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1 Introduction

There are many graph-theoretic subjects that could go under the umbrella of “Moving Things Around on
Graphs”. For example, in network optimization, one moves packages from supplies at some vertices to
demands at others, with costs accrued per package across edges, attempting to do so most cheaply. In
network flow, one tries to maximize the amount of material that can move from a source to a sink, subject to
the capacities along edges and the conservation of flow at other vertices along the way. In various versions of
pursuit and evasion, cops and robbers take turns moving along edges with the cops trying to capture robbers
by landing on them; one tries to minimize the number of cops necessary to always capture the robbers. Zero
forcing, black pebbling, chip firing, black and white pebbling, graph pegging, and rigid pebbling are other
examples, all with different rules for moving, different objectives, and different constraints and/or costs.
While some of these topics model real world problems, others model pure mathematical problems such as
space-time tradeoffs in computational complexity, efficient matrix storage during Cholesky factorization, rigid
structures in computational geometry, and matrix rank and nullity computation. The graph pebbling model
we discuss here is used to translate a number-theoretic problem into graph theory. It has also developed into
a rich subject in its own right.

In this article, we present a range of paradigms within this field and, for each one, share some of the
major results, conjectures, and open problems. Many of these problems are accessible to those both at many
levels, from undergraduate (e.g. [7, 8, 9, 19]) to seasoned emeritus, and from various backgrounds, from
algebra and graph theory to probability and discrete optimization. In fact, many well-known professionals
(e.g. Bukh, Elledge, Gibbons, Herscovici, Moews, Pachter, Pudwell, Tomova, Wierman, Xue, Yerger, others)
have produced great graph pebbling results during their time as undergraduates. For interested readers, the
two resources [12, 13] contain references for most of the results not cited below.

2 Number-Theoretic Origins

2.1 Zero Sum Subsequences

The story of graph pebbling begins with Erdős and zero-sum problems. Zero-sum problems are combinatorial
problems in the context of finite abelian groups that determine how large a set (or sequence) of elements
must be such that some subset (or subsequence) with prescribed constraints has a zero sum.

Theorem 1 (Erdős-Ginzburg-Ziv, 1961). Let n be a positive integer. Any sequence of length 2n − 1 of
elements from Zn has a subsequence of length exactly n that sums to 0 mod n.

This is best possible; consider the sequence n−1 ‘0’s and n−1 ‘1’s, which has no nonempty subsequence
of length n that sums to 0 mod n.

More generally, one can ask all sorts of questions regarding the length of a sequence before the sum of
some (nonempty) subsequence has a specified property. For instance, if S is a sequence of |Γ| elements of a
group Γ, then the pigeonhole principle implies that there is nonempty zero sum subsequence. The minimum
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such length for which a zero sum subsequence is guaranteed is called the Davenport constant of Γ. For Zn,
n is best possible (consider a sequence of n− 1 ‘1’s), so the Davenport constant of Zn is n.

Erdős and Lemke conjectured that there is a nonempty zero sum subsequence T of S = (s1, . . . , sn) with
the additional condition that

∑
t∈T t ≤ lcm(s1, . . . , sn, n). A stronger condition is that

∑
t∈T gcd(t, n) ≤ n,

which can be written as
∑
t∈T

1
|t| ≤ 1, where we write |g| for the order of an element g in a group Γ (in this

case Zn). This sum is often referred to as the cross number of the subsequence T , which plays a vital role in
factorization theory. Kleitman and Lemke answered this stronger question in the affirmative.

Theorem 2 (Lemke-Kleitman, 1989). Let n be a positive integer. Let S be a sequence of Zn with length n.
Then there is some subsequence T = (t1, t2, . . . , tq) of S such that both∑

t∈T
t ≡ 0 mod n and

∑
t∈T

1

|t|
≤ 1.

The natural extension of their work is to arbitrary groups, which remains open for nonabelian Γ.

Conjecture 3 (Lemke-Kleitman, 1989). Let Γ be a finite additive group. Let S be a sequence of Γ with
length |Γ|. Then there is some subsequence T = (t1, t2, . . . , tq) of S such that both∑

t∈T
t = 0Γ and

∑
t∈T

1

|t|
≤ 1.

2.2 Chung’s Proof of the Lemke-Kleitman Theorem

The original proof of the Lemke-Kleitman Theorem relied on an inductive argument based on a multitude
of possible interactions between elements. Lagarias and Saks proposed a simplified approach to the Erdős-
Lemke problem, and Chung was the first one to introduce it to the literature [6]. The main concept is to
combine elements with like prime factorizations. Let n = pa11 pa22 . . . p

aq
q be the prime factorization of n. For

each element si in the sequence S, write si = p
ai,1
1 p

ai,2
2 . . . p

ai,q
q Ri where Ri is relatively prime to n.

Choose any exponents (b1, . . . , bq) and let T be a subsequence of S containing elements of the form

pb11 p
b2
2 . . . p

bq
q R (where R is not necessarily relatively prime to n). If, for some j, |T | ≥ pj then there is

subsequence T ′ of T , of size at most pj , such that the sum of the elements in T ′ necessarily has the form

pb11 p
b2
2 . . . p

bj+1
j . . . p

bq
q R. Furthermore, if each t ∈ T satisfies

1/|t| ≤ pb1−a11 pb2−a22 . . . p
bj−aj
j . . . pbq−aqq

then ∑
t∈T ′

1/|t| ≤ pb1−a11 pb2−a22 . . . p
bj+1−aj
j . . . pbq−aqq .

Thereafter, we will treat T ′ as a single entity, where the value of T ′ is
∑
t∈T ′ t, and the notation 1/|T ′| is

taken to denote
∑
t∈T ′ 1/|t|. Note that these definitions are applied recursively, as an element t ∈ T ′ may

itself be a set, rather than a number. By iteratively and strategically applying such groupings, one can find
a zero-sum subsequence of S that also obeys the cross number condition. This is exactly how the Chung’s
proof of the Lemke-Kleitman Theorem works. In this sense, her proof can be viewed as an abstract puzzle
game. That game is graph pebbling!

The translation of the Erdős-Lemke problem into graph pebbling is not trivial. The essence of the proof
is to (1) build the divisor lattice L(n), (2) view the given numbers as pebbles, placed naturally in L(n)
according to common factors with n, (3) observe that each pebble obeys local versions of the two required
conditions, (4) model certain movements of the pebbles in the lattice by “pebbling steps” (to be defined
later), (5) show that those steps preserve the two local conditions as illustrated above, (6) observe that any
pebble that reaches the bottom represents a solution to to Erdős-Lemke problem, and finally (7) prove that
it is always possible to move a pebble to the minimal vertex via pebbling steps, given any configuration of n
pebbles. A detailed translation is given by Elledge and Hurlbert, who gave a Chung-like pebbling proof of
the Lemke-Kleitman conjecture for abelian groups (originally resolved by Geroldinger).
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Figure 1: The upside-down divisor lattice of n = 1,321,375 = 53 ·111 ·312, with the number p = 2, 984, 850 =
52 · 111 · 310 · 2 · 34 · 67 placed as a pebble at (2, 1, 0).

We now illustrate the pebbling movement of this approach with a specific example as seen in Figure
1. Consider a sequence of 5 pebbles that are placed at (2, 1, 0), such as T = (550, 1925, 1100, 3300, 1100).
Because these are all multiples of 52 · 111 · 310 = 275, it is simpler to represent them just as those multiples,
and simpler still to reduce them modulo 5, becoming the sequence (2, 2, 4, 2, 4). Now it is easier to spot a
zero-sum in Z5, such the final three numbers (4,2,4). Then we can move, as a pebbling step, the corresponding
subsequence T ′ = (1100, 3300, 1100) down the red edge to (3, 1, 0) as a single “superpebble”, labeled by the
sequence T ′. Notice that

∑
t∈T ′ t = 5500 = 53 · 111 · 310 · 22, and that

∑
t∈T ′ 1/|t| = 3(5−1 · 110 · 31−2) ≤

5(5−1 · 110 · 31−2) = 50 · 110 · 31−2. This is the essence of how pebbling models both sums. Any superpebble
that reaches the bottom will be a zero-sum with cross number at most 1.

The final stage (7) above is handled by reducing to the square-free case. That is, if n = pa11 pa22 . . . p
aq
q , we

reduce the proof on L(n) to that on L(m), where m is any product of d distinct primes with d =
∑
ai, often

referred to as Qd, the lattice subsets of {1, . . . , d}. One can see that L(n) is the product of q paths, having
lengths a1, . . . , aq, while Qd is the product of d paths, each of length 1. Because L(n) is a sublattice of Qd

(see Figure 2) — in fact, it is a retract: a homomorphic image of Qd — homomorphic images of pebbling
steps in Qd are pebbling steps in L(n). Chung then uses the stronger recursive nature of Qd to solve the
problem there more easily. We will illustrate her technique in Section 3.4.

3 Lagarias-Saks Pebbling

We will assume basic familiarity with graphs as sets of vertices and edges (unordered pairs of vertices),
and use the notation n(G) for the number of vertices of a graph G. All graphs we consider are connected.
Common notation for graphs on n vertices includes the complete graph Kn in which every pair of vertices is
adjacent, the path Pn in which only consecutive vertices are adjacent, and the cycle Cn which adds an edge
between the endpoints of Pn. For two vertices u and v, the distance function dist(u, v) measures the fewest
number of edges in a path from u to v. The eccentricity of a vertex v of G is defined eccG(v) = maxu dist(u, v),
while the diameter of a graph G is defined diam(G) = maxv eccG(v). Sometimes we drop the subscript of G
when the context is clear. We write lg(·) for the base 2 logarithm. Additionally, we write f ∈ O(g) (resp.
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p2p1
p2p1 p2p1

Figure 2: Embedding the divisor lattice L(p2
1 · p2

2) into Q4 as a retract. The thick edges display L(n). Then
the thin edges can be mapped to the thick ones (of the same color) in an adjacency-preserving manner.

Ω(g)) if |f(x)| < Cg(x) (resp. > C) for some C and all large enough x; and Θ(g) = Ω(g) ∩ O(g). We also
use f � g to mean that f(x)/g(x)→ 0 as x→∞.

3.1 Pebbling Basics

A configuration C of pebbles on the vertices of a connected graph G is a function C : V (G)→N (the
nonnegative integers), so that C(v) counts the number of pebbles placed on the vertex v. We write |C| for
the size

∑
v C(v) of C; i.e. the number of pebbles in the configuration. A pebbling step from a vertex u to

one of its neighbors v (denoted u7→v) reduces C(u) by two and increases C(v) by one. Given a specified
target vertex r we say that C is t-fold r-solvable if some sequence of pebbling steps places t pebbles on r.
Conversely, if no such steps exist, then C is r-unsolvable. We are concerned with determining πt(G, r), the
minimum positive integer m such that every configuration of size m on the vertices of G is t-fold r-solvable.
The invariant is well-defined since, for large enough t, the pigeonhole principle guarantees that some vertex
will contain at least 2eccG(r) pebbles, which can by itself solve r. The t-fold pebbling number of G is defined
to be πt(G) = maxr∈V (G) πt(G, r). When t = 1, we simply write π(G), which is the pebbling number of G.

The configuration with a single pebble on every vertex except the target shows that π(G) ≥ n(G), the
number of vertices of the graph G, while the configuration with 2eccG(r) − 1 pebbles on the farthest vertex
from r, and no pebbles elsewhere, shows that π(G) ≥ 2diam(G) when r is chosen to have eccG(r) = diam(G).

One can also view Qd as the graph on all binary d-tuples, pairs of which that differ in exactly one
coordinate are joined by an edge. In this guise, Qd is often referred to as the d-dimensional hypercube. As
part of her work on the Lemke-Kleitman Theorem, Chung proves the following.

Theorem 4 (Chung [6]). π(Qd) = 2d.

In particular, both of the previous bounds are simultaneously tight, as n(Qd) = 2d = 2diam(G).
To provide an alternative solution to the Erdős-Lemke problem, Chung actually showed more. Given a

positive integer n, let its factorization be pa11 · · · p
aq
q and define d =

∑q
i=1 ai. Alter the pebbling step rule

so that, in ai of the dimensions of Qd, pi pebbles (instead of 2) must be removed from a vertex to move
one pebble in those dimensions. Chung showed in this case that the pebbling number of Qd with these
generalized pebbling steps is n, and so the Lemke-Kleitman Theorem holds.

3.2 Class 0 graphs: When does π(G) = n(G)?

Returning to the two-to-one pebbling rule, graphs G that, like Qd, have π(G) = n(G) have come to be known
as Class 0. The terminology comes from a lovely theorem of Pachter, Snevily and Voxman, which states
that if diam(G) = 2 then π(G) ≤ n + 1; thus there are two classes of diameter two graphs — Class 0 and
Class 1. If G − v is disconnected for some vertex v then π(G) > n. Let G1 and G2 be different connected
components of G − v with ui ∈ Gi, and define the configuration C by C(u1) = C(v) = 0, C(u2) = 3, and
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Figure 3: The pyramid graph, with r-unsolvable configuration shown.

C(w) = 1 for all other vertices w. Then, C is u1-unsolvable of size n. The minimum number of vertices
whose removal disconnects a graph is called its connectivity. Thus, Class 0 graphs are 2-connected.

There are other properties that Class 0 graphs must have. For example, denote by Na[v] the set of
vertices of distance at most a from vertex v. Cranston et al. [7] observe that if G is Class 0 and u and
v are vertices with Na[u] ∩ Nb[v] = ∅, for some a and b, then |Na[u] ∪ Nb[v]| ≥ 2a+b+1 — otherwise the
configuration with 2a+b+1 − 1 pebbles on v, no pebbles on other vertices ofNa[u] ∪Nb[v], and 1 pebble on
each remaining vertex, is u-unsolvable of size at least n. They use this Neighborhood Lemma to prove that
every Class 0 graph with n ≥ 4 vertices has at least (5n− 11)/3 edges. At present, the Class 0 graph with
the fewest edges known is the wheel, a cycle with a central vertex adjacent to every cycle vertex, having
2n− 2 edges. Are there Class 0 graphs with fewer edges?

The family of 2-connected Class 1 diameter-2 graphs were later characterized by Clarke, Hochberg and
Hurlbert , the main property of which is the induced containment of the (Class 1) pyramid shown in Figure
3. The other important property is that any every vertex not in the pyramid lives geometrically inside one of
its triangles, and vertices from different triangle interiors are not adjacent. In a probabilistic sense, almost all
graphs have diameter two — think of the probability that some two vertices don’t have a common neighbor.
Now consider how unlikely it is to fit into this restrictive pyramid structure: at best O((1/8)n) of all graphs
are like this since, if there is a pyramid, each of the n−6 non-pyramid vertices have at least 3 non-neighbors.
Thus, almost all graphs are Class 0.

One can say more. As shown by Postle at al. [20], graphs of diameter three can have pebbling numbers as
high as 3n/2 + 2, but no more, while graphs of diameter four have pebbling numbers at most (3/2)n+ Θ(1).
The techniques used to achieve these results include “discharging” which is the main technique used in
the proof of the celebrated Four-Color Theorem. A higher diameter can push pebbling numbers to the
exponential range (e.g. π(Pn) = 2n−1). In general, Postle showed that a graph with diameter d has pebbling
number at most

2d
d
2 e − 1

dd2e
n+O(

√
n lnn).

On the other hand, high connectivity (ensuring many paths to the target) can keep pebbling numbers low.
Czygrinow et al. [10] proved that for all d, there is a k(d) such that every graph with diameter d and
connectivity at least k(d) is Class 0. The Erdős-Renyi random graph model places edges independently with
probability p between pairs of vertices (the counting above is for the model p = 1/2). The authors proved
that k(d) ≤ 22d+3 (it was shown by Clarke et al. to be at least 2d/d), and used the result to prove that
a random graph with edge probability p � (n lg n)1/d/n is almost surely Class 0. The proof used known
theorems about the thresholds for having connectivity at least k and diameter at most d. It is interesting
how close this value is to the connectivity threshold of lg n/n, yet there is plenty of room for improvement
in the upper and lower bounds for k(d).

One nice application of the diameter-connectivity theorem is to Kneser graphs, known for their impor-
tance in many subareas of graph theory and combinatorics, including graph coloring, graph embedding,
and extremal set theory, among others. For m ≥ 2h + 1, the Kneser graph K(m,h) has all h-subsets of
[m] = {1, . . . ,m} for vertices, with edges joining disjoint pairs. K(m, 1) is the complete graph Km, and the
famous Petersen graph P = K(5, 2) in Figure 4 is the smallest example for h ≥ 2. Readers should find it
an enjoyable puzzle to prove that the Petersen graph is Class 0. (There are at least five distinct proofs in
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Figure 4: The Petersen graph P = K(5, 2).

the literature, one of which follows from the diameter two classification above; two others appear below.) In
fact, it was shown in [12] that K(m, 2) is Class 0 for all m ≥ 5. Furthermore, with the diameter-connectivity
result in hand, they prove that, for any constant c > 0, there is an integer h0 such that, for all h > h0 and
s ≥ c(h/ lg h)1/2, K(2h + s, h) is Class 0. With this evidence, one cannot help but believe that K(m, t) is
Class 0 for all m ≥ 2h + 1, and that some clever idea to prove it lies in wait. The subject could use more
Class 0 sufficiency conditions.

r
1 0 2 2 0 6 3

Figure 5: A configuration of weight 127/128 on the path P8 with target r.

3.3 Weight Functions: An Optimization Approach

Along these lines, there is an opportunity to use weight functions. One can think of pebbles sitting on a
target as having weight 1, on a target’s neighbors as having weight 1/2, ..., and sitting on a vertex at distance
d from the target as having weight 1/2d. The weight of a configuration is then the sum of the weights of its
pebbles (see Figure 5). It is not difficult to prove, for example, that a configuration on a path can solve the
target at one of its endpoints if and only if its weight is at least one. By rescaling to make all the weights
integral, we can rephrase the characterization as: a configuration on a path cannot solve the target at one
of its endpoints if and only if its weight is less than 2n−1; i.e. at most 2n−1 − 1. Interestingly, this bound
equals the sum of the weights.

This can be generalized at the cost of equivalence, and the notion leads us to techniques involving linear
and integer optimization. Suppose that T is a tree, with one of its leaves r as target, and that eccT (r) = d.
Define the weight function wT by wT (v) = 2d−i, where i = distT (v, r). The pair (T,wT ) is called a basic
strategy. The Weight Function Lemma [14] says that if C is an r-unsolvable configuration on T then∑

v∈T
wT (v)C(v) ≤

∑
v∈T

wT (v). (1)

One can extend this to all graphs as follows. Given a target r in a graph G, consider any tree T in G with
r as a leaf. Extend wT to all of G by setting wT (v) = 0 when v 6∈ T ; then the Weight Function Lemma still
holds. The collection of all inequalities from basic strategies gives rise to an integer optimization problem
by maximizing zr =

∑
v∈G C(v) (the size of C) over these constraints. If z∗r is the optimum value then it

shows that every r-unsolvable configuration has size at most z∗r ; in other words, π(G, r) ≤ z∗r + 1. This gives
rise to the following integer program formulation of this graph pebbling upper bound:
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max 1 +
∑
v

C(v)

s.t.
∑
v∈T

wT (v)C(v) ≤
∑
v∈T

wT (v) ∀ basic strategies (T,wT ).

There are some drawbacks to the approach, as you might imagine. Of course, integer optimization is
typically exponential in the input size, but the input size (the number of such trees) is typically exponential
(or worse!) in the number of vertices. Furthermore, consider the unsolvability polytope of an n-vertex graph G
with target r: the convex hull of all r-unsolvable configurations on G (viewing configurations as non-negative
vectors in Rn). The Weight Function Lemma implies that the feasible polytope of the linear optimization
problem contains the unsolvability polytope — but it can be a very slack containment. To tighten that slack,
Cranston et al. [7] developed additional constraints based on certain non-tree subgraphs called lollipops (a
path with a cycle attached to an endpoint). For instance, the tree strategies only yield π(Q3) ≤ 9, while the
addition of lollipops proves π(Q3) = 8.

r

1 1

4
1

2 2

1

Figure 6: A tree constraint in the Petersen graph P .

In practice, however, one can have surprisingly good success by restricting the input to a random collection
of polynomially many breadth-first subtrees of depth at most eccG(r) + 1, for example, and then stop with
just linear optimization and the inequality π(G, r) ≤ bz∗rc + 1. The resulting approximation can be very
close, even exact, especially when the diameter of the graph is not large. We can illustrate this on the
Petersen graph P in Figure 6. The tree T35 shown in blue corresponds (using the labeling from Figure 4) to
the inequality

4C(v35) + 2C(v14) + 2C(v24) + C(v23) + C(v25) + C(v13) + C(v15) ≤ 12.

Using the symmetries yields two other trees T34 and T45. These produce similar constraints, and the sum of
all three constraints reveals that

4C(v34) + 4C(v35) + 4C(v45) + 4C(v14) + 4C(v24) + 4C(v23) + 4C(v25)+4C(v13) + 4C(v15) ≤ 36, (2)

so |C| ≤ 9, and hence π(P, v12) ≤ 10. Combined with the lower bound from having 10 vertices, this shows
(with the symmetry that all vertices look the same) that the Petersen graph is Class 0. This example also
illustrates the following lemma.

Lemma 5 (Uniform Covering Lemma [14]). Let r be a target vertex in a graph G and T be a set of
r-strategies. If there is some m such that

∑
T∈T T (v) = m for all v 6= r in G then G is Class 0 at r.

This holds because the right hand side of inequality (1) is the sum of the coefficients, so the same is true
of any sum of such weight functions. Therefore, in a uniform sum such as inequality (2), the right hand
side, after dividing by m, equals n− 1, the number of non-target vertices. The left hand side, with uniform
coefficients, always becomes the size of C after this division.

In some cases the method of weight functions offers the simplest proof of a graph’s pebbling number
(or the best upper bound of it). The set of strategies used in such a proof is called a certificate. Changing
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the weighting system by reducing weights by more than half as we traverse the edges of a tree, proceeding
away from the target, yields non-basic strategies — it turns out that these are conic (i.e. non-negative
linear) combinations of basic strategies, and so satisfy the Weight Function Lemma as well. Thus, non-basic
strategies do not need to be included in the optimization constraints, but they can be used in a certificate.
From the geometrical point of view of the unsolvability polytope, certificates will involve at most n − 1
strategies. However, in practice, most certificates have size degG(r) because two strategies using the same
neighbor of r can often be combined. Hence, finding certificates for a particular graph can even be quicker to
do by hand than by computer, especially when symmetry is present, and finding them for an infinite family
of graphs is really a hands-only activity.

A good example of this is powers of cycles [14]. For a graph G, define the kth power of G, denoted
G(k), by adding the edge uv for every pair of vertices satisfying distG(u, v) ≤ k. The pebbling exponent of
G, denoted eπ(G), is defined to be the minimum k for which G(k) is Class 0. For instance, G(diam(G)) = Kn

for every G on n vertices, and so eπ(G) ≤ diam(G). Because Class 0 graphs must have 2diam(G) ≤ n(G), we
need that diam(G(eπ(G))) ≤ lg n(G). This provides the lower bound on the result for n-vertex cycles that

n/2

lg n
≤ eπ(Cn) ≤ n/2

lg n− lg lg n
,

where the upper bound comes from a certificate of carefully constructed strategies.
The following problem is an interesting question from [14] regarding the approximability of graph pebbling

with weight functions. Let T = T (G, r) be the set of all tree r-strategies in a graph G. Is the resulting linear
optimization solution z∗r (T ) a reasonable approximation to π(G, r)? That is, does there exist some constant
c such that z∗r (T ) ≤ cπ(G, r)? Is c = 2?

Optimization perspectives of graph pebbling are an active area of research. For instance, Kenter et al.
[15] presents optimization approaches specific to graph products. In general, describing the actual facets of
the unsolvability polytopes of these approaches also remains illusive.

3.4 Graham’s Conjecture: Pebbling on Graph Products

Chung’s proof that π(Qd) = 2d is inductive, but for the induction to work, it requires also proving that Qd

has the 2-Pebbling Property (2PP): two pebbles can be placed on any target of G from any configuration C
of size at least 2π(G)− s(C) + 1, where supp(C) is the set of vertices having at least one pebble (the support
of C) and s(C) = |supp(C)|.

As a toy example of Chung’s proof technique, we prove again that the Petersen graph P is Class 0,
mimicking her three cases. Observe that P splits into two 5-cycles A and B with a matching between them,
suppose by symmetry that r ∈ A, and let C be a configuration of size 10. If A contains at least 5 pebbles
then we are done because π(A) = 5, so assume not. Let r′ be the neighbor of r in B. If r′ contains a
pebble then the other five pebbles in B can place a second pebble on r′, subsequently solving r, so presume
otherwise. If A contains exactly 4 (resp. 3) pebbles then the 6 (resp. 7) pebbles in B can move at least 1
(resp. 2) pebbles across to A, thus solving r from the resulting 5. If A contains at most 2 pebbles then B
has at least 8, from which we can place two pebbles on r′, then one on r.

Because Chung needed to prove inductively that the cube had both pebbling number n and the 2PP, she
needed also to prove the 2PP in three similarly partitioned cases.

As usual, one might look for a simpler or more direct proof of Chung’s result. In this case we observe
that Qd is a d-dimensional product of edges. The Cartesian product of two graphs G and H is denoted
G�H. Its vertices are the pairs (u, v) with u ∈ V (G) and v ∈ V (H), and two vertices (u1, v1) and (u2, v2)
form an edge when u1 = u2 and v1v2 is an edge of H and when v1 = v2 and u1u2 is an edge of G. (Observe
the notation of the empty box, which represents the equality K2�K2 = C4.) For example, Figure 7 shows
the case when G is a 4-vertex star and H is a triangle. Now one can see that Qd = Q2�Qd−1. Thus, a
simple proof would follow inductively from the relation that π(Qd) ≤ π(Q2)π(Qd−1), since π(Q2) = 2. This
led Graham to make the following conjecture, which many consider the holy grail of the subject.

Conjecture 6 (Graham’s Conjecture [6]). For all graphs G and H we have π(G�H) ≤ π(G)π(H).

There has been a significant amount of work verifying Graham’s conjecture for a wide array of cases,
including when G is a product of complete graphs and H has the 2PP [6], when G and H are products of
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Figure 8: The Lemke graph L, with a 2-fold r-unsolvable configuration C.

trees [19], when G and H are products of cycles (Herscovici), when G and H are complete bipartite graphs on
at least 15 vertices per part (Feng and Kim), when G is a product of a tree and H has the 2PP (Herscovici)
and many more.

The proofs of these results (and by “products of” we mean to include a graph by itself, as a trivial
product) all use that one of the graphs has the 2PP. This led to investigations about whether or not all
graphs have the 2PP — including products of complete graphs [6] and trees [6], among others. Lemke ([6])
found a graph with the smallest number of vertices not having the 2PP. It is not difficult to show that the
Lemke graph L in Figure 8 is Class 0 (try it with certificates if you like). However, the configuration C shown
has size 2π(L) − s(C) + 1 = 12, and yet two pebbles cannot be moved to the target r. Indeed, define the
weight w(v) = 2−dist(v,r) of a vertex v, and corresponding weight w(C) =

∑
v∈G w(v)C(v) of a configuration

C. Then, since the weight of the configuration C shown is 2, a 2-fold r-solution σ cannot afford to lose any
weight. Thus, every pebble must be used in σ, and σ must be greedy — every pebbling step moves closer to
the target. But this forces three pebbles to b and only one to a, thereby placing only one pebble on r. Any
graph without the 2PP has come to be known as a Lemke graph (as opposed to the Lemke graph), and these
are studied in their own right (see, for instance, [9]). Indeed, there are 22 Lemke graphs with the minimum
of 8 vertices; each is a subgraph of one having 17 edges, and a unique one (not L!) has the minimum of 12
edges. Additionally, several infinite families of Lemke graphs are known.

One result that avoids the necessity of the 2PP is that of Czygrinow and Hurlbert which states that if G
and H are graphs on at most n vertices each, the minimum degree of a vertex in G or H is δ, and that δ ≥
2(12n/δ)+15, then G�H is Class 0. From this is follows that π(G�H) = n(G�H) = n(G)n(H) ≤ π(G)π(H).
Essentially, this says that Graham’s conjecture holds for graphs of minimum degree at least cn/ lg n for
some c. It’s the density of such graphs that makes their product satisfy the diameter-connectivity theorem.
Repeated applications of this theorem die out eventually, however, since the degrees grow additively while
the number of vertices grows multiplicatively.

We see in this argument that the truth of Graham’s conjecture would imply that Class 0 graphs would
be closed under Cartesian products. Hence verifying the conjecture for Class 0 graphs would be a very
interesting result. Unfortunately, little has been achieved in this direction, possibly because of the lack of
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sufficient conditions for being Class 0.
Another way to avoid using the 2PP is given by Herscovici . Define a graph G to have the path property

if π(G�Pn) ≤ π(G)π(Pn) for all n. Any graph without the path property is a counterexample to Graham’s
conjecture, so this somewhat simple instance seems a good place to start. Thus, once proven, one could then
prove Graham’s conjecture by proving that it holds for graphs with the path property. This is a promising
line of reasoning.

On the other hand, if you like to play devil’s advocate, since most proofs do use the 2PP, it seems
reasonable to wonder if Graham’s conjecture might fail for L2 = L�L. Because L is Class 0, we should have
π(L2) = 64; but is it? In the tradition of Paul Erdős, the author of [14] offers $64 for the resolution of this
question 1.

Evidence in favor of Graham’s conjecture, in particular that the 2PP should not be relevant, is given by
Gao and Yin. Snevily and Foster defined an infinite family of graphs {Li}i≥1, which Gao and Yin proved
are all Lemke. Wang produced another sequence {L′i}i≥i of Lemke graphs. They showed that, for every
Li ⊆ G ⊆ L′i, if H is a complete graph or tree then π(G�H) ≤ π(G)π(H).

Additionally, Pleanmani has shown in that, for any G that is not Class 0, if n ≥ 2(π(G)−1)/(π(G)−n(G))
then π(G�Kn) ≤ π(G)π(Kn). They proved an analogous result in for large enough complete bipartite graphs
as well.

Work has begun on approximations to Graham’s conjecture, as Asplund et al. [2] proved that π(G�H) ≤
2π(G)π(H) always holds. They actually proved the stronger result that π(G�H) ≤ (π(G) + n(G))π(H).
This is no better a bound for Class 0 graphs, but means that

π(G�H) ≤ (1 + ε)π(G)π(H) whenever n(G) ≤ επ(G),

such as for graphs having diam(G) ≥ lg(n/ε). Can better approximations than 2 be found for all graphs?
Another variation on the problem is to change the graph product. The authors of [2] consider several,

among them the strong product G�H, which adds to G�H edges between (u1, v1) and (u2, v2) when u1u2

is an edge of G and v1v2 is an edge of H. (Observe the notation of the full box, which represents the equality
K2 �K2 = K4.) Since G�H ⊆ G�H, we have π(G�H) ≤ p(G�H). Regarding a Graham-type inequality,
they prove that every G and H satisfy π(G�H) ≤ 3

2 (π(G) + 1)(π(H) + 1).

3.5 Computational Complexity: How Hard is Graph Pebbling?

The problem of computing π(L2), mentioned above, begs the following questions.

1. How hard is it to decide if a particular configuration C on G solves a particular target r?

2. If we know that C solves r, how hard is it to display an actual solution σ?

3. And, of course, how hard is it to compute π(G)?

For a quick refresher in complexity theory, P is the set of problems that can be solved in polynomial
time (polynomial as measured by the size of the input, in our case, n(G)), NP is the class of problems that
can be verified in polynomial time, and EXPTIME is the set of problems that can be solved in exponential
time. The set NP-complete (resp. EXPTIME-complete) is the class of problems for which all other NP (resp.
EXPTIME) problems can be reduced to.

For Question 1, it was proved by both Hurlbert and Kierstead and by Milans and Clark [18] that the
problem of deciding if C solves r, for a given instance of configuration C on a graph G with target vertex
r, is NP-complete. The former pair reduced the well known NP-complete problem of deciding if a 4-uniform
hypergraph (a collection of subsets of vertices, each of size 4; e.g. a graph is a 2-uniform hypergraph) has
a perfect matching (a set of edges that partitions its vertices) to this problem of pebbling solvability. The
short proof illustrates another nice weight argument, so it’s worth presenting here.

Let H be 4-uniform hypergraph on 2m+2 vertices, with edges E(H) = {e1, . . . , ek} (it is not difficult to
show that prescribing this number of vertices is not a loss of generality). Define the pebbling graph G = GH
as follows. Its vertices are given by V (G) = V (H)∪E(H)∪{u1, . . . , uk}∪ {r, w1, . . . , wm}. The edges E(G)
include vei for every v ∈ ei, as well as the paths wmuiei for all i ≤ k, and the path rw1 · · ·wm (see Figure

1This is not to be confused with the $64,000 question!
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Figure 9: The pebbling graph GH with configuration CH.

9). Now define the configuration C = CH by C(v) = 2 for all v ∈ V (H) and C(v) = 0 otherwise. We then
argue that C solves r if and only if H has a perfect matching.

Define the weight of a configuration as above. Notice that the weight of a configuration never increases
via pebbling steps, and is preserved if and only if the pebbling step is greedy. Therefore, since a configuration
with a pebble on the target r has weight at least 1, any r-solvable configuration must have weight at least
1. In particular, since this configuration on GH has weight 1, it can only solve r through greedy steps, with
all pebbles used up in the process. In other words, all pebbling steps in Figure 9 would need to move from
right to left.

This means two things. First, each ei can receive at most 4 pebbles, because ei has exactly four edges
to {v1, . . . , vn}. Second, each pebble that wm receives from some ei comes from exactly four pebbles at ei.
Therefore, the number of pebbles that reach ei from the right is either 0 or 4. In addition, no two ei and ei′

that receive pebbles share a common neighbor vj , since vj can send a pebble to only one of them; that is, as
edges of H, ei ∩ ei′ = ∅. Now, it takes 2m pebbles on wm to reach r, and so it must receive them from a set
of 2m distinct eis — it is that set of eis that forms a perfect matching in H.

It is easier to see now that a perfect matching in H does yield an r-solution, which completes the proof.
As is customary with NP-complete problems, one typically searches for classes of graphs in which the

problem is polynomial, and here we have some nice results. For example, the proof of NP-completeness
by Milans and Clark uses reduction from 3SAT, a prototypical NP-complete problem, and shows that the
problem remains NP-complete for bipartite graphs, even those having maximum degree 3. Similarly, Cusack,
Lewis, Simpson, and Taggart prove that it remains NP-complete for diameter-two graphs , while Lewis,
Cusack, and Dion prove the same for planar graphs (graphs that can be drawn in the plane without crossing
edges) [17]. Remarkably, however, they also show that the problem is in P for diameter-two planar graphs!
This line of research begs for more work.

r 127

15

7

7

3

Figure 10: A maximum r-path partition P = {P 1, P 2, P 3, P 4, P 5} of a tree T , with corresponding t-fold
r-unsolvable configuration CT shown.

For Question 3, Milans and Clark [18] were able to show that the decision problem “Is π(G) ≤ k?” is
ΠP

2 -complete, a classification that is part of the polynomial-time hierarchy beyond NP. This makes graph
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pebbling an excellent example of a problem that is beyond NP but short of EXPTIME-complete. Along these
lines, Mendes, Pulaj, Wiedenbeck, and Yerger recently tied graph pebbling via bi-level integer programming
to two-person Stackelberg games in economics.

Nonetheless, we still see results for various classes of graphs that the pebbling number can be calculated
in polynomial time. For example, Herscovici, Hester, and Hurlbert proved that the pebbling number of a
diameter two graph can be calculated in O(n4) time. But the first result of this kind is the formula for
trees, which depends on constructing a decomposition of its edges into paths: a path partition. Suppose that
P = {P 1, . . . , Pm} is a path partition of a tree T , with each P i having length `i (i.e. P i ∼= P`i+1), written
in non-increasing order. We say that P is an r-path partition if r is an endpoint of P 1 and any other P i

that contains it, and that P majorizes another r-path partition P ′ if there is some j such that `i = `′i for all
i < j and `j > `′j . If P majorizes every r-path partition then it is maximum (see Figure 10). Chung proved
the following theorem.

Theorem 7 (Chung [6]). If `1, . . . , `m are the path lengths of a maximum r-path partition of a tree T then
πt(T, r) = t2`1 +

∑m
i=2 2`i −m+ 1.

One can imagine that the largest t-fold r-unsolvable configuration places all its pebbles on the non-r
leaves of T ; indeed, this is so. Define the configuration CT by placing t2`1 − 1 pebbles on the leaf of P 1,
and 2`i − 1 pebbles on the leaf of each remaining P i. Then no path P i (i > 1) has enough pebbles to
reach its other endpoint, and P 1 cannot place t pebbles on r by itself. Chung’s proof used induction on n
and t, involving the subtrees formed by components of T − r; other proofs used alternative induction steps
(Moews), total weight [4], or the Weight Function Lemma [14], and also generalized the formula to include
individual pebbling costs on each edge (Curtis-Hines-Hurlbert-Moyer). It is in Bunde et al. [4] where we
find a linear algorithm to construct a maximum path partition for any tree.

This has led to results on other families of chordal graphs, defined by having no induced cycle of length
more than 3, and are characterized by being a single vertex or having a simplicial vertex — a vertex whose
neighbors form a complete subgraph — whose removal leaves a chordal graph. (A tree having no cycles, is
trivially chordal.) Examples of graphs in this class whose pebbling numbers can be calculated in polynomial
time include split graphs, 2-paths, and semi-2-trees (Alcón-Gutierrez-Hurlbert), the strong product of a path
and a complete graph (Sieben), and graph powers of paths [1]. In some cases the graphs in a class may
have more than one pebbling number formula to choose from. The case of split graphs involves six different
formulas, depending on its structure. The algorithm runs in O(nβ) steps, where β = 2w/(w+ 1) ∼= 1.41 and
w ∼= 2.376 is the exponent of matrix multiplication. A commonality, outside of split graphs, is that these
graphs contain no induced pyramid.

Conjecture 8 (Alcón et al. [1]). The pebbling numbers of pyramid-free chordal graphs can be calculated in
polynomial time.

Interestingly, Bender, Richmond, and Wormald proved that almost all chordal graphs are split graphs.
Hence the pebbling numbers of almost all chordal graphs can be calculated in polynomial time.

For Question 2, there is very little work done so far. To state the question more precisely, suppose that
G is a graph and C is a configuration of size π(G, r) for some target vertex r. By definition, we know that
C is r-solvable. Is it always possible, then, to compute an r-solution in polynomial time?

For trees the question is trivially yes. For any set of pebbling steps σ one can define the transition digraph
Gσ, the multigraph of directed edges representing each pebbling step in σ. The No-Cycle Lemma of Moews
states that if σ is an r-solution then there is some r-solution σ′ for which Gσ′ is acyclic. This is a natural
piece of intuition: a pebble traversing a cycle returns to its position, causing the loss of other pebbles for
no gain. Thus, we may restrict our attention to minimal r-solutions: those for which the removal of any of
its steps is no longer an r-solution. In the case of trees, then, minimal r-solutions only take steps toward r,
decreasing the distance to r at each step — such solutions are called greedy.

Greedy solutions play an important role in calculating some pebbling numbers. For example, the cost
of a solution is the number of pebbles used (equal to one more than the number of its pebbling steps). It
can be shown that a minimal greedy solution costs at most 2d, where d is the diameter of the graph — such
solutions are called cheap. For example, a 2-path is either a complete graph on at most three vertices or a
chordal graph with exactly two simplicial vertices such that every maximal complete subgraph is a triangle.
As is shown by Alcón et al., if G is a 2-path on n vertices, with diameter d, then πt(G) = t2d + n − d + 1.
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Part of their method shows that a configuration of size at least π2(G) has a greedy, hence cheap solution.
Thus, (t − 1)2d + n − d + 1 pebbles remain to produce t − 1 additional solutions by induction. There are
numerous opportunities to apply this technique.

Unfortunately, not all solutions in chordal graphs are greedy (until the size of a configuration greatly
exceeds the graph’s pebbling number). However, a pebbling step is called semi-greedy if it moves a pebble
from one vertex to a neighbor that is not of greater distance to r. Alcón et al. [1] prove that all chordal
graphs are semi-greedy: every configuration of size π(G, r) on a chordal graph G has a semi-greedy r-solution.
In addition, they prove another theorem reminiscent of the situation on trees. A potential vertex v is one
containing at least two pebbles of a configuration. They prove that if G is chordal and C is an r-unsolvable
configuration of maximum size, then every potential vertex is simplicial.

Chung’s proof that cubes are Class 0 implicitly also proves that cubes are greedy. Her proof can easily
be converted to an explicit algorithm that makes only greedy steps and that runs in n lg n time. This has
direct applications to finding zero-sums in abelian groups in polynomial time. Algorithms for r-solving
configurations of size π(G) on graphs G in other graph classes would be useful.

4 Pebbling Variations

4.1 Target Pebbling: Satisfying Multiple Demands

Placing t pebbles on the same target vertex is just one level of generalization. We may instead be interested,
for some target distribution2 D, in placing D(v) on each vertex v — i.e. solving D — from any configuration
on G of sufficient size. From a supply-demand perspective, this may be the more natural optimization
problem. The target pebbling number π(G,D) is the minimum number of pebbles so that every configuration
of this size is D-solvable. The first instance of this problem appeared in Crull et al. [8], in which D(v) = 1
for all v; in this guise π(G,D) was known as the cover pebbling number. A stacked configuration (or target
distribution) is one that places all its pebbles (or targets) on a single vertex. A positive distribution D has
D(v) > 0 for every v. Sjöstrand generalized and proved the conjecture of [8] that, for any graph G, if D is a
positive target distribution and C is a D-unsolvable configuration of maximum size then C is stacked. From
this it is easy to calculate π(G,D) = maxv

∑
u 2dist(u,v). Thus, the interesting case is when D is not positive.

Herscovici et al. conjecture for every graph G that π(G,D) ≤ πt(G) for every D of size t. The intuition
is that, if |C| ≥ πt(G) then C can place t pebbles on any vertex of G — it seems reasonable, then, to believe
that C can place t pebbles on any combination of t vertices. It feels a little bit like a convexity notion. The
authors verify the conjecture for any G with π(G) = 2diam(G), such as complete graphs, even cycles, and
cubes, as well as for trees and odd cycles. This has come to be known as the Weak Target Conjecture, and
was also verified recently by Hurlbert and Seddiq for 2-paths and Kneser graphs K(m, 2).

Upon closer inspection of a graph like the complete graph, for example, every maximum size t-fold r-
unsolvable configuration has potential t− 1 and thus an odd number of pebbles on each vertex except r; in
particular, C(r) = 0 and C(v) > 0 for every v 6= r. For general D, such extremal configurations must have
C(u) = 0 for every u ∈ D, and so each extra target in D drops π(G,D) by one. As with configurations, define
the support of a distribution, supp(D), to be the are of vertices u with D(u) > 0, with s(D) = |supp(D)|.
Then the following conjecture, true for complete graphs, seems natural.

Conjecture 9 (Strong Target Conjecture [1]). For every graph G and target distribution D of size t we
have π(G,D) ≤ πt(G)− s(D) + 1.

The authors of [1] verify this conjecture for trees and for powers of paths. It would be interesting to
explore trees further: for example, one could imagine that an alternative partitioning of a tree T might yield
an explicit formula for p(T,D). Even the case |D| = s(D) = 2 is unknown.

Finally, one also finds in [1] another motivation for studying target distributions that relates to Graham’s
conjecture. There they posit the generalization that π(G1�G2, D1 ×D2) ≤ π(G1, D1)π(G2, D2), which also
implies conjectures of Herscovici and of Lourdusamy. As is often the case, finding just the right generalization
of a problem can be the key to cracking it.

2Configurations and distributions are both functions V (G) → N. However, to avoid confusion, we use configurations for
pebbles and distributions for targets.
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4.2 Optimal Pebbling: Finding the Best Configuration

Here we change the paradigm somewhat. So far we have been considering the worst-case scenario: the
largest configuration that can’t solve some target. Now we consider the best-case scenario: the smallest
configuration that can solve every target. The former is like a two-person game in which your adversary
places the pebbles; optimal pebbling is a game of solitaire in which you get to place your own pebbles.
It’s quite similar to finding the best placement of cops to capture any robber, or determining the smallest
distance-d dominating set. Pachter et al. were the first to define the optimal pebbling number of a graph G,
denoted π∗(G), to be the smallest m for which there is some configuration C of size m that is r-solvable for
every r. Deciding if π∗(G) ≤ k is easier than the same question for π(G), but it is still NP-complete [18]. In
this setting, however, Shiue showed that the cartesian product bound does hold:

π∗(G�H) ≤ π∗(G)π∗(H).

Pachter et al. showed that π∗(P3k+r) = 2k + r for all k ≥ 0 and all 0 ≤ r ≤ 2 (Friedman and Wyels
showed that the same result holds for cycles). Basically, you place two pebbles on every third vertex on
the path and add a pebble on any remaining vertex, and then show by induction that this is best possible.
Bunde et al. [4] carefully generalized the contruction to any tree T , yielding π∗(T ) ≤ d2n/3e, and thus
π∗(G) ≤ d2n/3e for all G. Note that every vertex without a pebble in this path configuration C is adjacent
to a vertex with a pebble — that is, supp(C) is a dominating set. More generally, define γ(G) to be the
minimum size of a dominating set in G. Then we always have π∗(G) ≤ 2γ(G). Thus, finding dominating
sets of various types has been the dominant (sorry, we couldn’t resist that) method in this area, and Chellali
et al. [5] connect variations of optimal pebbling to several different domination parameters.

In particular, a distance k dominating set S is a set of vertices of a graph G such that every vertex of
G is within distance k from some vertex of S. The size of the smallest such set is denoted γk(G), and this
yields the more general bound

π∗(G) ≤ 2kγk(G). (3)

An error-correcting code that corrects up to k errors is an example of a distance k dominating set in the
cube. In fact, Moews used the result of Cohen that γ(Qd) ≤ 2m, where m ≤ d(1 − H(k/d)) + 2 lg d and
H(x) = −x lg x − (1 − x) lg(1 − x), to prove that π∗(Qd)≤2d2(4/3)d. This has since been improved by Fu,
Huang, and Shiue to

π∗(Qd) = O
(
d3/2(4/3)d

)
.

For the lower bound π∗(Qd) ≥ ( 4
3 )d, Moews introduces a continuous optimal pebbling version, with real-

valued configurations and real-valued pebbling steps, still with 50% cost, and with corresponding parameter
π̂∗. For example, π̂∗(Q1) = 4/3: place 2/3 on each vertex — placing any other values a and b with smaller
sum will fail to move 1 to the smaller of the two. Also, since integer configurations are real configurations,
we see that π̂∗(G) ≤ π∗(G) for all G. Moews then proves the corresponding stronger version of Graham’s
conjecture:

π̂∗(G�H) = π̂∗(G)π̂∗(H)

to obtain the result. Finally, he follows Cohen’s probabilistic approach — showing that a randomly chosen
set of the right size will be a distance k dominating set with positive probability — to prove that every graph
G satisfies π∗(Gd) = π̂∗(G)d+O(lg d), where Gd denotes the Cartesian product of G with itself d times.

It is natural to study how π∗(G) decreases as the minimum degree of G increases. Let Nk(v) denote
the set of vertices within distance k of v, having size degk(v), and define δk(G) = minv degk(v). Write
Nk(U) = ∪u∈UNk(u). Typically, we avoid writing the subscript when k = 1. In [4] we find a clever argument
of Czygrinow that every graph G has γ2k(G) ≤ n/δk(G). Indeed, construct a distance-2k dominating set S
starting with any vertex v ∈ G, and initialize T = Nk(v). If T is not a distance-k dominating set then add
any vertex u 6∈ Nk(T ) to S and add Nk(u) to T (this is a disjoint union). By the time S has size n/degk(G),
T is a distance-k dominating set, making S a distance-2k dominating set. For instance, he applies this bound
to that of (3) to obtain

π∗(G) ≤ 4γ2(G) ≤ 4

(
n

δ + 1

)
.
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Czygrinow, Hurlbert, Katona, and Papp show that the exact bound is not attainable, although it is sharp: for
every ε > 0 there is a diameter two graph G (specifically K√n�K√n) with π∗(G) > (4− ε)

(
n
δ+1

)
. However,

they prove that when diam(G) ≥ 3 the coefficient in the upper bound can be improved to 3.75. They also
display, for any ε > 0, infinitely many graphs with coefficient at least 8

3 − ε, leaving a small gap for readers
to close.

One interesting problem that surprisingly remains unresolved is the following. Györi et al. [11] proved
that

(2/13)mn ≤ π∗(Pm�Pn) ≤ (2/7)mn,

but the correct bound is unknown. A final pursuit that is unexplored to date is investigating π∗(G,D) for
some target D — that is, maybe you don’t need to potentially reach every vertex, and maybe you might
need to reach some vertices multiple times.

4.3 Threshold Pebbling: The Random Case

Now that we’ve discussed the worst- and best-case scenarios, let’s think about the “typical” case, as initiated
by Czygrinow, Eaton, Hurlbert, and Kayll.

In this paradigm, neither the pebbler nor their adversary controls the initial configuration C; instead
it is chosen at random. Naturally, large configurations will be solvable with high probability, while small
configurations will be solvable with low probability. One might wonder if there is some threshold, i.e., phase
transition, at which the transition from low to high probability is sharp — indeed, there is.

Before we dive into the details, let us informally illustrate that threshold pebbling is a generalization of
an unlabeled version of Feller’s well-known Birthday Problem! Consider the complete graph Kn. We want
to know: “If pebbles are randomly placed on the vertices, how many pebbles are needed (as a function of
n) so that the probability of pebbling to any possible vertex tends to 1?”. Indeed, a configuration of size
less than n on Kn is solvable if and only if some vertex has at least two pebbles. Just as with the birthday
problem, this requires Θ(

√
n) pebbles, and so a pebbling threshold function for the family of complete graphs

is Θ(
√
n).

To make this formal, consider an infinite sequence of graphs G = (G1, G2, . . .) with an increasing number
of vertices, and a sequence of positive integers (m1,m2, . . .). Define p(Gi,mi) to be the probability that
C, a randomly chosen configuration of mi pebbles is solvable on Gi (i.e. r-solvable for all r). Note that,
as opposed to randomly placing each pebble independently, according to some fixed probability, we select
C uniformly at random from the set of all configurations on V (G) of a fixed size m. A pebbling threshold
function of G, t(k), is a function on N such that, as k→∞, p(Gk,mk)→0 (resp. 1) whenever mk/t(k)→∞
(resp. 0). We denote by τ(G) the set of all thresholds for G.

Of course, there is no reason, a priori, that a pebbling threshold even exists for any particular sequence
of graphs! However, we have the following theorem.

Theorem 10 (Bekmetjev et al. [3]). Every infinite sequence of graphs has a pebbling threshold function.

The proof of this theorem utilizes beautiful results from extremal set theory, so we sketch it below. For a
graph G, define the family F of all unsolvable configurations on G, with Fm being those of size m. We may
view each configuration as a multiset of m vertices, of which there are

〈
n
m

〉
= n(n + 1) · · · (n + m − 1)/m!.

Then, we see that p(C) = |Fm|/
〈
n
m

〉
when |C| = m. For any family A of multisets of V (G), define the

shadow ∂Am = {A− v | v ∈ A ∈ Am}. Note that ∂Fm⊆Fm−1, which is what we will mean by monotone. In
the lattice of subsets, the famed Kruskal-Katona Theorem gives a precise formula for the minimum shadow
size of a family Bm of m-subsets of size M , based on something called the “cascade representation” of |Bm|,
which we won’t get into. The formula is beautiful but difficult to use in calculations. For this, we rely on the
excellent approximation of Lovász, which states for any real x that if |Bm| =

(
x
m

)
= x(x−1) · · · (x−m+1)/m!

then |∂Bm| ≥
(

x
m−1

)
. Then Bollobás and Thomason used this to show for monotone B that if j < k then

p(Bj)k ≥ p(Bk)j , where p(Bm) = |Bm|/
(
n
m

)
. From this it follows that, if we apply these calculations to

an infinite sequence of graphs (G1, G2, . . .), with increasing n(Gi) and families Bm(i) defined on Gi with
m a function of n, then there is some threshold t = t(B) for which, as i→∞, p(Bm)→1 when m/t→0 and
p(Bm)→0 when m/t→1.

The Kruskal-Katona theorem was successfully generalized to the (infinite) lattice of multisets by Clements
and Linström. Then Bekmetjev et al. [3] proved the analogue of Lovász’s inequality — if A is a family of
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multisets with |Am| =
〈
x
m

〉
then |∂Am| ≥

〈
x

m−1

〉
— and used this to settle the existence of a threshold τ(A)

for any monotone family A of multisets. Theorem 10 states this in particular for the monotone families of
unsolvable configurations of a sequence of graphs.

Regarding specific examples of graph sequences, recall that τ(Kn) = Θ(
√
n). At the other end of the

spectrum is the sequence of paths P. A series of papers resulted in the lower (Czygrinow-Hurlbert) and

upper [3] bounds τ(P)⊆Ω(n2c
√

lgn) ∩O(n2C
√

lgn) for any c < 1 < C, and finally Moews recently found the
answer:

τ(P) = Θ
(
n2
√

lgn/
√

lg n
)
.

It is not difficult to see that every graph threshold sits between τ(K) and τ(P), and Moews proved that, for
every function g in this range, there is a graph sequence G with τ(G) = Θ(g). Czygrinow, Eaton, Hurlbert,
and Kayll showed that if G is a sequence of graphs having bounded diameter, though, then τ(G) ∈ O(n),
while if the graphs have minimum degree δ, for

√
n � δ < n, then τ(G) ∈ O(n3/2/δ) (which yields Θ(

√
n)

for δ ∈ Θ(n)) (Czygrinow-Hurlbert).
Interestingly, Björklund and Holmgren proved that π and τ are not always positively correlated. A blow-

up of a vertex v in a graph replaces v by a complete graph, each vertex of which is adjacent to each vertex
in N(v). For example, blowing up an endpoint of an appropriate length path will realize the required graph
sequence in Moews’ density result above. Here, Björklund and Holmgren define Gn to be the n-vertex graph
blown up from an endpoint of a length lg n path, Hn to be the n-vertex graph blown up from a midpoint of a
length lg n+ c path, for some large constant c, and show that π(Gn) ≤ 3n� π(Hn). Then, for G = (Gn)n≥1

and H = (Hn)n≥1, they prove that τ(H) ∈ O(n0.8), while τ(G) ∈ Ω(n0.99). They also give more complicated
and extreme examples of G and H with π(Gn)� π(Hn), τ(H) arbitrarily close to τ(K), and τ(G) arbitrarily
close to τ(P).

Threshold arguments are typically local. For upper bounds one usually shows that a random configuration
of many pebbles almost always places sufficiently many pebbles in every small subgraph. For lower bounds
one typically shows that a random configuration of few pebbles almost always contains a large hole — some
Nk[v] with no pebbles in it — and cannot move enough pebbles to the boundary of the hole sufficient to
reach v. The details of what small and large means and what probabilistic techniques are used vary upon
the instance.

Along the lines of Cartesian products, both Alon and Czygrinow-Wagner produced bounds for the se-
quence Q = (Qd)d≥1 of cubes:

τ(Q) ∈ Ω(n1−ε) ∩O(n/(lg lg n)1−ε) for all ε > 0.

This has room for tightening. For the sequence of products of complete graphs K2 = (K2
k)k≥1, Bekmetjev and

Hurlbert proved that τ(K2) = Θ(
√
n). This satisfies the following natural threshold version of Graham’s con-

jecture, which needs to be stated carefully to account for the re-scaling of n (i.e. n(Gk�Hk) = n(Gk)n(Hk)).

Conjecture 11 (Hurlbert [12]). Let F = (Fk)k≥1, G = (Gk)k≥1, and H = (Hk)k≥1, where Fk = Gk�Hk,
and suppose that f ∈ τ(F), g ∈ τ(G), and h ∈ τ(H). Then

f(n(Fk)) ∈ O(g(n(Gk))h(n(Hk))).

Two additional directions are worthy of exploration. One is to change the model of generating a random
configuration. Unlike in the random graph case, in which the hitting time, static, and Erdős-Reyni models
all concur, a different configuration model can change the threshold. For example, Czygrinow and Hurlbert
showed that if the pebbles are labeled and each pebble gets to choose its own vertex, then the path threshold
drops to Θ(n lg n/ lg lg n). Finally, one can also consider the threshold for cover pebbling, as is done by
Godbole, Watson, and Yerger, where they prove the following sharp result. Let φ = (1 +

√
5)/2 and

ω = ω(n)→∞. Then a uniformly random configuration on Kn is almost surely cover-solvable when |C| ≥
φn+ ω

√
n and almost surely not cover-solvable when |C| ≤ φn− ω

√
n.

5 Final Comments

The challenges involved in graph pebbling touch different areas of mathematics beyond graph theory including
number theory, optimization, computation, extremal set theory, and probability. The Lemke-Kleitman
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Conjecture 3 remains open in the general case. Pebbling has also played a role in similar, combinatorial
number-theoretic problems as well. For example, Knapp [16] recently used a pebbling technique to show the
existence of 2-adic solutions to certain homogeneous additive equations! From a different perspective, the
computational challenges are daunting; any progress toward efficiently computing such parameters would
enable great progress in graph pebbling. These are, of course, in addition to Graham’s Conjecture.

Regardless of your background, we invite you and your students to pebble! Clever applications and
connections to other areas of mathematics await!
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