In

Section 3 we discuss trees with two split vertices and prove two theorems (Theorems 3.3 and 3.4) about the

location of their max r-centers.

We first introduce some notation to describe spiders.
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1.2 Spiders

Given a sequence of positive integers L = (l1, . . . , lk) we define the spider S = S(L) to be the tree defined

as follows. The head of S is the split vertex v0 and, for 1 ≤ i ≤ k, the leg Si is the path (v0, vi,1, . . . , vi,li).

We say that L is in spider order if the following conditions hold:

1. if li and lj are both odd and li < lj then i < j,

2. if li and lj are both even and li < lj then i > j, and

3. if li is odd and lj is even then i < j.

To simplify the notation somewhat, we will write Ir
0 (G) (respectively Ir

i,j(G)) in place of the more

cumbersome Ir
v0(G) (respectively Ir

vi,j (G)).

2 Spider Star Centers

Theorem 2.1. Let S = S(L) be a spider with L = (l1, . . . , lk) and suppose that r ≤ α(S). Then for each

1 ≤ i ≤ k and 1 ≤ j < li we have |Ir
i,j(S)| ≤ |Ir

i,li
(S)|.

Proof. We define an injection f : Ir
i,j(S) → Ir

i,li
(S).

Let A ∈ Ir
i,j(S) and consider the path P = (vi,j , . . . , vi,li). For 0 ≤ h ≤ (li − j) we define B by placing

vi,li−h ∈ B if and only if vi,j+h ∈ A; B is the flip of A on P , denoted flipP (A). Let W = A− V (P ); then set

f(A) = B ∪W .

Clearly, f(A) is independent, contains vi,li , and has size r. Also, if f(A′) = f(A), then A′ = A.

Theorem 2.2. Let S = S(L) be a spider with L = (l1, . . . , lk) and suppose that r ≤ α(S). Then for every

1 ≤ i ≤ k we have |Ir
0 (S)| ≤ |Ir

i,li
(S)|.

Proof. For fixed i we define an injection f : Ir
0 (S) → Ir

i,li
(S).

First we define f to be the identity on Ir
0 (S) ∩ Ir

i,li
(S).

Second, let A ∈ Ir
0 (S) \ Ir

i,li
(S) and consider the leg Si = (v0, vi,1, . . . , vi,li). Write vi,0 = v0 and, for

0 ≤ h ≤ (li) we define B by placing vi,li−h ∈ B if and only if vi,h ∈ A; B is the flip of A on Si, denoted

flipSi
(A). Let W = A− Si; then set f(A) = B ∪W .

Clearly, f(A) is independent, contains vi,li , and has size r. Also, if f(A′) = f(A), then A′ = A.

Together, Theorems 2.1 and 2.2 verify that for the family of spiders, max r-centers occur at leaves. In

what follows, we not only find the best leaf of a spider but give a complete ordering of its leaves according

to star size.
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Theorem 2.3. Let S = S(L) be a spider with L = (l1, . . . , lk) in spider order and suppose that r ≤ α(S).

Then for each 1 ≤ i < j ≤ k we have |Ir
i,li

(S)| ≥ |Ir
j,lj

(S)|.

Proof. Fix i and j with 1 ≤ i < j ≤ k. We define an injection f : Ir
j,lj

(S) → Ir
i,li

(S). There will be three

cases to consider, depending on the parities of li and lj . By symmetry, we may assume that li ̸= lj . First,

we develop some terminology.

For a set A ∈ Ir(S) we can define its ladder as follows. A pair of vertices {vi,h, vj,h} (1 ≤ h ≤ min(li, lj))

is called a rung, which we say is odd or even according to the parity of h. A rung is full if both its vertices

are in A. The ladder L of A is the set of either all even or all odd rungs, depending on whether v0 ∈ A or

not, respectively. L is full if all its rungs are full. If L is not full then there is a first (i.e. closest to v0)

non-full rung R. The partial ladder L′ is the union of A ∩ {v0} with set of all (necessarily full) rungs above

R. Let W denote the set of vertices of A not on Si ∪ Sj .

First, we define f to be the identity on Ir
i,li

(S) ∩ Ir
j,lj

(S).

Next, we define the function f on the remaining sets A ∈ Ir
j,lj

(S) \ Ir
i,li

(S) having partial ladders.

Define the path P from vj,lj , up its leg to R, across R, and down the other leg to vi,li ; i.e. P =

(vj,lj , . . . , vj,h, vi,h, . . . , vi,li), where R = {vi,h, vj,h}. Now slide A along P until it contains vi,li — the result

we call slideP (A). Then set f(A) = L′ ∪ slideP (A) ∪W . Of course |f(A)| = |A|, vi,li ∈ f(A), vj,lj ̸∈ f(A),

and f(A) is independent because R was not full. Moreover, L′(f(A)) = L′(A), and so the inverse of f on

f(A) is uniquely determined.

Note that in these first two cases f preserves both inclusion and exclusion of v0. This means that W

cannot affect the independence of f(A).

Finally, we define f on the remaining sets A ∈ Ir
j,lj

(S) \ Ir
i,li

(S) having full ladders. Spider order implies

either that lj is even and lj < li or that li is odd and li < lj . Having a full ladder and A ∈ Ir
j,lj

(S) \ Ir
i,li

(S)

(i.e. vj,lj ∈ A and vi,li ̸∈ A) implies that v0 ∈ A in both cases.

When lj < li we let P be the vj,ljvi,lj−1-path in S (i.e. P = (vj,lj , . . . , vj,1, v0, vi,1, . . . , vi,lj−1)). When

lj > li we let P be the vj,li−1vi,li -path in S (i.e. P = (vj,li−1, . . . , vj,1, v0, vi,1, . . . , vi,li)). In both cases we

let Q be the vj,ljvi,li-path in S, minus P . We shift A along P just one step toward vi,li — call the result

shiftP (A) — and flip A on Q (that is, if Q = (q0, ..., qk) then replace each qh in A by qk−h) — call the result

flipQ(A). Now define f(A) = shiftP (A) ∪ flipQ(A) ∪ W . Of course |f(A)| = |A| and, because of the flip if

lj < li or the shift if lj > li, vi,li ∈ f(A), vj,lj ̸∈ f(A), and A is independent. Moreover, f(A) has a full

ladder, and so the inverse of f on f(A) is uniquely determined.

Notice that, because of the shift, v0 ̸∈ f(A), and so W cannot affect the independence of f(A). Thus the

injection is complete.
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3 General Star Centers

Call a spider short if one of its legs has length 1 (l1 = 1 in spider order). Given a set D of vertices of a graph

H, define a (short) D-spidering of H to be any graph formed by adding a (short) spider to each vertex in

D; that is, for each v ∈ D add a (short) spider with center v.

A thread P = v1 · · · vk in a graphH is a path in which each interior vertex has degree two in G (deg(vi) = 2

for 1 < i < k). An edge is one example of a thread. For a set D of vertices of a graph H, define D to be a

thread-dominating set if, for all v ∈ V (H)−D, v has a thread to some vertex in D.

The authors of [11] recently used the above flip and slide operations to prove the following theorem.

Theorem 3.1. If a graph G is a short D-spidering of some graph H with thread-dominating set D then, for

all r ≤ α(G), some leaf of G is a max r-center.

We define a tree to be pendant if every split vertex is adjacent to a leaf. The following is then a corollary

to Theorem 3.1.

Corollary 3.2. If T is a pendant tree and r ≤ α(T ) then some leaf off T is a max r-center.

Proof. The set of split vertices of T is a thread-dominating set of T .

For a leaf x adjacent to vertex y in a tree T , let d′(x) = deg(y). For a graph G that is a short D-spidering

of some graph H with thread-dominating set D, consider the following r-Max Neighbor Property: some max

r-center is a leaf x having maximum d′(x) among all leaves.

Based on initial calculations, we imagined that it might be possible that, if a graph G is a short D-

spidering of some graph H with thread-dominating set D then G has the r-max neighbor property for all

r ≤ α(G)/2. Theorem 2.3 shows this to be true if G is a short spider; i.e. a pendant tree with exactly one

split vertex. We explored this possibility for the next simplest case: pendant trees with exactly two split

vertices. Below we present two theorems, the first showing that the r-max neighbor property fails in general,

and the second showing a class of trees for which the r-max neighbor property holds.

We begin by defining a class of counterexample trees Tk on 3k + 7 vertices, having α(Tk) = 2k + 4

and µ(Tk) = k + 3. Let Tk have the path (y, a, b, c, z) (which we call the spine), with a having additional

neighbors u1, . . . , uk+1, b having additional neighbors v1, . . . vk, and each ui having the additional neighbor

wi (see Figure 1). Then Tk is pendant, and so Corollary 3.2 says that, for all r ≤ k + 2, some leaf is a max

r-center. The r-max neighbor property would say that y is that leaf in Tk, which is true for r ≤ 4 but fails

for r ≥ 5.

Theorem 3.3. For the tree Tk we have |Ir
z (G)| > |Ir

y(G)| for all 5 ≤ r < α(Tk).
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y a b c z

u1

w1

u2

w2

u3

w3

v1 v2

Figure 1: The tree Tk with k = 2.

Proof. Let X = Ir
z (G)∩Ir

y(G), Y = Ir
y(G)−X, and Z = Ir

z (G)−X. The set of elements of Y not containing

c is in one-to-one correspondence with the set of those elements of Z not containing a — given by the flip

along the spine (y, a, b, c, z). Define Yc to be the remaining elements of Y (these all contain c), and Za to be

the remaining elements of Z (these all contain a).

Furthermore, the set of elements of Yc containing no ui is in one-to-one correspondence with the set of

elements of Za containing no vi — again given by the flip along the spine (y, a, b, c, z). Define Y ′
c to be the

remaining elements of Yc (these all contain some ui), and Z ′
a to be the remaining elements of Za (these all

contain some vi).

Let t = r−2 ≥ 3. It is straightforward to calculate that |Z ′
a| =

(
2k+1

t

)
−
(
k+1
t

)
, while |Y ′

c | =
(
k+1
t

)
(2t−1).

Indeed, we show that
(
2k+1

t

)
>

(
k+1
t

)
2t for t ≥ 3. After canceling and clearing the denominators, the left

side equals (2k + 1)(2k)(2k − 1)m = (4k2 − 1)(2k)m, while the right side equals (2k + 2)(2k)(2k − 2)m′ =

(4k2 − 4)(2k)m′, where the descending terms (if t > 3) of m are each greater, in turn, than those of m′.

Hence |Ir
z (G)| > |Ir

y(G)|.

Next we define a restricted family of pendant trees having exactly two split vertices, for which the r-max

neighbor property holds. Let T be such a tree, with v1 and v2 the two split vertices of T , labeled so that

deg(v1) > deg(v2), and choose leaves v′i adjacent to vi for each i. Define the spine S of T to be the unique

v′1v
′
2-path, with S′ = S − {v1, v2}. Denote by Ti the subtree of T − S′ containing vi and observe that each

Ti is a spider, with T1 having more legs than T2.

Let (l1,1, . . . , l1,j1) be the lengths of the spider T1, and (l2,1, . . . , l2,j2) be the lengths of the spider T2, each

written in spider order; recall that j2 < j1. We say that T has a spider embedding if, for each 1 ≤ j ≤ j2,

the pair (l1,j , l2,j) is in spider order.

Theorem 3.4. If T is a pendant tree with exactly two split vertices, r ≤ α(T ), and T has a spider embedding,

then T has the r-max neighbor property; i.e. the leaf v′1 is a max r-center.

Proof. We label T as above. We prove this theorem by providing an injection f from Ir
2 (T ) to Ir

1 (T ), where
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Ii is shorthand for Iv′
i
. We partition the definition of f according to how it acts on S, T1, and T2 (of course,

each vi is in S and Ti, but these separate definitions will agree on them). Thus, for X ∈ I(T ) we write

XS = X ∩ S and Xi = X ∩ Ti.

If A ∈ Ir
1 (T ) ∩ Ir

2 (T ) then f(A) = A. In all other cases we have that f flips S. That is, for A ∈ Ir
2 (T ),

we have f(AS) = flip(AS) ∋ v′1. If flip(A) ∈ Ir
2 (T ) for A ∈ Ir

1 (T ) then f = flip on such A. Otherwise, we

further isolate the definition of f along the legs Li,1, . . ., Li,ji of Ti, with — outside of exceptions that will

be explained later — f(Ai,j) ⊂ L3−i,j for each i and each 1 ≤ j ≤ j2, where Ai,j = A ∩ Li,j .

Label the vertices of Li,j in adjacent order (vi,j,0, . . ., vi,j,li,j ), where vi,j,l0 = vi and vi,j,li,j is the leaf.

Define hi to be the smallest integer such that vi,j,hi ̸∈ A for each i. Then, provided hi exists, f will swap

the elements of A on L1,j and L2,j that “precede” hi; that is, for each k < hi, we place v2−i,j,k ∈ f(Ai,j) if

and only if vi,j,k ∈ Ai,j .

At this point, all definitions are invertible whenever f(A) is independent. Thus we continue by extending

f , modifying it to fix the cases in which f(A) as currently defined is not independent. Thus we may

assume that h does not exist. In this case we swap the elements of A on L1,j and L2,j up to vi,j,k∗ , where

k∗ = min{l1,j , l2,j}. Observe that, since l1,j precedes l2,j in spider order, f(A) is independent. Indeed, if

l1,j = l2,j this is clearly true. If k∗ = l1,j < l2,j then spider order implies that l1,j is odd, which means that

v1,j,l1,j /∈ A; hence v2,j,l1,j /∈ f(A) and so f(A) is independent. Finally, if k∗ = l2,j < l1,j then spider order

implies that l2,j is even, which means that v2,j,l2,j /∈ A; hence v1,j,l2,j /∈ f(A) and so f(A) is independent.

This verifies the injection and therefore concludes the proof.

4 Open questions

Determining whether or not spider graphs satisfy Conjecture 1.1 remains open. The compression/induction

technique that has been used to prove Conjecture 1.1 for other graph classes appears difficult to use in this

case. The nature of Theorem 2.3 implies that the max r-center may “jump” when we consider subtrees of

the spider.

In general, determining the max r-centers in trees, characterizing when such centers are leaves, and

identifying which leaves they are (even for pendant trees with exactly two split vertices), all remain open

problems. In particular, the authors of [11] pose that split vertices of trees are never max r-centers. Thus

we propose the following conjecture.

Conjecture 4.1. If T is a tree with no vertex of degree two then T is HK.

Among several other interesting problems, they also propose finding which graphs have minimum-degree
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vertices as max r-centers, and ask whether or not every graph G has a vertex of degree δ(G) + o(|G|) as the

max r-center.
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