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Abstract

A family of sets is intersecting if any two sets in the family intersect.
Given a graph G and an integer r > 1, let Z(")(G) denote the family
of independent sets of size r of G. For a vertex v of G, the family of
independent sets of size r that contain v is called an r-star. Then G
is said to be ~EKR if no intersecting subfamily of Z(")(G) is bigger
than the largest r-star. Let n be a positive integer, and let GG consist
of the disjoint union of n paths each of length 2. We prove that if
1 <r < n/2, then G is r-EKR. This affirms a longstanding conjecture
of Holroyd and Talbot for this class of graphs and can be seen as
an analogue of a well-known theorem on signed sets, proved using
different methods, by Deza and Frankl and by Bollobas and Leader.

Our main approach is a novel probabilistic extension of Katona’s
elegant cycle method, which might be of independent interest.

1 Introduction

The set {i € N: m < i < n} is denoted by [m,n], [1,n] is abbreviated to
[n], and [0] is taken to be the empty set (). For a set X, the power set of X
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(that is, {A: A C X}) is denoted by 2. The family of r-element subsets of
X is denoted by ()f) The family of r-element sets in a family F is denoted
by F. If F C 2¥ and = € X, then the family {A € F: x € A} is denoted
by F(x) and called a star of F with centre x. A family F is intersecting if
F,F" € F implies F N F'" # ().

How large can a maximum-size intersecting family F C ([”]) be? If 2r > n
then |F| = (") is obvious, while if 2r < n the classical Erdés-Ko-Rado
(EKR) Theorem [10] states that F can be no larger than a star.

EKR Theorem (Erdés, Ko and Rado [10]). Let n,r > 0 be integers, n > 2r.
Let F C ([:f}) be intersecting. Then

7= (12)) = 1Fwl 0

When n = 2r, the proof of the EKR Theorem is easy: simply partition
([2:]) into complementary pairs. Since F can contain at most one set from
each pair, |[F| < 2(*) = (*7}). To deal with the case n > 2r Erdés, Ko and
Rado [10] introduced an important operation on families called shifting.

Let Z denote the family of independent sets of G. The size of a maximum
independent set of G is denoted «(G). Holroyd and Talbot [13] introduced
the problem of determining whether Ig ) has the star property for a given
graph GG and an integer » > 1. Following their terminology, graph G is said
to be r-EKR if no intersecting family of Ig ) is bigger than the largest star
of Ig )

Although not phrased in the language of graphs, one of the earliest results
in the area, proved using different methods by Deza and Frankl [8] and by
Bollobés and Leader [3], was to show that if G is the vertex-disjoint union
of n complete graphs each of size k > 2, then G is r-EKR (1 < r < n). This
result was extended in various ways [1, 2, 4, 9, 6]. One such extension that is
directly relevant to us is given by Hilton and Spencer [11, 12], showing that if
G is the vertex-disjoint union of powers of cycles or of a power of a path and
powers of cycles, then G is r-EKR (1 < r < «(G)), provided some condition
on the clique number is satisfied (see [5] for short proofs with somewhat
weaker bounds). The problem, however, of obtaining an EKR result for
vertex-disjoint unions of (powers of) paths remained elusive. In this note, we
make the first step towards this problem in the following theorem.



Theorem 1. Let 2r < n, and let G be the vertex-disjoint union of n paths
each of length 2. Then G is r-EKR.

We remark that Theorem 1 verifies a conjecture of Holroyd and Talbot
[14] for vertex-disjoint unions of length 2 paths. It is also the first case where
the graph is not transitive, cf. [16].

Our most important message, however, is the technique used to establish
Theorem 1. Namely, we shall use the cycle method, a technique first intro-
duced by Katona [15] in his beautiful proof of the EKR Theorem; however,
some difficulties which are not present in [15] must be dealt with. Roughly
speaking, we combine the shifting technique with a weighted (or probabilis-
tic) version of the cycle method by considering pairs of intervals around the
circle, instead of intervals, in order to account for the different types of ver-
tices in the graph.

2 Preliminaries

Throughout the rest of the paper, let n be a positive integer, and let G be
the vertex-disjoint union of n paths P, ..., P, each of length 2. For i € [n],
the vertex set and edge set of P; are, respectively, {z;, y;, z;} and {z;y;, y;2:}.
Define X ={z; : 1 <i<n}, Y ={y;:1<i<n}, Z={z:1<i<n}
and L =X UZ.

To prove the theorem, we will use the powerful shifting technique, first
introduced by Erdés, Ko and Rado [10]. A family F C Ig ) is said to be
shifted if F € F and y; € FNY implies (F \ {y;}) U{x;} € F.

Let ¢; : V(G) — V(G) be the function given by

¢i(y;) = x; for i € [n], ¢;(v) = v otherwise.
For A C V(G) and i € [n], let
¢i(A) ={¢i(a) : a € A},

and note that if A is independent then so is ¢;(A).
For a family F C Ig), let @, : Ig) — Ig) be given by

Q;(F) ={¢i(A): Aec FTU{A: A ¢:;(A) € F},

and let ®(F) = &¢(F)o---0d,(F). Informally speaking, for each A € F that
contains vertex y;, ®;(F) replaces A by the independent set A" = (A\ {y;})U

3



{x;} provided A" is not already in F, and ®(F) performs this operation for
each i € [n]. It is easy to see that ®(F) is shifted.

Lemma 1. Let F C Zg) be an intersecting family. Then |®(F)| = |F| and
ANBNOL#0 for all A, B € ®(F).

Proof. The proof is completely standard, but we include the details for com-
pleteness. We first demonstrate that ®;(F) is intersecting for ¢ € [n].

Let A,B € ®;(F). If A,B € F, then AN B # () since F is intersecting.
If A, B € &;(F) — F, then by definition z; € AN B. So we can assume that
Aed(F)NF and B € &;(F) — F. Then B = (C — {y;}) U {z;} for some
C € F and either y; € Aor D = (A—{y;})U{x;} for some D € F. Ify; & A,
then ANB = AN((C —{y:})U{z;}) 2 ANC # P since A,C € F. Finally, if
DeF, then) £ CND = (B~ {zh) U{y:h) N (A—{5:}) Ulee}) = ANB.
This shows that ®;(F) is intersecting for i € [n].

By definition, |®(F)| = |F|. Since each ®;(F) is intersecting, ®(F) is
intersecting. We are left to show that AN BN L # () for all A, B € ®(F).
Suppose that AN B = {y;,,...,y;,} € G\ L for some 1 <t < n. By
definition, A" = (A\{v;,,...,y; })U{zj,...,z;} is a member of &(F). But
then A’ N B = (), contradicting that ®(F) is intersecting. O

Another tool in our proof of the theorem is the cycle method of Katona.
Before we can concisely use the method in the next section, here we only
make a few definitions and prove a lemma. We shall find it convenient to
represent L by [2n], by representing the vertex x; by the integer i and z; by
n + i for i € [n]. We use the permutation notation o = (ay, ..., as,) to mean
that the elements of L are listed in the order aq, ..., as, around the circle. In
this case we write o(i) = a;. For j > 1, M C L, and a permutation o of L,
let

oM ={o(c+j):ce M}. (2)

Example 1. Let L = {1,2,3,4,5,6}, o = (3,5,6,1,2,4) and M = {1,4,5}.
Then one has, for example, ,M* = {o(1 +1),0(4+1),0(6+ 1)} = {5,2,4}
and ,M? ={o(1+3),0(4+3),0(5+3)} ={1,3,5}.

.....

call a permutation o of L good if x; and z; are diametrically opposite on the
circle. Equivalently, o is good if any n elements a4, ...,a, in L appearing



U,
T

Figure 1: The sets S, T}, Uy, Ts, and U,, with s = 2, t = 6, and u = 3, where
n = 18. (4(6,3) is in blue and Cy(6, 3) is in red.

consecutively in ¢ do not contain both z; and z; for each ¢ € [n]. (For
instance, the permutation (1,...,2n) is a good permutation of L.)

We now prove a lemma analogous to Katona’s lemma in his proof of the
EKR Theorem.
For integers s > 0 and t,u > 1, define the pairwise disjoint intervals

Ti=I[s+1,...,s 41,
Uy=[s+14+n,....,s+u+nl,
Th=[s+u+n+1,....,s+u+n+t),
Uy=[s+t+1,...,s+t+ul.

Let C;(t,u) = T;UU; for i € {1,2}. For a good permutation o of L, recall
the notation of equation (2) and define

SC(tu) = {,C(t,u) : 1< j<2nyU{,Ci(t,u):1<j<2n}.



Example 2. Consider the parameter values in Figure 1, and let

o= (578,21,6,20,1,11,14,36,22,10, 34, 30,27, 7,15, 31,17,
23,26,3,24,2,19,29,32,18,4,28,16,12,9,25, 33,13, 35).

Then ,C(6,3) consists of the following sets.

,Cl = {6,20,1,11,14,36,24,2,19}  ,C} = {29,32,18,4,28,16,22,10,34}
,C? = {20,1,11,14,36,22,2,19,29}  ,C? = {32,18,4,28,16,12,10,34,30}
,C3 = {1,11,14,36,22,10,19,29,32} ,C3 = {18,4,28,16,12,9,34,30,27}

L0 = {21,6,20,1,11,14,3,24,2}  ,C3 = {19,29,32,18,4,28,36,22,10}

Lemma 2. Let n,t,u > 0 be integers such that t > w. Let o be a good
permutation of L. For any intersecting family B C C(t,u) := ,C(t,u),

(i) |B| <t and |,C(t,u)| =2n if u =0 and and n > t;
(i) |B| <t and |,C(t,u)| =n ift =u and n > 2t;
(111) |B] <2(t+u) and |,C(t,u)| =4n if t >u>1 and n > 2(t + u).

Proof. Since o is fixed we will write CY (¢, u) in place of ,CY(t,u) for visual
simplicity.

(i) This case is Katona’s lemma. Clearly, CY(t,0) = C3%"(¢,0) and hence
C(t,0) = {CY(t,0) : 1 < j < 2n}, which implies |C(t,u)| = 2n. Now assume
without loss of generality that C{(¢,0) € B. All the other sets Ci(¢,0) that
intersect C1(t,0) can be partitioned into disjoint pairs (Ci(¢,0),Ci (¢, 0))
for i € [2,t] since n > t. Since B is intersecting, it can contain at most one
set from each pair. Hence |B| < ¢.

(i) Clearly, CJ(t,t) = C37'(t,t) = CI™™(t,t) and hence C(t,t) = {C](t,1) :
1 < j < n}, which implies |C(¢,u)| = n. Since n > 2t, it follows as in (i) that
B| < t.

(iii) Clearly, C?(t,u) # C}(t,u) for any 1 < i, j < 2n, implying |C(t,u)| =
4n. Now let D' = Ci(t,u) U Ci(t,u). Then

D' = D7 if and only if j = n + 1. (3)



Define the family
D' ={D': Cj(t,u) € B for some j € {1,2}}.

Then D’ is intersecting since B is intersecting. Since n > 2(t + u), it follows
by (ii) that |D’'| < t + u. Now B can contain at most two of the sets in
{Ci(t,u), Ci(t,u), O (t,u), CyT(t,u)} since it is intersecting. By (3), |B| <
2|D’'| < 2(t + u) as required. O

3 The proof of Theorem 1

Before we begin the proof of the theorem, we introduce some additional
notation. For a vertex ¢ € L, we let ((¢) € Y denote the unique neighbour
of £ in G. We say that x; and z; are siblings. Given a good permutation
o = (a,...,a9,) of L, we let ¢ = (((a1),...,((az,)). We say that an
independent set A of G is

e of type I if whenever AN L contains an element of X U Z, then it does
not contain its sibling,

o of type Il if whenever A N L contains an element of X U Z, then it
contains its sibling, and

e of type III in all other cases.

Let F C Ig ) be an intersecting family. By Lemma 1, to prove the theorem
we can assume that F is shifted.

For 0 < s <r, define Ig)(s) ={A EIg) JANY|=s}and F, ={F €
F:|FNY|=s}. Since F is shifted, 7, = 0 and so |F| = 3."_} | F.|. Let us
now try to bound the size of each Fj.

Define the families

A, = U {itr—s=0).Cator =5 1)},
te[| 52+ 1, r—s—1]

B — {Ci(r = 5,00 U{C1(52,5%)}  if r — s is even,
| {Cu(r —5,0)}, otherwise,

Now, choose an index i € [2n] and a good permutation o of L uniformly
and independently at random and a member C' € A, U B, with probability

Me)=fC)/ > JD),

DEAS UBS



where f will be determined later on. Recalling again the notation in definition
(2), we set
I =, StuU -C ‘.

Clearly I € Ig )(s). To ensure that [ is uniformly chosen from Ig )(s),
consider arbitrary K € Ig )(s). What is the probability that I = K7 It
is the probability that ,C" = K N L and »S* = K NY. In particular, let
ki =|K NL|=r—sand let ky be the number of pairs of siblings in K N L.
Then ,C" = KN L only when k; is the number of pairs of siblings in C': there
is precisely one such C' in the situation when k; = 2k or ks = 0 and one such
C' together with its ‘complement’ C* in all other cases, where C* = C3_;(t, u)
when C' = C;(t,u). Hence, with £ equal to the set of all good permutations
of L, conditioning on ¢ the former probability is equal to

— k)(n — !
(kl kQ)(n k:l _|_ k2) . ]’L(C) lf K is Of type I or II, and

£]
U = k2)'(|n£‘— b+ ko)t (h(C) + h(C*)) if K is of type III
while the latter probability is invariably equal to
2°(n — s)!s!
o
Therefore, by taking f(C) = (kl_kQ)!(;_lier)! if I is of type I or II and

flC) = f(C*) = 2(161_,62)!(1”_,61%2)! if I is of type III, we have that [ is
uniformly chosen from Ig )(s). This means that
Fol A
r - n 2n—2 .
& O
We next turn to estimating Pr[I € Fi] in another way. For a good
permutation o of L and special sets 1, ..., C;, write

Pr[l € ] =

(4)

5(I,0,Ch,...,C):=Pr[l € Fs| o AN(CLV---VCy)|-PrloA(CLV--- VY.
Using Lemma 1 and either Lemma 2(i) or Lemma 2(ii), for each member
B of B, and each good permutation o of L,

r—s
on

Prll € F, | o AB] < (5)



Similarly, using Lemma 1 in conjunction with Lemma 2(iii), for each
member A of A, and good permutation o of L,
2(r—s) r—s

Pr|l AV A < = .
e Flon(avan s =212 (6)

Let A, = {(A,A*) : AJA* € A} By (5), (6) and the law of total
probability, we have that

PilleF] = Y dLoB)+ Y (o AA)
ceL,BEB; oc€eL,(AA*)eAL
r—S .
< - ( > ProABl+ ) ProA(AvA )])
o€L,BEBs oL, (A,A%)EAL,
— ’”2_n3< > ProABl+ > Pr[a/\A]>
oceL,BEB; oc€L,AEA,
Tr—S
= 5 Z Prjo A C]
O'EL:,CE.ASUBS
r—s
— , 7
5 (7)

Combining (4) and (7) immediately yields the result, as follows.

r—1
Fl =) |7
s=0
r—1
r—s(n 2n — 2s
<
_Z 2n (3)( r—s)

s=0
_Ti(n—1) (2n—25—1)
— ] r—s—1
= |F(z)]. O

4 Concluding Remarks

Our bound on r in Theorem 1 is probably not optimal. In view of the EKR
theorem, we make the following conjecture.
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Conjecture 1. Let r < n, and let G be the vertex-disjoint union of n paths
each of length 2. Then G is r-EKR.

Perhaps another way to generalise Theorem 1 is to consider a larger class
of related graphs. To be more precise, for a positive integer k, we define a
k-claw to be the tree in which the root has degree k and every other vertex
degree one. For example, a 2-claw is simply a path of length 2.

Problem 1. For any integers k,n,r, such that k > 3 and 2r < n, show that
if G is the vertex-disjoint union of n k-claws, then G is r-EKR.

Although we suspect that the approach in this paper can be adapted to
address Problem 1, there are a few complications that arise which do not
allow for straightforward alterations.

One of the interesting consequences of studying the Erdés-Ko-Rado ques-
tion for families of independent sets of graphs is the connection to a famous,
longstanding conjecture of Chvétal [7] concerned with hereditary families of
subsets of a finite set. A family H C 2l g hereditary if A € H and BC A
implies that B € H. The conjecture then states that no intersecting subfam-
ily of H is larger than the largest star of H.

It is easy to see that for graph G and r > 1, the family of all independent
sets of size at most r, denoted by Iégr), is a hereditary family. A simple
corollary of 1 is that Chvatal’s conjecture is true for I(GST), where G is the
vertex-disjoint union of n paths, each of length 2, and r < n/2. Conversely,
a corollary of Chvétal’s conjecture is that for any graph G, no intersecting
family of independent sets of GG is larger than the largest intersecting family
of independent sets of G each containing some particular vertex.
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