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Abstract

Given a graph G, let µ(G) denote the size of the smallest maximal

independent set of G. A family of sets is called a star if some element is in

every set of the family. A split vertex has degree at least 3. Holroyd and

Talbot conjectured the following Erdős-Ko-Rado-type statement about

intersecting families of independent sets of graphs: if 1 ≤ r ≤ µ(G)/2

then there is an intersecting family of independent r-sets of maximum

size that is a star. In this paper we prove similar statements for sparse

graphs on n vertices: roughly, for graphs of bounded average degree with

r ≤ O(n1/3), for graphs of bounded degree with r ≤ O(n1/2), and for

trees having a bounded number of split vertices with r ≤ O(n1/2).

1 Introduction

For 0 ≤ r ≤ n, let
(
[n]
r

)
denote the family of r-element subsets (r-sets) of

[n] = {1, 2, . . . , n}. For any family F of sets, define the shorthand ∩F = ∩S∈FS.
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If ∩F ≠ ∅, we say that F is a star; in this case, any x ∈ ∩F is called a center .

The family Fx = {S ∈ F | x ∈ S} is called the full star of F at x. Furthermore,

we define the notation Fr = {S ∈ F | |S| = r}. The family F is intersecting

if every pair of its members intersects.

Erdős, Ko, and Rado [11] proved the following classical theorem of central

importance in extremal set theory.

Theorem 1. (Erdős-Ko-Rado, 1961) If F ⊆
(
[n]
r

)
is intersecting for r ≤

n/2, then |F| ≤
(
n−1
r−1

)
. Moreover, if r < n/2, equality holds if and only if

F =
(
[n]
r

)
x
for some x ∈ [n].

Hilton and Milner [16] proved the following stronger stability result.

Theorem 2. (Hilton-Milner, 1967) If F ⊆
(
[n]
r

)
is intersecting for r ≤ n/2,

and F is not a star, then |F| ≤
(
n−1
r−1

)
−

(
n−r−1
r−1

)
+ 1.

For a graph G, let I(G) denote the family of independent sets of G. We

write sr(v) = |Ir
v(G)| when G is understood. Let F ⊆ Ir(G) be an intersecting

subfamily of maximum size. We say that G is r-EKR if some v satisfies sr(v) =

|F|, and strictly r-EKR if every such F equals Ir
v(G) for some v.

Write α(G) for the independence number of G. Let µ(G) denote the size of

a smallest maximal independent set of G. Equivalently, µ(G) is the size of the

smallest independent dominating set of G. Holroyd and Talbot [18] made the

following conjecture.

Conjecture 3. (Holroyd-Talbot, 2005) For any graph G, if 1 ≤ r ≤ µ(G)/2

then G is r-EKR.

Of course, this conjecture is true for the empty graph by Theorem 1. While

not explicitly stated in graph-theoretic terms, earlier results by Berge [2], Deza

and Frankl [10], and Bollobás and Leader [4] support the conjecture. For ex-

ample, the case of G equal to a disjoint union of k complete graphs of sizes
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n1 ≤ · · · ≤ nr was verified (in fact for all r ≤ α(G)) in [4, 10] for the uniform

case 2 ≤ n1 = · · · = nk, in [17] for the non-uniform case 2 ≤ n1 ≤ · · · ≤ nk, and

in [3] for the general case. The cases of G being a power of either a path [17] or a

cycle [22], or a special chain (essentially, a path of complete graphs of increasing

size) or the disjoint union of two special chains [19], were both verified for all

r ≤ α(G) as well. The conjecture has been proven for µ(G) sufficiently large in

terms of r [5], and also for various graph classes, for example, disjoint unions of

complete graphs, paths, and cycles containing at least one isolated vertex [7, 17],

disjoint unions of complete multipartite graphs containing at least one isolated

vertex [8], disjoint unions of length-2 paths [14], chordal graphs containing an

isolated vertex [19], and others. In fact, for the cases of complete graphs and

cycles just mentioned, [7] extends the range of r beyond µ(G)/2 to α(G)/2. One

can observe, for example, that the complete k-partite graph G = Kn1,...,nk
is

r-EKR for all r ≤ α(G)/2, because every independent set is contained in some

part. However, G is not r-EKR for α(G)/2 < r ≤ α(G).

For vertices u and v in a graph G, we use the notations degG(u) and

distG(u, v) for the degree of vertex u and the distance between u and v in G,

respectively; we may omit the subscript if the context is clear.

2 Results

Here we prove the following theorem.

Theorem 4. Let r and d be positive integers. Suppose that G is a graph on

n > 27
8 dr2 vertices, having maximum degree less than d. Then G is r-EKR.

We can expand the class of graphs beyond bounded degree to bounded av-

erage degree at the cost of reducing the range of r from O(n1/2) to O(n1/3), as

follows.
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Theorem 5. Given a positive integer r, let c ≥ e/36 be a constant. Suppose

that G is a graph on n > 18cr3 vertices, having at most cn edges. Then G is

r-EKR.

It is likely that a quadratic bound on n is possible for Theorem 5 as well.

Note that the case c = 1 in Theorem 5 is especially relevant for trees. In this

case, we can retrieve a quadratic lower bound for n for one special class of trees.

A split vertex in a graph is a vertex of degree at least three. A spider is a

tree with exactly one split vertex. For a spider S with split vertex w and leaves

v1, . . . , vk, we write S = S(ℓ1, . . . , ℓk), where ℓi = dist(w, vi). The notation is

written in spider order when the following conditions hold:

• if ℓi and ℓj are both odd and ℓi < ℓj then i < j;

• if ℓi and ℓj are both even and ℓi < ℓj then i > j; and

• if ℓi is odd and ℓj is even then i < j.

Notice that, since every independent set of S(1, 1, . . . , 1) is a subset of its leaves,

Conjecture 3 is true for S(1, 1, . . . , 1). In an attempt to prove the Holroyd-Talbot

conjecture for spiders by induction, the authors of [20] proved the following

result.

Theorem 6. (Hurlbert-Kamat, 2022) Suppose that S = S(ℓ1, . . . , ℓk) is a

spider written in spider order. Let w be the split vertex of S, for each i let ui

be any vertex on the wvi-path, and suppose that r ≤ α(S). Then

1. sr(w) ≤ sr(vi) for all i,

2. sr(ui) ≤ sr(vi) for all i, and

3. sr(vj) ≤ sr(vi) for all i < j.
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Estrugo and Pastine [12] call a tree T r-HK if sr(v) is maximized at a leaf

of T (and HK if r-HK for all r ≤ α(T )). It is proved in [19] that every tree is

r-HK for r ≤ 4, but Baber [1], Borg [6], and Feghali, Johnson, and Thomas [13]

each found counterexamples when r ≥ 5. However, parts 1 and 2 of Theorem

6 together imply that every spider S is HK. Theorem 5 shows that spiders are

r-EKR for r < (n/18)1/3. Unfortunately, µ/2 for spiders is roughly n/6, so there

remains a big gap. Our next theorem shrinks that gap somewhat.

Theorem 7. Let S = S(ℓ1, . . . , ℓk) be a spider on n vertices, with split vertex

w and leaves v1, . . . , vk. Suppose that r ≤
√
n ln 2− (ln 2)/2. Then S is r-EKR.

We note that every spider S has α(S) = 1 >
√
n ln 2 − (ln 2)/2 for n ≤ 2,

α(S) = 2 >
√
n ln 2−(ln 2)/2 for n = 3, and α(S) ≥ (n−1)/2 >

√
n ln 2−(ln 2)/2

for n ≥ 4. In other words, the hypothesis of Theorem 7 implies that r ≤ α(S)

for all n.

Finally, we prove the following similar result for more general trees.

Theorem 8. Let T be a tree on n vertices, with exactly s > 1 split vertices.

Suppose that 1 < s < r/2 and r ≤
√
n ln c− (ln c)/2, where c = 2− 2s/r. Then

T is r-EKR.

3 Technical Lemmas

Proposition 9. If 0 ≤ x ≤ 2k/(k+1)2 for some k ≥ 1, then e−x < 1−
(

k
k+1

)
x.

Proof. Let 0 ≤ x ≤ 2k/(k + 1)2 for some k ≥ 1. Then |x| < 1, and so e−x =∑
i≥0(−x)i/i! < 1 − x + x2/2. Also, (k + 1)x < 2, which implies that x2/2 <

x/(k + 1) = [1− k/(k + 1)]x. Thus e−x < 1− x+ x2/2 < 1−
(

k
k+1

)
x.

Corollary 10. If 0 ≤ y ≤ 2k2/(k+1)3 for some k ≥ 1, then 1− y > e−(
k+1
k )y.

Proof. Set x =
(
k+1
k

)
y and apply Proposition 9.
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Lemma 11. If r ≥ 2, d ≥ 2, and n ≥ 27
8 dr2, then

∏r−1
i=1

(
1− r+id

n

)
> r

n .

Proof. We begin with

r−1∏
i=1

(
1− r + id

n

)
≥ 1−

r−1∑
i=1

r + id

n
= 1−

r(r − 1) + d
(
r
2

)
n

= 1−
(d+ 2)

(
r
2

)
n

.

Since d ≥ 2, and by using Corollary 10 with y = dr2/n and k = 2, we have

1−
(d+ 2)

(
r
2

)
n

> 1− dr2

n
> e−3dr2/2n > e−4/9 > .64 .

In addition, we calculate

r

n
≤ 8

27dr
≤ 2

27
< .08 ,

which completes the proof.

Claim 12. Let G be a graph with n vertices and maximum degree less than d.

Then every vertex v satisfies

sr(v) ≥
1

(r − 1)!
(n− d)(n− 2d) · · · (n− (r − 1)d).

Proof. Let W0 be the set of vertices of G, and set w0 = v. For each 0 < i < r,

choose wi ∈ Wi, where Wi+1 = Wi − N [wi]. Then by induction we have

|Wi| ≥ n− id for each such i. The resulting set {w0, . . . , wr−1} is independent

in G and there are at least
∏

0<i<r(n − id) ways to choose such sets, ignoring

replication. Accounting for replication, we obtain the result.

Lemma 13. Let H be a graph with at least m = n(1 − 1/3r) vertices and

maximum degree less than d. Suppose that 1/3r+rd/n ≤ 2k2/(k+1)3 for some
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k ≥ 1. Then every vertex v satisfies

sr(v) ≥
nr−1

(r − 1)!
e−(r−1)2k/(k+1)2 .

Proof. We use Claim 12 and Corollary 10 with y = 1/3r + rd/n to obtain

sr(v) ≥
1

(r − 1)!

∏
0<i<r

(m− id) ≥ nr−1

(r − 1)!

∏
0<i<r

(
1− 1

3r
− id

n

)
≥ nr−1

(r − 1)!

∏
0<i<r

[
1−

(
1

3r
+

rd

n

)]
≥ nr−1

(r − 1)!

∏
0<i<r

e−(
k+1
k )( 1

3r+
rd
n )

≥ nr−1

(r − 1)!
e−(r−1)( k+1

k )( 1
3r+

rd
n ) ≥ nr−1

(r − 1)!
e−(r−1)2k/(k+1)2 .

4 Proof of Theorem 4

We use the following result of Frankl [15]. For F ⊆
(
[n]
r

)
, define Fx = F − Fx.

Theorem 14. (Frankl, 2020) If F ⊆
(
[n]
r

)
is intersecting and r < n/72, then

there is some x such that |Fx| ≤
(
n−3
r−2

)
.

Proof of Theorem 4. The result is trivial for r = 1 or d = 1, so we assume

r ≥ 2 and d ≥ 2. Let x be as in Theorem 14, and select E ∈ Fx, which we may

assume to be nonempty. Via the same counting method as in Claim 12, we have

at least

1

(r − 1)!
(n− r − d)(n− r − 2d) · · · (n− r − (r − 1)d) (1)

r-sets F ∈ Ir(x) with F ∩ E = ∅. Since F is intersecting, these sets are not in
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Fx. Therefore, using Theorem 14 and the bound in (1), we have

|F| = |Fx|+ |Fx|

≤ |Ir(x)| −
(n− r − d) · · · (n− r − (r − 1)d)

(r − 1)!
+

(
n− 3

r − 2

)
.

This upper bound is at most |Ir(x)| precisely when

(
n− 3

r − 2

)
≤ 1

(r − 1)!

r−1∏
i=1

(n− r − id),

which we rewrite as

r−1∏
i=1

(n− r − id) ≥ (r − 1)!

(
n− 3

r − 2

)
= (r − 1)

r−2∏
i=1

(n− 2− i).

This inequality will follow from showing that

r−1∏
i=1

(n− r − id) ≥ rnr−2,

which holds by Lemma 11, and which completes the proof.

5 Proof of Theorem 5

The result is trivial for r = 1, so we may assume that r ≥ 2. Let V0 be the set

of vertices of G. For each i ≥ 0, choose vi ∈ V (Gi) such that degGi
(vi) ≥ 3cr,

where Gi+1 = Gi − vi. Let t be minimum such that ∆(Gt) < 3cr. The number

of edges removed in this process is at least 3tcr, which must be at most the

number of edges of G; thus t ≤ n/3r. Hence V (Gt) = n− t ≥ n(1− 1/3r).

Now we set d = 3cr, k = 4r − 7 ≥ 1, and calculate that

(k + 3) +

(
3k + 1

k2

)
≤ k + 7 = 4r,
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so that (k + 1)3 ≤ 4k2r, which implies that

1

3r
+

rd

n
<

1

3r
+

3cr2

18cr3
=

1

2r
≤ 2k2

(k + 1)3
.

This allows the use of Lemma 13 with H = Gt, m = n(1− 1/3r), and d = 3cr.

We obtain that each vertex v of Gt has sr(v) at least

nr−1

(r − 1)!
e−(r−1)2k/(k+1)2 . (2)

Now we use Theorem 2 to show that any intersecting family F of independent

r-sets that is not a star has size less than (2). First, we note the combinatorial

identity
(
n−1
r−1

)
−

(
n−r−1
r−1

)
+ 1 = 1 +

(
n−2
r−2

)
+

(
n−3
r−2

)
+ · · ·+

(
n−r−1
r−2

)
. Second, we

observe the inequality r2/n < e−(r−1)2k/(k+1)2 . Indeed,

r2

n
<

1

18cr
≤ e−1 ≤ e−(r−1)(8r−14)/(4r−6)2 = e−(r−1)2k/(k+1)2 ,

because c ≥ e/36 and (4r − 6)2 > (r − 1)(8r − 14) (since r ≥ 2).

Finally, if F is as above, then we have

|F| < r

(
n− 2

r − 2

)
=

r(r − 1)

n− 1

(
n− 1

r − 1

)
<

r2

n
· nr−1

(r − 1)!
<

nr−1

(r − 1)!
e−(r−1)2k/(k+1)2 .

This finishes the proof.

6 Proof of Theorem 7

Lemma 15. Let S = S(ℓ1, . . . , ℓk) be a spider on n vertices and let v be a leaf

of S. Suppose that r ≤ α(S). Then

sr(v) ≥
(
n− r − 1

r − 1

)
+

(
n− k − r − 2

r − 2

)
.
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Proof. Let S = S(ℓ1, . . . , ℓk), in spider order. We may assume that v = vk and

then use Theorem 6 for the other leaves. For S(1, 1, . . . , 1) we have sr(v) =
(
n−2
r−1

)
and k = n − 1, so that

(
n−k−r−2

r−2

)
= 0 and

(
n−2
r−1

)
≥

(
n−r−1
r−1

)
. Thus we may

assume that ℓk ≥ 2, implying that v and w are not adjacent.

We first count the number of independent r-sets containing v that do not

contain the split vertex w. The number of such sets is

|Ir
v(S − w)| = |Ir

v(∪k
i=1Pℓi)|,

where Pℓi denotes the path on ℓi vertices.

Next we add edges to the disjoint union of paths, joining the many paths

together to form one long path, thus reducing the number of independent r-sets

that contain v but not w. For each 1 ≤ i ≤ k, let ui be the neighbor of w on

the wvi-path in S; that is, the endpoint of the ith path of S−w that is different

from vi. Now, for each 1 ≤ i < k, add the edge viui+1. Finally, remove v and

its unique neighbor, resulting in the graph Pm, for m = n − 3. This results in

the inequality

|Ir
v(∪k

i=1Pℓi)| ≥ |Ir−1(Pm)|.

We relabel the vertices of Pm as x1, . . . , xm, in order. Observe that {xa1 ,

xa1+a2
, . . . , xa1+···+ar−1

} is independent in Pm if and only if

r∑
i=1

ai = m, a1 ≥ 1, ai ≥ 2 for 1 < i < r, and ar = m− ar−1 ≥ 0. (3)

Set b1 = a1 − 1, bi = ai − 2 for 1 < i < r, and br = ar. Then system (3) can be

rewritten as

r∑
i=1

bi = m− 2r + 3 = n− 2r, with bi ≥ 0, for all 1 ≤ i ≤ r. (4)
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It is well known that the number of integer solutions to system (4) equals

(
n− 2r + r − 1

r − 1

)
=

(
n− r − 1

r − 1

)
.

Second, we count the number of independent r-sets containing v that also

contain the split vertex w. The number of such sets equals

|Ir−1
v (S −N [w])| = |Ir−1

v (∪k
i=1Pℓi−1)|.

As above, we add edges to the disjoint union of paths, to reduce the number

of independent r-sets that contain v and w. For each 1 ≤ i ≤ k, let u′
i be the

neighbor of ui other than w on the wvi-path in S. Now, for each 1 ≤ i < k,

add the edge viu
′
i+1. Finally, remove v and its unique neighbor, resulting in the

graph Pm′ , for m′ = n− 3− k. This results in the inequality

|Ir−1
v (∪k

i=1Pℓi−1)| ≥ |Ir−2(Pm′)|.

Counting via the same method as above, we obtain

|Ir−2(Pm′)| =
(
n− k − r − 2

r − 2

)

such sets, which completes the proof.

Proof of Theorem 7. It is easy to check that r ≤
√
n ln 2− (ln 2)/2 implies that

r2 ≤ (n− r) ln 2. We use this in the calculations below.

Using Lemma 15 with Theorem 2, as in the proof of Theorem 5, the result

will follow from proving the inequality

(
n− 1

r − 1

)
< 2

(
n− r − 1

r − 1

)
. (5)
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To accomplish this, we denote mt = m!/(m− t)! and calculate the ratio

(
n− 1

r − 1

)/(
n− r − 1

r − 1

)
=

(n− 1)r−1

(n− r − 1)r−1 ≤ (n− r + 1)r−1

(n− 2r + 1)r−1

=

(
n− 2r + 1

n− r + 1

)−(r−1)

=

(
1− r

n− r + 1

)−(r−1)

≤ er(r−1)/(n−r+1) < er
2/(n−r) (6)

≤ eln 2 = 2,

which finishes the proof.

7 Proof of Theorem 8

Lemma 16. Let T be a tree on n vertices with exactly s > 1 split vertices, and

let v be a leaf of T . Suppose that r ≤ α(T ). Then

sr(v) ≥
(
n− r − s

r − 1

)
+ 1.

Proof. Let W denote the set of split vertices of T . We need only count the

number of independent r-sets containing v that do not contain any split vertex.

The number of such sets equals

Ir
v(T −W )| > |Ir

v(Pn−s)| = |Ir−1(Pn−s−2)| =
(
n− r − s

r − 1

)
,

as in the proof of Lemma 15.

The strict inequality comes from the existence of at least one independent

r-set of T − W that is not independent in Pn−s because of the joining of the

many paths that create Pn−s. For example, let P ′ and P ′′ be two paths in

T −W that are consecutive in Pn−s, with endpoints u′ ∈ P ′ and u′′ ∈ P ′′ such

that u′ is adjacent to u′′ in Pn−s. Let A ∈ Ir
v(Pn−s), define a′ to be the vertex
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in A that is closest to u′, a′′ to be the vertex in A− {a′} that is closest to u′′,

and A′ = (A− {a′, a′′}) ∪ {u′, u′′}. Then A′ ∈ Ir
v (T −W )− Ir

v(Pn−s).

Proof of Theorem 8. As in the proof of Theorem 7, we use Lemma 16 and

Theorem 2, which reduces the proof to certifying the inequality

(
n− 1

r − 1

)
≤

(
n− r − 1

r − 1

)
+

(
n− r − s

r − 1

)
. (7)

Suppose that 1 < s < r/2 and r ≤
√
n ln c − (ln c)/2, where c = 2 − 2s/r. Let

a = r2

ln c + r and b = (r+2)3

2(r+1) + r + s− 1. By rearranging the given condition on

r, we obtain n ≥ a+ ln c
4 > a. Now let d = 2(r + 1) ln c so that we have

d(a− b) = 2(r + 1)r2 − (ln c)
[
(r + 2)3 + 2(r + 1)(s− 1)

]
> 2(r + 1)r2 − (ln 2)

[
(r + 2)3 + (r + 1)(2s− 2)

]
> 2(r + 1)r2 − 0.7

[
(r + 2)3 + (r + 1)(r − 2)

]
= 2r3 + 2r2 − 0.7

(
r3 + 7r2 + 11r + 6

)
= 1.3r3 − 2.9r2 − 7.7r − 4.2

> 0

since r ≥ 5. Because a− b > 0 and n > a, we have n > b, which is equivalent to

r + 1

n− r − s+ 1
<

2(r + 1)2

(r + 2)3
. (8)

Next, we derive the following estimates, using Inequality 8 to access Corollary
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10 with y = (r + 1)/(n− r − s+ 1) and k = r + 1.

(
n−r−1
r−1

)
+
(
n−r−s
r−1

)(
n−r−1
r−1

) = 1 +
(n− 2r)s−1

(n− r − 1)s−1 ≥ 1 +

(
n− 2r − s+ 2

n− r − 1− s+ 2

)s−1

> 1 +

(
n− 2r − s

n− r − s+ 1

)s

= 1 +

(
1− r + 1

n− r − s+ 1

)s

> 1 + e−(
r+2
r+1 )(

r+1
n−r−s+1 )s > 1 + e

−( r+2
r+1 )

(
2(r+1)2

(r+2)3

)
s

= 1 + e
−
(

2(r+1)

(r+2)2

)
s
> 1 + e−2s/r > 2− 2s/r.

The assumption that s < r/2 makes the final result greater than 1. Finally,

we follow Inequality (6), since r ≤
√
n ln c− (ln c)/2 implies that r ≤

√
n ln 2−

(ln 2)/2, and calculate the ratio

(
n− 1

r − 1

)/(
n− r − 1

r − 1

)
< er

2/(n−r) ≤ eln(2−2s/r) = 2− 2s/r,

which finishes the proof.

8 Questions and Remarks

It is clear that improving the orders of magnitude in the upper bound on r in

our results will require techniques other than comparison to the Hilton-Milner

bounds. To that end, the specificity of spider structure and the knowledge of the

location of their biggest stars begs for a proof that they are r-EKR for r ≤ µ/2

(or possibly r ≤ α).

Along these lines, consider the family T of all trees having no vertex of

degree 2. The authors of [20] conjecture that every tree in T is HK. Naturally,

we believe that such trees are r-EKR for all r ≤ µ(T ) as well. As a first step in

this direction, for i ∈ {1, 2, 3}, let Ti(h) be a complete binary tree of depth h (i.e.

having 2h+1−1 vertices), with root vertex vi. Note that vi is the unique degree-
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2 vertex in Ti(h). Now define the tree T (h) by V (T (h)) = {w} ∪3
i=1 V (Ti(h)),

with w adjacent to each vi. Then T (h) ∈ T .

Problem 17. Show that T (h) is r-EKR for all r ≤ µ(T (h))/2.

Finally, we say that a family F of sets is EKR if it has the property that

if H is an intersecting subfamily of F then there is some element x such that

|H| ≤ |Fx|, and that a graph G is EKR if I(G) is EKR. We observe that the

non-uniform case — considering I(G) instead of Ir(G) — has yet to be studied

specifically for graphs. Of course, this is a special case of Chvátal’s conjecture

(see [9]) that every subset-closed family F of sets is EKR. For example, by a

result of [21], every graph with an isolated vertex is EKR. Also, powers of paths

or cycles (resp. special chains) are EKR by the results of [17, 22] (resp. [19]) for

fixed r because we can use the same star center for each r. The same holds for

disjoint unions of complete graphs because the star center is either an isolated

vertex, if it exists, or a vertex in a smallest component. Any vertex-transitive

graph G that is r-EKR for all r ≤ α(G) would also be EKR. It is conjectured

in [14] that if G is a disjoint union of length-2 paths then it is r-EKR for all

µ(G)/2 < r ≤ α(G)/2. It may also be true for all r ≤ α(G), which would imply

that G is EKR because the largest star is always centered on a leaf, and all leaves

look alike. Additionally, if one could prove that every spider S is r-EKR for all

r ≤ α(S) then it would follow from Theorem 6 that spiders are EKR. Of course,

while complete k-partite graphs G are not r-EKR for α(G)/2 < r ≤ α(G), that

does not mean that they are not EKR.
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[7] P. Borg, F. Holroyd, The Erdős–Ko–Rado properties of various graphs con-

taining singletons, Discrete Math. 309 (2009), no. 9, 2877–2885.
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