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Abstract

Here we introduce a new game on graphs, called cup stacking, following a line of what can be

considered as 0-, 1-, or 2-person games such as chip firing, percolation, graph burning, zero forcing, cops

and robbers, graph pebbling, and graph pegging, among others. It can be more general, but the most

basic scenario begins with a single cup on each vertex of a graph. (This simplification coincides with an

earlier game devised by Gordon Hamilton.) For a vertex with k cups on it we can move all its cups to a

vertex at distance k from it, provided the second vertex already has at least one cup on it. The object is

to stack all cups onto some pre-described target vertex. We say that a graph is stackable if this can be

accomplished for all possible target vertices.

In this paper we study cup stacking on many families of graphs, developing a characterization of

stackability in graphs and using it to prove the stackability of complete graphs, paths, cycles, grids, the

Petersen graph, many Kneser graphs, some trees, cubes of dimension up to 20, “somewhat balanced” com-

plete t-partite graphs, and Hamiltonian diameter two graphs. Additionally we use the Gallai-Edmonds

Structure Theorem, the Edmonds Blossom Algorithm, and the Hungarian algorithm to devise a polyno-

mial algorithm to decide if a diameter two graph is stackable.

Our proof that cubes up to dimension 20 are stackable uses Kleitman’s Symmetric Chain Decompo-

sition and the new result of Merino, Mütze, and Namrata that all generalized Johnson graphs (excluding

the Petersen graph) are Hamiltonian. We conjecture that all cubes and higher-dimensional grids are

stackable, and leave the reader with several open problems, questions, and generalizations.
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1 Introduction

Cup stacking, also known as sport stacking or speed stacking, has become a popular sport involving the

stacking and un-stacking of cups in various formations, in certain order, and in minimum time (see [16, 18]).

Here we introduce a graph theoretic version of the stacking game.1

There are many varieties of what may be called “moving things around in graphs”, including cops and

robbers [4], graph pebbling [11], zero forcing [1], chip firing [2], graph burning [3], and graph pegging [9],

among others. Even network optimization and network flow can fall under in this umbrella, as can one of

the world’s oldest board games, Mancala [12, 15]. In each scenario, we begin with a configuration of objects

that are placed on the vertices of a graph G (modeled as a nonnegative function on the vertices) and a set

of target vertices to which we must move the objects. Each scenario has different rules for moving objects

along the edges of the graph — movement may cost money, objects may be consumed in transit, edges may

have capacities, or conditions on neighboring vertices may exist — and sometimes the target(s) can move,

controlled, say, by an adversary. The objective may simply be to reach the target(s), or to do so at minimum

cost or in minimum time, for example. Our setup for cup stacking is as follows.

We will work exclusively with connected graphs. Let G be such a graph, with objects called cups, which

are placed on the vertices of G. A configuration C on G is a function C : V (G)→N that encodes the number

C(v) of cups on each vertex v. A cup stacking move from vertex u to vertex v, denoted u 7→ v, can be made

if both vertices have at least one cup and dist(u, v) = C(u), and consists of moving all the cups from u onto

v. Because of the distance condition, we know that u 7→ v can be thought of as carrying the C(u) cups from

u to v along a uv-geodesic (minimum length uv-path) P (u, v) of length C(u). The resulting configuration C ′

satisfies C ′(u) = 0, C ′(v) = C(u) + C(v), and C ′(w) = C(w) otherwise. For a target vertex r, we say that

G is (C, r)-stackable if it is possible to stack every cup on r; it is C-stackable if it (C, r)-stackable for every

r with C(r) > 0.

We define the configuration 1 to have one cup on each vertex of G (we will use this notation for any size

graph). When C = 1, we will drop C from the notation to say r-stackable and stackable, respectively. The

focus of this paper is to study the case that C = 1. However, it is important to note that, in order to do so,

we still need to consider the general case (e.g. see Figure 1).

A simple observation when C = 1, for example, is that the tree K1,m is r-stackable if and only if m ≤ 2

or r is not a leaf, and thus K1,m is stackable if and only if m ≤ 2. More generally we have the following fact.

Fact 1. If r is a dominating vertex in a graph G on n vertices then G is r-stackable.

1We are indebted to one of the referees, who pointed us to a similar game, invented earlier by Hamilton [8], called Frog
Jumping; the special case of that game involving a single lazy frog coincides with the special case of our game involving the
configuration of exactly one cup per vertex. Subsequently, the Master’s thesis [17] broadened Hamilton’s path game to all
graphs, explicitly studying the game on dandelions, which we define and discuss below.
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Equally simple is the following.

Fact 2. If G is a vertex transitive graph and r ∈ V (G) then G is stackable if and only if G is r-stackable.

Together, Facts 1 and 2 imply, for example, that all complete graphs are stackable. Interestingly, Veselovac

[17] found an infinite family of trees that are not r-stackable for any r.

1.1 Definitions

We mostly follow standard graph theory terminology and notation, viewing a graph G = (V,E) as a set of

vertices V together with a set of edges E, which are unordered pairs of vertices. If necessary to identify to

which graph a set of vertices or edges belongs, we may write V (G) and E(G) for the vertices and edges of

the graph G. We say that vertices u and v are adjacent in G if uv ∈ E(G) (note that we write uv as a

simplification of {u, v}). We tend to save subscripts to denote the number of vertices of a graph; for example,

Pn is the path on n vertices and thus has length n− 1.

The open neighborhood of a vertex v is denoted N(v) and consists of the set of vertices that are adjacent

to v, and the degree of v is denoted deg(v), and equals |N(v)|. The closed neighborhood of v is denoted N [v]

and equals N(v)∪{v}. (Each of these can be written with the subscript G — e.g. NG(v), etc. — if necessary

to avoid confusion.) We say that v is a dominating vertex in G if N [v] = V (G). More generally, for any

S ⊂ V (G) we write N(S) = ∪v∈SN(s) and N [S] = N(S) ∪ S; then S is a dominating set if N [S] = V (G).

The distance between two vertices u and v is denoted dist(u, v), and counts the length of the shortest

path with endpoints u and v. If necessary to distinguish distances in different graphs containing u and v,

we will write distG(u, v) to identify distance in the graph G. The diameter of a graph G is denoted diam(G)

and counts the largest distance between two vertices of G; i.e. diam(G) = maxu,v distG(u, v).

The Cartesian product of two graphs G and H is denoted G□H and has vertex set {(x, y) | x ∈ V (G), y ∈

V (H)} and edge set {(x, y)(x, y′) | yy′ ∈ E(H)} ∪ {(x, y)(x′, y) | xx′ ∈ V (G)}. The d-dimensional cube Qd

(or d-cube) has vertex set all binary d-tuples (a1, . . . , ad) and edge set all pairs of vertices whose coordinates

differ in exactly one position. Thus Q0 is a single vertex, Q1 is isomorphic to K2 (the complete graph on

2 vertices), Q2 is isomorphic to C4 (the cycle on 4 vertices), and Q3 looks like the bordering edges of a 3-

dimensional box. As can be readily seen, we can also write Qd = Q1□Qd−1 or, more generally, Qd = Qp□Qq

for any natural numbers for which p + q = d. Furthermore, we can identify V (Qd) with the family of all

subsets of {1, . . . , d} by associating the set A with the d-tuple defined by ai = 1 if and only if i ∈ A. In this

way, every uv ∈ E(Qd) corresponds to a pair of sets U and V for which |U△V | = 1. In general, we have

distQd(u, v) = |U△V |; in particular we have dist(u,0) = |U |, where 0 denotes the all-zeros vertex.

In this paper we will assume that all variables mentioned are nonnegative integers.
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Figure 1: A graph and configuration (G,C), left, with an r-stacking partition {(H1, D1), (H2, D2), (H3, D3)},
right.

1.2 Results

Let C be any configuration of cups on G. We define the size of C to be |C| =
∑

w C(w). A configuration D

is called a sub-configuration of C if D(w) ≤ C(w) for every vertex w. For a target r of G, a subgraph H of

G, and a sub-configuration D of C, H is called (D, r)-feasible if either D = ∅ or there is some vertex s of H

such that H is (D, s)-stackable and distG(s, r) = |D|.

We say that two configurationsD1 andD2 are disjoint (and writeD1∩D2 = ∅) if, for every vertex w, either

D1(w) = 0 or D2(w) = 0. Additionally, we define the configuration D = D1 +D2 by D(v) = D1(v)+D2(v).

Thus we say that the set of configurations {D1, . . . , Dk} partitions D if they are pairwise disjoint and∑k
i=1 Di = D. Furthermore, we define the configuration C − r to be (C − r)(r) = 0 and (C − r)(v) = C(v)

otherwise. For a graph G and configuration C on G with C(r) > 0, let P = {(H1, D1), . . . , (Hk, Dk)} for

some k ≥ 1, where each Hi is a subgraph of G and each Di is a sub-configuration of C. The family P is

called an r-stacking partition of (G,C) (see Figure 1) if

1. V (H1) ∪ · · · ∪ V (Hk) = V (G)− {r},

2. {D1, · · · , Dk} partitions C − r,

3. each Hi is (Di, r)-feasible (stacking onto vi), and

4. each Hi preserves the distances of G along the vi-stacking moves in part (3).

Our first result is the following characterization lemma, which we will prove in Section 2.1.

Lemma 3 (Stacking Partition Lemma). Let G be a graph, C be any configuration of cups on G, and r be

any target vertex. Then G is (C, r)-stackable if and only if (G,C) has an r-stacking partition.
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As a simple corollary we obtain the following fact, which we will prove in Section 2.2. First, a vertex of

degree at least three in a graph is called a split vertex. A tree with exactly one split vertex is called a spider.

We denote S(ℓ1, . . . , ℓk) to be the spider with k ≥ 3 paths emanating from the split vertex (also called a

root), having lengths ℓ1, . . . , ℓk, for a total of ℓ1 + · · · + ℓk + 1 vertices. As a slight abuse, we also consider

a path to be a spider in the case that the root (now not a split vertex — k = 2) is not one of its endpoints;

that is, the path v1 · · · vn can be written as S(i− 1, n− i) with root vi when 1 < i < n.

Fact 4. Paths and cycles are stackable, and every spider with split vertex r is r-stackable.

The Fact 4 case of paths was first proved in [8], using a somewhat complicated induction proof. The

Fact 4 case of spiders was first proved in [17]; in fact Veselovac proved more. It is easy to see that the spider

S(1, 1, . . .) is r-stackable if and only if r is the split vertex.

Theorem 5. [17] For all k ≥ 1 and all ℓi > 1, S(ℓ1, . . . , ℓk) is stackable.

Left open are the cases for which k ≥ 3, some ℓi = 1, and some ℓj > 1. In [17] is found a complete

solution for the subcase of having a unique j with ℓj > 1; the statement of the theorem that describes for

which vertices r the particular graph is r-stackable is not describable succinctly, so we refer the reader to

[17].

We also use Lemma 3 to prove the following two theorems, which will be proven in Sections 2.3 and 2.5.

Theorem 6. There is a polynomial algorithm to determine if a diameter two graph is r-stackable.

The proof of Theorem 6 uses the Gallai-Edmonds Structure Theorem 9 (Section 2.3) from matching

theory.

Theorem 7. The grid Pm□Pk is stackable for all m and k.

Furthermore, Lemma 3 also yields stackability results for complete t-partite graphs and for Johnson

graphs (which generalize Kneser graphs, which includes the Petersen graph), which we state in Section 2.3

as well.

Theorem 8. The d-dimensional cube Qd is stackable for all d ≤ 20.

The proof of Theorem 8 uses the new result (Theorem 18) of Merino, Mütze, and Namrata that gener-

alized Johnson graphs are Hamiltonian and the classic Symmetric Chain Decomposition Theorem for cubes

(Theorem 20), both found in Section 2.5.
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2 Proofs

2.1 Proof of the Stacking Partition Lemma

Proof of Lemma 3. We begin by assuming that (G,C) has an r-stacking partition P = {(H1, D1), . . . ,

(Hk, Dk)}. We will show that every cup of C on v ∈ G − r can be placed on r. By property 2 there is a

unique i such that v ∈ Di. By property 3 there is some vertex s of Hi such that all the cups of Di can be

placed on s and dist(s, r) = |Di|. Hence we can move all those cups from s to r; i.e. G is (C, r)-stackable.

Now we suppose that G is (C, r)-stackable. Consider the sequence of moves that place all the cups on

r. Let s1 . . . , sm be the vertices from which cups move onto r and let Xi be the set of cups moved from si

to r. For each i, let Hi be the union of all geodesics P (x, y) used in moving all the cups in Xi from their

original locations to si, and let Di count the number of cups of Xi originally on each vertex of Hi. Next, if

∪m
i=1Hi = G−r then set k = m; otherwise, let (G−r)−∪m

i=1Hi = {u1, . . . , ut}, k = m+ t, and Hm+i = {ui}

for 1 ≤ i ≤ t, with Dm+i = 0 on Hm+i. Finally, define P = {(H1, D1), . . . , (Hk, Dk)} — it is clear that P

satisfies each of the four properties of an r-stacking partition. □

2.2 Stackability of paths, cycles, and spiders

In this section we will be assuming that C = 1.

Proof of Fact 4. We prove that Pn is stackable by induction. The case n = 1 is trivial, so we assume that

n ≥ 2 and that Pk is stackable for all 1 ≤ k < n. Let r = vi be any target vertex of Pn, with 1 ≤ i ≤ n.

Partition Pn into two subgraphs H1 = {vj ∈ V (Pn) : 1 ≤ j ≤ i} and H2 = {vj ∈ V (Pn) : i ≤ j ≤ n}. Note

that H1
∼= Pi and H2

∼= Pn−i+1. By induction P = {(H1,1), (H2,1)} is an r-stacking partition of (Pn,1),

and so Pn is r-stackable by Lemma 3.

Now consider the cycle Cn and any target vertex r. By symmetry, we may assume that r = vi, where

i = ⌊n/2⌋. Define H1 and H2 as above and notice that, for each j ∈ {1, 2}, the distance between vertices of

Hj are the same in Hj as they are in Cn. Hence P = {(H1,1), (H2,1)} is an r-stacking partition of (Cn,1),

and so Cn is r-stackable by Lemma 3.

Finally, let T be an n-vertex spider with root r. Then T − r is a disjoint union of paths Hn1
, . . . ,Hnk

,

where n1 + · · ·+ nk = n− 1. Then {(H1,1), . . . , (Hk,1)} is an r-stacking partition of (T,1) because paths

are stackable, and so T is r-stackable by Lemma 3. □
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2.3 An r-stacking algorithm for eccentricity 2 vertices

We begin this section with some definitions leading up to the Gallai-Edmonds Structure Theorem. For a

graph G = (V,E) and a subset U⊆V define the neighborhood of U in V − U , denoted N(U), to be the set

of vertices in V − U that are adjacent to some vertex of U . Let M = M(G) be the set of all maximum

matchings of G. A vertex v is called inessential if it is not saturated by some M ∈ M, and let I = I(G) be

the set of all inessential vertices of G. Finally set A = A(G) := N(I) and Z = Z(G) := V − I − A; thus

{I, A, Z} partitions V — we call the triple (I, A, Z) the Gallai-Edmonds partition of G. For ease of notation,

we will also use I, A, and Z to denote the subgraphs of G induced by those vertices. Furthermore, say that

a connected graph G is factor-critical if the removal of any vertex yields a graph having a perfect matching,

and that a matching in G is near-perfect if it saturates all but one vertex of G.

Theorem 9 (Gallai-Edmonds Structure Theorem). [5, 6, 7] Let R be a graph and let (I, A, Z) be the

Gallai-Edmonds partition of R. Then the following four properties hold.

1. Each component of I is factor-critical.

2. Every subset X⊆A has neighbors in at least |X|+ 1 components of I.

3. Every maximum matching in R consists of

(a) a near-perfect matching of each component of I,

(b) a perfect matching of Z, and

(c) edges from all vertices in A to distinct components of I.

4. If I has k components, then the number of edges in any maximum matching in R equals (|V |−k+|A|)/2.

Moreover, the partition (I, A, Z) can be found in polynomial time.

We begin be proving an r-stacking equivalence for eccentricity two vertices in terms of matchings.

Lemma 10. Let G be a graph with vertex r having eccentricity 2. Then G is r-stackable if and only if G

has a matching that saturates N2(r).

Proof. Let G be a graph with vertex r having eccentricity 2.

Suppose that n-vertex G has a matching M = {e1, . . . , ek} that saturates N2(r). Label the vertices of

each ei by xi and yi, with yi ∈ N2(r), and define Hi = ei and Di = 1 for 1 ≤ i ≤ k. Then |Di| = 2 and

each Hi is yi-feasible with dist(yi, r) = 2. Now label the M -unsaturated vertices of G− r by z1, . . . zj , where

j = n− 1− 2k, and define Hk+i = zi and Dk+i = 1 for all 1 ≤ i ≤ j. Since each zi ∈ N(r) and |Dk+1| = 1,
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Hk+i is trivially zi-feasible with dist(zi, r) = 1. Hence P = {(H1, D1), . . . , (Hk+j , Dk+j)} is an r-stacking

partition, which implies by Lemma 3 that G is r-stackable.

Now suppose that G is r-stackable; by Lemma 3 G has an r-stacking partition P = {(H1, D1), . . . ,

(Hk, Dk)}; let {v1, . . . , vk} be the set of vertices for which each Hi is (Di, vi)-stackable. Because dist(u, r) ≤ 2

for all r we have |Di| ≤ 2 for all 1 ≤ i ≤ k. Consider any vertex v ∈ N2(r), and suppose that v ∈ Hi for

some i (which we can denote by i(v) as necessary to emphasize its dependence on v) with Di(v) = 1. If

v = vi then there is a unique vertex ui adjacent to v such that the cup on ui is moved to vi. If v ̸= vi then

set ui = v and note that the cup on ui is moved to vi. In either case label the edge ei = uivi. Now the set

of edges M = {ei | v ∈ N2(r), i = i(v)} (ignoring duplicates that occur when both ui, vi ∈ N2(r)) forms a

matching that saturates N2(r).

Lemma 10 yields the following five corollaries.

Corollary 11. Let r be a vertex of eccentricity 2 in a tree T . Then T is r-stackable if and only if T is a

spider.

Proof. Let T be a tree with vertex r having eccentricity 2. Note that, because ecc(r) = 2, each w ∈ N2(r)

is a leaf. Thus each such leaf can be matched simultaneously to its unique neighbor in N1(r) if and only if

each v ∈ N1(r) has deg(v) ≤ 2; that is, if and only if T is a spider. The result then follows from Lemma 10.

Corollary 12. Let G = Ka1,...,at
denote the complete t-partite graph on n vertices with parts A1, . . . , At

having sizes |Ai| = ai, and let r be a vertex in part Ai. Then G is r-stackable if and only if ai ≤ (n+ 1)/2.

Consequently, G is stackable if and only if ai ≤ (n+ 1)/2 for every i.

Proof. Let G be a complete t-partite graph with partite sets A1, . . . , At having sizes |Ai| = ai. Notice that

G has diameter 2 and so, by utilizing Lemma 10, G is r-stackable if and only if G has a matching that

saturates N2(r) = Ai − {r}; i.e. there exists a matching M that saturates N2(r). This happens if and only

if n− ai = |V (G)−Ai| ≥ |M | = |N2(r)| = ai − 1, which is equivalent to ai ≤ (n+ 1)/2.

Corollary 13. The Petersen graph is stackable.

Proof. Consider the Petersen graph GP . By symmetry, we only need to consider one target vertex r. Since

GP has diameter 2, by Lemma 10, GP is stackable if and only if N2(r) has a saturating matching. The

matching in Figure 2, saturates N2(r).

In fact, we can show that infinitely many Kneser graphs are stackable. We write [m] = {1, . . . ,m} and

define
(
[m]
k

)
to be the set of all subsets of [m] of size exactly k. For m ≥ 2k + 1 ≥ 5, the Kneser graph
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K(m, k) has vertex set
(
[m]
k

)
, with edges between disjoint pairs. For example, the Petersen graph is K(5, 2).

We begin by observing a more general corollary to Lemma 10.

Corollary 14. Let G be a graph with vertex r having eccentricity 2. If G has a Hamiltonian path then G is

r-stackable.

Proof. Consider a Hamiltonian path P of G and let P − r be the disjoint union of paths P1 and P2, where

P2 is empty if r is an endpoint of P . For each i let vi be the endpoint of Pi that is a neighbor of r in P .

If n(Pi) is even then let Mi be the perfect matching in Pi, while if n(Pi) is odd then let Mi be the perfect

matching in Pi − vi. In both cases Mi saturates N2(r) ∩ V (Pi), and so M1 ∪M2 saturates N2(r). Hence G

is r-stackable by Lemma 10.

Notice that the hypothesis of Theorem 14 contains diameter two Hamiltonian graphs. With regard to

Kneser graphs, we will use the following fact, which is a special case of Theorem 18 below.

Fact 15. For all m ≥ 2k + 1 ≥ 5 except the case (m, k) = (5, 2) the Kneser graph K(m, k) is Hamiltonian.

Corollary 16. For all m ≥ 3k − 1 ≥ 5 the Kneser graph K(m, k) is stackable.

Proof. The case K(5, 2) is proven in Theorem 13. In all other cases, we have that K(m, t) is Hamiltonian by

Fact 15. Moreover, since m ≥ 3t−1, K(m, t) has diameter two. Indeed, if vertices A and B are not adjacent,

then |A ∪ B| ≤ 2t − 1, and so there is some C ⊆ [m] − (A ∪ B) that is therefore a common neighbor of A

and B. Hence Corollary 14 implies that K(m, t) is r-stackable. Because Kneser graphs are vertex transitive,

K(m, t) is r-stackable for all r.

It would be interesting to know whether or not all Kneser graphs are stackable, as Corollary 16 leaves

open the cases 5 ≤ 2k + 1 ≤ m ≤ 3k − 2.

Now we are ready to prove the following theorem.

r r

Figure 2: The Petersen graph, showing N1(r) and N2(r), left, and an N2(r) saturating matching, right.
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Theorem 17. Let G be a graph with vertex r having eccentricity 2. Then it can be decided in polynomial

time whether or not G is r-stackable and, in the case that it is, an r-stacking can be found in polynomial

time.

Proof. Let G be a graph with configuration C = 1 and target vertex r having eccentricity 2. We use Lemma

10 to determine whether or not G has a matching that saturates N2(r).

Let (I, A, Z) be a Gallai-Edmonds partition of G − r. By part 3b of Theorem 9, Z contains a perfect

matching MZ . For any set S of vertices of G and i ∈ {1, 2}, let Si = S ∩ Ni(r). Then G has a matching

that saturates N2(r) if and only if G− Z has a matching that saturates I2 ∪A2.

Let I∗ denote the vertices defined by contracting each component of I to a single vertex. Note by part 2

of Theorem 9 we have |I∗| > |A|. Then define the bipartite graph B between I∗ and A that arises from the

contraction, ignoring the edges within A itself. By part 3c of Theorem 9, B has an A-saturating matching.

Given any A-saturating matching MA in B, define I∗A to be the vertices of I∗ saturated by MA. For each

edge ax ∈ MA we may choose, by definition, some yx in the component Ix of I represented by x ∈ I∗A such

that ayx ∈ E(G); let M ′
A be the matching of all such edges. By part 1 of Theorem 9 we can find a perfect

matching Mx of Ix − yx for every x ∈ I∗A. For each x ∈ I∗ − I∗A we can find a near-perfect matching Mx of

Ix by part 3a of Theorem 9. Thus G−Z has a matching that saturates I2 ∪A2 if and only if G−Z has an

A-saturating matching MA that saturates I∗2 (i.e. I∗2⊆I∗A).

Finally, let W be a set of |I∗| − |A| new vertices, define A∗ = A ∪ W , and let B∗ denote the balanced

complete bipartite graph I∗ ×A∗ with edge weights |I∗|+1 on every edge of B incident with I∗2 , 1 on every

remaining edge of B, and 0 on every edge not in B. Then a matching in B∗ has weight at least |I∗2 |(|I∗|+1)

if and only if it saturates I∗2 .

Now let M∗ be a perfect matching in B∗ of maximum weight and let M∗
A be the set of its edges incident

with A. It is easy to see that M∗
A is an A-saturating matching (by part 3c of Theorem 9) that maximizes the

number of saturated vertices of I∗2 . Consequently, G−Z has an A-saturating matching M that saturates I∗2

if and only if M∗
A saturates I∗2 .

Define MG = MZ ∪ M∗
A
′ ∪x∈I∗ Mx. Then by Lemma 10 we see that G is r-stackable if and only if

MG saturates N2(r). Notice that MG can be constructed in polynomial time. Indeed, the Gallai-Edmonds

partition (I, A, Z) can be found in polynomial time by Theorem 9, Edmonds’ Blossom Algorithm finds MZ

and each Mx in polynomial time, and the Hungarian Algorithm finds M∗
A, and hence M∗

A
′ in polynomial

time.

Proof of Theorem 6. This follows from Theorem 17 because every vertex of a diameter two graph has

eccentricity two. □
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2.4 Stackability of grids

r

Figure 3: An r-stacking partition for the grid P9□P8.

Proof of Theorem 7. Let G be the grid Pm□Pk with arbitrary m, k. By symmetry we may assume that

m ≥ k; a grid with m = k is called square. We will first handle the case in which the target vertex r is a

corner of G. Then we will reduce all other cases to this case.

Suppose that the target vertex r is on a corner of G — say, r is the bottom left corner — with coordinates

r = (0, 0). Consider the case that G is not square (for example, see the upper right green portion of Figure

3). Partition G into paths R0 = Pm − r, R∗ = Pk − r emanating from r (orange in Figure 3) and paths

{R1, . . . , Rk} parallel to Pm (green in Figure 3), and let ri ∈ V (Ri) have coordinates ri = (m− i, i) for each

0 ≤ i ≤ k, with r∗ = (0, k). Clearly, dist(ri, r) = m = |Ri| for each 0 ≤ i ≤ k and dist(r∗, r) = k = |R∗|.

Moreover, by Fact 4, each Ri is ri-stackable, and R∗ is r∗-stackable, and so G is r-stackable by Lemma 3.

If G is square (m = k), we use the same partition as before except that we shorten R∗ = Pk−1 and

lengthen Rk
∼= Pm (see the lower left blue portion of Figure 3), with the corresponding changes rk = (1, k)

and r∗ = (0, k − 1), with dist(rk, r) = k + 1 = |Rk| and dist(r∗, r) = k − 1 = |R∗|. Hence G is r-stackable by

Lemma 3.

For the cases in which r is not a corner vertex of G, partition G into two or four smaller grids such that r

is a corner of each (i.e. give r the coordinates (0, 0); then the intersection of the grid with the four quadrants

gives the partition). Each grid can be partitioned as above whether the quadrants form squares or not, with

a slight modification, if necessary. It may be that definitions of the orange paths R∗ in neighboring quadrants

are not consistent, as is the case in the lower half of Figure 3. Thus we first partition the interior of each

quadrant and subsequently define each R∗ to be whatever paths remain. By Lemma 3, the grid Pm□Pk is

stackable for all m and k. □
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2.5 Stackability of small cubes

We begin by presenting two theorems that are used in the proof of Theorem 8. Define the generalized

Johnson graph J(m, k, s) to have vertex set
(
[m]
k

)
, with edges between sets sharing exactly s elements. For

example, the Petersen graph is isomorphic to both J(5, 2, 0) and J(5, 3, 1), the Odd graphs are the family

{J(2k + 1, k, 0) | k ≥ 2}, the Kneser graphs are the family {J(m, k, 0) | m ≥ 2k + 1 ≥ 5}, and the original

Johnson graphs are the family {J(m, k, k − 1) | m ≥ k + 1 ≥ 2}. Settling a conjecture of [10] for Kneser

graphs and proving even more, Merino, Mütze, and Namrata [14] proved the following theorem.

Theorem 18. [14] Except for the Petersen graph, for all values with s < k ≤ (m + s − 1)/2, the graph

J(m, k, s) is Hamiltonian.

By using Corollary 14 and Theorem 18, we obtain the following result as well.

Corollary 19. Every diameter two Johnson graph is stackable.

Next we write 2[n] to denote the set of all subsets of [n]. Then we define a chain to be a sequence

(S1, . . . , St) of subsets of [n] such that Si ⊆ Si+1 for each 1 ≤ i < t; it is saturated if |Si+1| = |Si| + 1 for

each 1 ≤ i < t. A saturated chain in 2[n] is symmetric if |S1| + |St| = n. A family C = {C1, . . . , Cm} of

symmetric, saturated chains in 2[n] is a symmetric chain decomposition if C partitions 2[n].

Theorem 20. [13] For every n, 2[n] has a symmetric chain decomposition.

Theorem 20 quickly gives rise to the following corollary. Define
(
[n]
≥k

)
(resp.

(
[n]
>k

)
) to be the set of all

subsets of [n] of size at least (resp. greater than) k. Given a symmetric chain decomposition C, define the

function ϕ :
(

[n]
>n/2

)
→
(

n
≥⌊n/2⌋

)
as follows. For X ∈

(
[n]

>n/2

)
we find C ∈ C such that X ∈ C. Then find Y ∈ C

such that |Y | = |X| − 1, and set ϕ(X) = Y .

Corollary 21. For every n the function ϕ :
(

[n]
>n/2

)
→

(
[n]

≥⌊n/2⌋
)
is an injection such that |ϕ(X)| = |X| − 1 for

all X ∈
(

[n]
>n/2

)
.

Proof. Because of Theorem 20 such a symmetric chain decomposition C of 2[n] exists. Because C partitions

2[n], for every X ∈
(

[n]
>n/2

)
the choice of C ∈ C, such that X ∈ C, exists and is unique. Because C is saturated

and |X| > n/2, the choice of Y ∈ C, such that |Y | = |X| − 1 ≥ ⌊n/2⌋, exists and is unique. Hence ϕ is

well-defined and is injective.

Using the prior-mentioned identification between 2[d] and V (Qd), we apply ϕ to the appropriately as-

sociated vertices as well. Recall in this association that each u = (u1, . . . , ud) ∈ V (Qd) corresponds to the

subset U defined by i ∈ U if and only if ui = 1. From this we define the weight of u by wt(u) = |U |; i.e.

12



wt(u) = distQd(u,0). Additionally, the product Qd = Qp□Qq is a partitioning of Qd into q-cubes, where

each vertex in Qp (subset of [p]) is replaced by a q-cube. Hence we can label each such q-cube A (i.e. not all

q-cubes of Qd, just those arising from this Cartesian-product-generated partition) uniquely and distinctly

by its corresponding subset S of [p], and define the level of A as level(A) = |S|. Of course this value equals

mina∈A wt(a). We call the unique vertex of minimum (resp. maximum) weight in A its bottom (resp. top)

vertex.

Lemma 22. Let k ≤ 3, l ≤ 2k, and d ≥ l + k, and suppose that if k = 3 then l ̸= 4. Then every level-l

k-cube in Qd is 0-stackable. In particular, Qd is stackable for all d ≤ 6.

Proof. As noted in Fact 2, Qd is stackable if and only if it is 0-stackable. When k = 0 the statement is

trivially true.

When k = 1 we have Qk = K2, which we know to be stackable. Thus we can stack it immediately onto

0 if l = 0 and stack it onto its weight-2 vertex before sending the 2 cups to 0 if l ∈ {1, 2}. This implies that

Q2 and Q3 are stackable since such 1-cubes form a stacking partition of them; that is, for d ∈ {2, 3} we have

Qd = Qd−1□Q1, with each Q1 having level at most 2.

When k = 2 we have that any level-0 2-cube is 0-stackable. Also, any level-1 2-cube consists of two

1-cubes that each contain weight-2 vertices, and so two cups can be stacked onto each of those before being

sent to 0. For 2 ≤ l ≤ 4 we can stack any level-l 2-cube onto one of its weight-4 vertices before sending the

4 cups to 0. This implies that Qd is stackable for d ≤ 6 since we have Qd = Qd−2□Q2, with each Q2 having

level at most 4.

When k = 3 we have that any 3-cube of level at most 3 is 0-stackable because it can be partitioned into

two 2-cubes of level at most 4. If 5 ≤ l ≤ 8 then any level-l 3-cube can be stacked onto one of its weight-8

vertices before sending all its cups to 0. This finishes the proof.

Lemma 23. For every l ≤ 3 and d ≥ l+4, any level-l 4-cube in Qd is 0-stackable. For every d ≥ 8, the set

of all level-4 3-cubes in Qd is 0-stackable.

Proof. Let A be a level-l 4-cube. If l ≤ 2 then it can be partitioned into two 3-cubes of levels at most 3,

so the result follows from Lemma 22. If l = 3 then Figure 4 shows a 0-stacking partition. If l = 4 then we

partition it into two 3-cubes of levels 4 and 5. We stack each level-5 3-cube to its top vertex, leaving the set

of all level-4 3-cubes in Qd to stack. These we now consider.

These cubes can be labeled by their lowest vertex; the set of such labels is
(
[d−3]

4

)
= V (J(d − 3, 4, 3)).

By Theorem 18 we let H be a Hamilton cycle in J(d − 3, 4, 3), which we partition into paths of length 1,

13
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Figure 4: A level-3 4-cube T , left, with the 0-stacking partition into spiders {(H1, D1), (H2, D2), (H3, D3)},
right.
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Figure 5: Coordinating the stacking of two “adjacent” level-4 3-cubes in Qd for d ≥ 8.

along with a single path of length 2 if
(
d−3
4

)
is odd. For each path P in this partition we show below how

the union of cubes associated with the vertices of P is r-stackable.

When P consists of two adjacent vertices U and V we set X = U ∪ V ; recall that |U | = |V | = 4 and

|U ∩ V | = 3, and so |X| = 5; i.e. X corresponds to a level-5 3-cube. Hence the top vertices u and v of the

cubes labeled U and V are each adjacent in Qd to the top vertex x of the cube labeled X (see the left side

of Figure 5). In this case, the configuration of cups on this structure S has one cup on every vertex except

no cup on vertex x, since all the cups in the 3-cube labeled X were already stacked onto its top vertex. The

right side of Figure 5 shows in color the stacking partition of S that places the appropriate number of cups

on the appropriate levels of vertices a, b, and c (which are roots of spiders), to then stack them all on r. The

point of vertex x is for it to be used to move three cups from v to b.

When P consists of three consecutively adjacent vertices U , V , and W , we set X = U∪V and Y = V ∪W ;

so that |X| = |Y | = 4. Hence the top vertices u and v of the cubes labeled U and V are each adjacent in Qd
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Figure 6: Coordinating the stacking of three “consecutive” level-4 3-cubes in Qd for d ≥ 8.

to the top vertex x of the cube labeled X, while the top vertices v and w of the cubes labeled V and W are

each adjacent in Qd to the top vertex y of the cube labeled Y (see Figure 6). In this case, the configuration

of cups on this structure S has one cup on every vertex except no cups on vertices x and y, since all the

cups in the 3-cubes labeled X and Y were already stacked onto the top vertices of those cubes. Figure 5 also

shows in color the stacking partition of S that places the appropriate number of cups on the appropriate

levels of vertices a, b, c, and v (roots of spiders) to then stack them all on r. The point of vertices x and y

is for them to be used to move two cups from each of u and w to v.

This completes the proof.

Corollary 24. For d ≤ 11, Qd is stackable.

Proof. The cases d ≤ 6 is proven in Lemma 22.

When d = 7 we write Q7 = Q3□Q4, which partitions Qd into 4-cubes having levels at most 3, which are

0-stackable by Lemma 23.

When 8 ≤ d ≤ 11 we write Qd = Qd−3□Q3, which partitions Qd into 3-cubes having levels at most 8,

which are 0-stackable by Lemmas 22 and 23.

Lemma 25. Suppose that 9 ≤ l ≤ 12 and l + 3 ≤ d ≤ 2l and choose some injection ϕ from Corollary 21,

with n = d−3. Let A ∈
(
[n]
l

)
be the label of a level-l 3-cube in Qd, B = ϕ(A), and C = ϕ(B). Then A∪B∪C

is 0-stackable in Qd.

Proof. We note first that the existence of ϕ is given by the hypothesis of Corollary 21: if level(A) = l then

level(B) = l − 1 > (d− 3)/2.

The stacking partitions are given in Figures 7, 8, 9, and 10.
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Figure 7: Coordinating the 0-stacking of 3-cubes at levels 7–9 in Q12.
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Figure 8: Coordinating the 0-stacking of 3-cubes at levels 8–10 in Q13.

In Figure 7, a level-9 3-cube A steals a vertex from the level-8 3-cube B to form a spider rooted at a,

with the resulting 9 cups stacked at a before being sent to 0. Then the “damaged” cube B steals a vertex

from the level-7 3-cube C to form a spider rooted at b, with the resulting 8 cups stacked at b before being

sent to 0. Finally, the damaged C stacks its 7 cups at the root of the spider at c before sending them to 0.

In Figure 8, A steals 5 vertices from B to form a spider at a, with the resulting 13 cups stacked at a

before being sent to 0. Then C steals the remaining three vertices from B to form spiders at c and c′, with

the 3 cups stacked at c′ being sent to c, joining with the 8 cups stacked at c to send the resulting 11 cups to

0.

In Figures 9 and 10, similar schemes are shown, combining stealing, spiders, and supplemental spiders,
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the details of which are left to the reader.
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Figure 9: Coordinating the 0-stacking of 3-cubes at levels 9–11 in Q14.
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Figure 10: Coordinating the 0-stacking of 3-cubes at levels 10–12 in Q15.

Corollary 26. For d ≤ 15, Qd is stackable.

Proof. The cases d ≤ 11 is proven in Corollary 24.

When 12 ≤ d ≤ 15 we write G = Qd = Qd−3□Q3, which partitions Qd into 3-cubes having levels at most

d− 3. We choose ϕ from Corollary 21, with n = d− 3, For the highest level cube A we define B = ϕ(A) and

C = ϕ(B) and 0-stack A ∪B ∪C as in Lemma 25. After removing A ∪B ∪C from G, the remaining graph

G′, which is still partitioned into 3-cubes, has a highest level cube A′, from which we define B′ = ϕ(A′) and

C ′ = ϕ(B′) and 0-stack A′ ∪B′ ∪C ′ as in Lemma 25. We repeat this process until no cubes at level at least
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9 remain; because ϕ comes from a symmetric chain decomposition, each of the 3-cubes in this process are

distinct. i.e. the resulting graph is partitioned into 3-cubes having levels at most 8, the union of which is

0-stackable by Lemmas 22 and 23.

This completes the proof.

Lemma 27. Let k ≤ 15, 2k − k ≤ l ≤ 2k and d ≥ l + k. Then every level-l k-cube in Qd is 0-stackable.

Proof. Corollary 26 shows that Qk is stackable. Therefore every level-l k-cube in Qd can be stacked onto

one of its weight-2k vertices, with the resulting 2k cups then sent to 0.

Proof of Theorem 8. The cases d ≤ 15 are proven in Corollary 26.

For 16 ≤ d ≤ 20 we write Qd = Qd−4□Q4, which partitions Qd into 4-cubes. We use Lemma 27 with

k = 4 to 0-stack all 4-cubes at levels 12 and above. After removing all such 4-cubes, the remaining graph G

is still partitioned into 4-cubes having levels at most 11. Because Q4 = Q1□Q3, we can more finely partition

G into 3-cubes having levels at most 12. Now we choose ϕ from Corollary 21 with n = d − 3 (from the

representation Qd = Qd−3□Q3), and use Lemma 25 and the technique of Corollary 26 to 0-stack G, finishing

the proof. □

3 Conclusion

One can imagine continuing an inductive approach to proving that Qd is stackable for all d, along the lines of

the above. However, one would need to conceive of a way of uniformizing the ad-hoc methods for each level

of Lemma 25 in a manner that would readily generalize to higher dimensions. Once achieved, generalizing

Lemma 27 to level-l k-cubes with 2k− l ≤ l ≤ 2k would be straightforward. For example, now that Theorem

8 has been proven, Lemma 27 is true for k ≤ 20. We are left believing that there is no mathematical

obstruction to the stackability of all cubes and so make the following conjecture.

Conjecture 28. For all d, Qd is stackable.

Moreover, as Qd = □d
i=1P2, we believe the same to be true of all higher-dimensional grids, as shown by

Theorem 7 for dimension two.

Conjecture 29. For all d and k1, . . . , kd, the grid □d
i=1Pki

is stackable.

The following enticing conjecture was posited by Veselovac, who verified it for h ≤ 3 and also for the root

vertex only when h ≤ 5.

Conjecture 30. [17] The complete binary tree Th with depth h is stackable for all h ≥ 1.
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3.1 Open Problems

We mention here a small selection of interesting problems to consider. Readers can likely think of several

others.

1. Is there a characterization theorem for the stackability of a graph onto a vertex of eccentricity 3, akin

to Lemma 10?

2. Can stackable trees be characterized? For a general tree T , can the vertices r for which T is r-stackable

be characterized?

3. Are cartesian products of stackable graphs stackable?

4. Are generalized Johnson graphs of diameter at least 3 stackable?

5. Are there any non-trees that are not r-stackable for any r?2

6. What is the computational complexity for determining whether G is r-stackable?

3.2 Variations

Additionally, one can imagine asking a similar range of questions about slightly modified versions of cup

stacking. One could:

• generalize the initial configuration — we have seen in Figures 1, 5, and 6 that this is a necessary

generalization from the viewpoint of stacking the parts of an r-stacking partition;

• generalize the stacking target to a set S of vertices — one must stack onto any subset of S, onto exactly

S, or onto a prescribed number of cups per vertex of S;

• allow for non-geodesic paths — this would make every super-graph of a stackable graph stackable; for

example, graphs with a Hamilton path; or

• allow for traversing trails or walks instead of just paths.
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