C. difficile
Re-emergence of an Old Pathogen

Gonzalo Bearman MD, MPH
Assistant Professor of Medicine, Epidemiology and Community Health
Associate Hospital Epidemiologist
Virginia Commonwealth University
March 13, 2008
Infection Control Timeline

Big Bang
10 billion and 20 billion years ago

Many uneventful years elapse

Hotel-Dieu:
Paris hospital founded in the 7th century

Circa 600 AD

Big Bang
10 billion and 20 billion years ago
History: Advances in Surgical Infection Control

Joseph Lister introduced antiseptics in 1867
William Halstead introduced gloves in 1890
Johannes Mikulicz introduced masks in 1897
Infection Control Timeline: *The Modern Era*

- **First antibiotics, sulfonamides & penicillin, developed in the late 1930s**
- **1978:** *C. difficile* associated toxin discovered in the stool of patients with antibiotic-associated pseudomembranous colitis
- **1980:** R.P Wenzel MD Founded Society of Healthcare Epidemiology; applied epidemiologic techniques to infection control
- **1961:** MB Edmond Born in West Virginia...
Clostridium difficile

- **Clostridium difficile** is a gram-positive, anaerobic, spore-forming bacillus that is responsible for the development of antibiotic-associated diarrhea and colitis.
Epidemiology

- *C. difficile* cultured from the stool of 3% of healthy adults and up to 80% of healthy newborns and infants
- Stool carriage of *C. difficile* reaches 16–35% among hospital inpatients.
- *C. difficile* persists in the stools of 10–40% of patients with CDAD regardless of antibiotic treatment
- Contaminated environmental surfaces, other patients with CDAD and hand carriage on the part of healthcare personnel are important reservoirs for cross transmission

Epidemiology of CDAD

- *C. difficile* is the leading cause of nosocomial enteric infection
- Three million new cases of *C. difficile* diarrhea and colitis in United States hospitals per annum.
- CDAD affects 10% of hospitalized patients

Hospital-acquired *Clostridium difficile*-associated disease in the intensive care unit setting: epidemiology, clinical course and outcome

- Historical cohort study on 58 adults with CDAD occurring in intensive care units at VCUMC.
- In ICU patients with CDAD, advanced age and increased severity of illness at the onset of infection were independent predictors of death.
- The in-hospital mortality was 27.6%.

Marra A, Edmond MD, Wenzel RP and Bearman G. *BMC Infectious Diseases* 2007, 7:42
Risk Factors and Pathophysiology

• *C. difficile* is more likely to cause clinical disease in patients who are newly exposed

• Patients who are already colonized with *C. difficile* typically remain asymptomatic during their hospital stay

Risk Factors and Pathophysiology

• The association of developing *C. difficile* infection following exposure to antibiotic is well defined
 – The probability of CDAD is greatest with Clindamycin and Ampicillin
 – Fluoroquinolones are now increasingly associated with CDAD

Antibiotics and CDAD

<table>
<thead>
<tr>
<th>Highly associated</th>
<th>Moderately Associated</th>
<th>Rarely Associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>Other Beta-lactam antibiotics</td>
<td>Parenteral</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>Sulfonamides</td>
<td>Aminoglycosides</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td>Erythromycin</td>
<td>Tetracyclines</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>Trimethoprim</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td></td>
<td>Quinolones</td>
<td>Metronidazole</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vancomycin</td>
</tr>
</tbody>
</table>
Toxins

- **Enterotoxin A**
 - Causes fluid accumulation in the bowel
- **Cytotoxin B**
 - Cytopathic toxin
 - Promotes cell lysis and death

C. difficile endospores
Pathophysiology

- *C. difficile* toxins A and B are large proteins (308 kDa and 275 kDa)
- Both toxins adhere to receptors on the human colonocyte brush border and cause:
 - Necrosis
 - Shedding of cells into the GI lumen
Risk Factors and Pathophysiology

- Receipt of antibiotics
- Disruption of microflora in colon
- Exposure and colonization by *C. difficile*
- Release of toxins A and B with resultant mucosal injury
Carrier State

- Once infected, 2/3 of infected hospitalized patients remain asymptomatic
 - Carriers are reservoirs of toxigenic organisms
- Routine treatment of carriers is not recommended
 - The carrier state can be eliminated by use of vancomycin, however, culture positivity returns upon cessation of the antibiotic
 - Treatment of carriers may be employed during hospital outbreaks
 - Elimination of the organism from the hospital environment

Antibiotic Associated Diarrhea Without Colitis

• Common in hospitalized patients
• Diarrhea is mild
 – 3-4 loose watery stools per day
 – Cramping
• Physical examination is normal with only minimal lower abdominal tenderness
• Fever, leukocytosis, and dehydration are mild or absent
• *C. difficile* toxins present in stool
• Sigmoidoscopic examination is normal
Antibiotic Associated Colitis Without Pseudomembrane Formation

- Abdominal pain, nausea, anorexia
- Profuse watery diarrhea of 5 to 15 watery bowel movements per day
- Left or right lower quadrant abdominal pain and cramps
- Fever and dehydration
- Sigmoidoscopic examination may reveal a nonspecific diffuse or patchy erythematous colitis without pseudomembranes
Pseudomembranous Colitis

- Appears as raised yellow or off-white plaques ranging up to 1 cm in diameter scattered over the colorectal mucosa
- Similar clinical symptoms of diarrhea, fever, leukocytosis and abdominal pain
Histopathology of pseudomembranous colitis

- The pseudomembrane membrane is composed of fibrin
- Adheres to the damaged colon surface and blocks the absorptive surface layer further adding to diarrhea

http://www.pathguy.com/~tdemark/0075.htm
Pseudomembranous colitis

Axial CT images show distention and significant colonic wall thickening of the transverse and sigmoid colon
Fulminant Colitis and Toxic Megacolon

• 2 or 3 percent of patients
• Marked leukocytosis (>30,000 to 40,000 WBC/microL)
• Fever, chills, dehydration and metabolic (lactic) acidosis
• Diarrhea is prominent
 – However, diarrhea is less prominent in patients with ileus and secondary pooling of secretions in the dilated, adynamic colon
Toxic Megacolon

- Diagnosis based upon the finding of an enlarged dilated colon
 - >7 cm in its greatest diameter
- Accompanied by severe systemic toxicity

http://www.cfpc.ca/cfp/2004/Nov/_images/Fig0376_104_A.jpg
Definition of Disease Severity

• Severe disease
 • WBC count >20,000 cells/microL
 • Elevated serum creatinine

• Point (score) assignment system in clinical trial
 – > 2 points = severe disease
 – 1 point assigned each
 » age >60 years
 » T>38.3°C
 » Albumin <2.5 mg/dL
 » WBC >15,000 cells/microL
 – 2 points assigned for endoscopic evidence of pseudomembranous colitis or treatment in the ICU

Diagnosis: Cytotoxicity Assay

• The gold standard for the identification of C. difficile cytotoxins
• Diarrheal stool is prepared so that present toxins are added to monolayers of cultured fibroblast cells
 – If present, the toxin will exert a cytopathic effect
• High sensitivity (94 to 100 percent) and specificity (99 percent)
• Laborious, time consuming and used mostly as a research tool

Diagnosis: ELISA for Toxin Detection

• More rapid assays with comparable sensitivity (70 to 90 percent) and specificity (99 percent)
• Some detect Toxin A only
 – Toxin A variant strains (toxin A-negative, toxin B-positive strains) relatively infrequent
 • (1-2% of all isolates)

Recent data suggests that CDAD has made an epidemiologic resurgence.
Emergence of Highly Toxigenic Strain

- Hospital and nursing home outbreaks of severe disease particularly in elderly patients
- Strain is generally resistant to fluoroquinolones
- Prior receipt of fluoroquinolones is a risk factor
- Associated with an increase in length of hospitalization
- Increase in mortality
- 10% of case patients required admission to the ICU
- 2.5 percent underwent an emergency colectomy
Toxin gene-variant and highly toxigenic strains - NAP1/BI/027

- A highly toxigenic strain of *C. difficile* that produces about 15 to 20 times the amount of toxins A and B
 - Caused nosocomial and community outbreaks in North America, Great Britain, and the Netherlands
 - Toxinotype III
 - North American PFGE type 1 (NAP1)
 - Restriction enzyme analysis type "BI"
 - PCR-ribotype 027

Toxin gene-variant and highly toxigenic strains - NAP1/BI/027

• Genes
 – \(tcdA \) Toxin A
 – \(tcdB \) Toxin B
 – \(tcdC \) porin gene
 • Partial deletions of \(tcdC \)
 – The expression of \(tcdA \) and \(tcdB \) is down regulated by the \(tcdC \) gene

Mechanism for the overproduction of toxins in the NAP1/BI/027 strain is a partial deletion in the \(tcdD \) gene resulting in overproduction toxins A and B
A Predominantly Clonal Multi-Institutional Outbreak of *Clostridium difficile*-Associated Diarrhea with High Morbidity and Mortality

- Prospective study in 12 Quebec Hospitals to determine the incidence of nosocomial CDAD and its complications.
- Case-control study performed to determine risk factors
- All *C. difficile* isolates were PFGE typed

A Predominantly Clonal Multi-Institutional Outbreak of *Clostridium difficile*-Associated Diarrhea with High Morbidity and Mortality

<table>
<thead>
<tr>
<th>Results</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # of episodes</td>
<td>1719 Episodes of C. difficile diarrhea</td>
</tr>
<tr>
<td>Incidence</td>
<td>22.5 per 1000 hospital admissions</td>
</tr>
<tr>
<td>30 day attributable mortality</td>
<td>6.9 %</td>
</tr>
</tbody>
</table>

A Predominantly Clonal Multi-Institutional Outbreak of *Clostridium difficile*-Associated Diarrhea with High Morbidity and Mortality

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Odds Ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalosporins</td>
<td>3.8</td>
<td>2.2-6.6</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>3.9</td>
<td>2.3-6.6</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>1.6</td>
<td>0.5-4.8</td>
</tr>
<tr>
<td>Penicillins -beta lactamase inhibitor</td>
<td>1.2</td>
<td>0.7-2.3</td>
</tr>
<tr>
<td>Carbapenems</td>
<td>1.4</td>
<td>0.3-6.3</td>
</tr>
</tbody>
</table>

A Predominantly Clonal Multi-Institutional Outbreak of *Clostridium difficile*-Associated Diarrhea with High Morbidity and Mortality

• Antibiotic susceptibility:
 – A predominant, fluoroquinolone resistant strain was found in 129/157 isolates (82.2%)

• Genetic typing
 – 82.2% of isolates with identical PFGE pattern
 – Binary toxin genes and partial deletion of tcdC gene were present in 132 isolates (84.1%)

Mortality attributable to nosocomial *C. difficile* - associated disease during an epidemic caused by a hypervirulent strain in Quebec

<table>
<thead>
<tr>
<th></th>
<th>30 Day Mortality</th>
<th>12 Month Mortality</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>23.0% (37/161)</td>
<td>7.0% (46/656)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>CDAD</td>
<td>37.3% (60/161)</td>
<td>20.6% (135/656)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Attributable mortality</td>
<td>16.7% (95% confidence interval 8.6%-25.2%).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An Epidemic, Toxin Gene–Variant Strain of *Clostridium difficile*

- 187 *C. difficile* isolates were collected from eight health care facilities in six states with CDAD outbreaks between 2000 and 2003
 - PFGE performed on isolates
 - B1/NAP Strain Identified
 - Antibiotic susceptibilities performed

An Epidemic, Toxin Gene–Variant Strain of *Clostridium difficile*

Table 1. Isolates of *Clostridium difficile* According to Health Care Facility and the Proportion of Isolates Belonging to the B1/NAP1 Strain.

<table>
<thead>
<tr>
<th>Health Care Facility</th>
<th>Date of Onset of Outbreak</th>
<th>No. of Isolates Tested</th>
<th>BI/NAP1 Strain no. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georgia</td>
<td>Oct. 2001</td>
<td>46</td>
<td>29 (63)</td>
</tr>
<tr>
<td>Illinois</td>
<td>July 2003</td>
<td>14</td>
<td>6 (43)</td>
</tr>
<tr>
<td>Maine, Facility A</td>
<td>March 2002</td>
<td>13</td>
<td>9 (69)</td>
</tr>
<tr>
<td>Maine, Facility B</td>
<td>July 2003</td>
<td>48</td>
<td>30 (62)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>June 2003</td>
<td>12</td>
<td>9 (75)</td>
</tr>
<tr>
<td>Oregon*</td>
<td>April 2002</td>
<td>30</td>
<td>3 (10)</td>
</tr>
<tr>
<td>Pennsylvania, Facility A</td>
<td>2000–2001</td>
<td>18</td>
<td>7 (39)</td>
</tr>
<tr>
<td>Pennsylvania, Facility B</td>
<td>Oct. 2003</td>
<td>6</td>
<td>3 (50)</td>
</tr>
<tr>
<td>Total</td>
<td>187</td>
<td>96 (51)</td>
<td></td>
</tr>
</tbody>
</table>

Isolates were not collected until after the peak of the outbreak.

51 % of all isolates tested were of the B1/NAP Strain

An Epidemic, Toxin Gene–Variant Strain of *Clostridium difficile*

![Graph showing distribution of minimum inhibitory concentrations of levofloxacin for Current (Obtained after 2000) BI/NAP1 and Non-BI/NAP1 *Clostridium difficile* isolates.](image)

States with BI/NAP1/027 strain of C. difficile (N=38), November, 2007

Updated Nov. 9, 2007

http://www.cdc.gov/ncidod/dhqp/id_Cdiff_data.html
Treatment
Discontinuation of antibiotics

• Prior to the discovery of effective antimicrobial therapy:
 – In 1974, a report of 20 patients with pseudomembranous colitis, all patients recovered following the cessation of clindamycin therapy

• The efficacy of stopping other antibiotics has not been by further studies but is widely recommended

Metronidazole

• Oral metronidazole was widely recommended as the drug of choice for most cases of CDAD
 – High in vitro activity against *C. difficile*
 – High concentrations in the stool after both oral and IV administration
Vancomycin

- Poorly absorbed after oral administration
 - Virtually no serum concentration achieved via oral dosing.
 - Systemic toxicity is minimal
- High fecal concentrations have been documented and are known to be therapeutic
- Use is a significant risk factor for the VRE GI colonization
- More expensive than metronidazole
Treatment of *C. difficile* with Vancomycin

• Large series published in 1984
 – 189 patients with CDAD
 • 183(97%) responded to vancomycin therapy
 – Defervescence was observed after 24-48 hours
 – Diarrhea resolved after 1-13 days
 » Mean time to resolution was 4.5 days

Bartlett JG. *Rev of Infec Dis* 1984;6 (suppl1) 2S235-41
Prospective randomised trial of metronidazole versus vancomycin for Clostridium-difficile-associated diarrhea and colitis

• 101 patients with C. difficile-associated diarrhea or colitis were prospectively randomised to:
 – 10-day oral courses of
 • metronidazole, 250 mg four times a day
 • vancomycin, 500 mg four times a day.

• Participants:
 – 52 patients received vancomycin
 – 42 patients received metronidazole
 – 7 did not complete the trial

Prospective randomised trial of metronidazole versus vancomycin for Clostridium-difficile-associated diarrhea and colitis

<table>
<thead>
<tr>
<th></th>
<th>Treatment</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metronidazole N=42</td>
<td></td>
</tr>
<tr>
<td>Failure (N)</td>
<td>2</td>
<td>0.20</td>
</tr>
<tr>
<td>Relapses (N)</td>
<td>2</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>Vancomycin N=52</td>
<td></td>
</tr>
<tr>
<td>Failure (N)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Relapses (N)</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

* Metronidazole and vancomycin have equivalent efficacy and relapse rates and are tolerated to a similar extent by patients with C-difficile-related diarrhea and colitis

Relatively Poor Outcome after Treatment of *Clostridium difficile* Colitis with Metronidazole

<table>
<thead>
<tr>
<th>Study results</th>
<th>N</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients observed</td>
<td>207</td>
<td>N/A</td>
</tr>
<tr>
<td>Patients cured</td>
<td>103 (50%)</td>
<td>N/A</td>
</tr>
<tr>
<td>Patients with symptoms of colitis for 10 days despite treatment</td>
<td>46 (22%)</td>
<td>N/A</td>
</tr>
<tr>
<td>Patients with a recurrence within 90 days</td>
<td>58 (28%)</td>
<td>N/A</td>
</tr>
<tr>
<td>Overall mortality</td>
<td>27%</td>
<td>N/A</td>
</tr>
<tr>
<td>Mortality comparing complete responders vs incomplete clinical responders</td>
<td>21% vs 33%</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Prospective, observational study of 207 patients who were treated with metronidazole for *C. difficile* colitis

Increasing Risk of Relapse after Treatment of *Clostridium difficile* Colitis in Quebec, Canada

60-day probabilities of recurrence among patients with *Clostridium difficile* associated diarrhea treated with only **metronidazole**, comparing 1991-2002 to 2003-2004 (top).

Treatment with only **vancomycin** during 1991-2002 to 2003-2004 (bottom).

Clinical Infectious Diseases 2005;40:1591-1597
Vancomycin vs Metronidazole?

- Randomized, prospective, double blinded placebo controlled trial
- Treatments
 - Oral metronidazole 250mg QID x 10 days
 - Oral vancomycin 125mg QID x 10 days
- Outcomes
 - Clinical cure/ recurrence
 - Stratified by disease severity

Vancomycin vs Metronidazole?

<table>
<thead>
<tr>
<th>Severity</th>
<th>Clinical Cure</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metronidazole</td>
<td>Vancomycin</td>
<td>P Value</td>
<td></td>
</tr>
<tr>
<td>Mild CDAD</td>
<td>90%</td>
<td>98%</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>N=81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe CDAD</td>
<td>76%</td>
<td>97%</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>N=69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disease severity scoring system: one point each was given for age >60 years, temperature >38.3°C, serum albumin <2.5 mg/dL (25 g/L), or peripheral white blood cell count >15,000 cells/microL within 48 hours of enrollment. Two points were given for endoscopic evidence of pseudomembranous colitis or treatment in the intensive care unit. Patients with >2 point considered to have severe disease.

TABLE 2. Comparison of vancomycin and metronidazole for *Clostridium difficile* infection.

<table>
<thead>
<tr>
<th></th>
<th>Vancomycin</th>
<th>Metronidazole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colonic levels</td>
<td>> 500 mcg/mL</td>
<td>0–10 mcg/mL</td>
</tr>
<tr>
<td>In vitro activity</td>
<td>≤ 1.0 mcg/mL</td>
<td>≤ 1.0 mcg/mL</td>
</tr>
<tr>
<td>FDA-approved</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Clinical trials</td>
<td>Unbeaten</td>
<td>Beaten</td>
</tr>
<tr>
<td>Mild disease</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Severe disease</td>
<td>Superior</td>
<td>Inferior</td>
</tr>
<tr>
<td>Relapse rate</td>
<td>10%–25%</td>
<td>10%–25%</td>
</tr>
<tr>
<td>Cost/day (AWP)</td>
<td>$36/$17</td>
<td>$10</td>
</tr>
<tr>
<td>Promotion of VRE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

AWP=average of wholesale price; FDA=Food and Drug Administration; VRE=vancomycin-resistant enterococci.
Nitazoxanide vs Metronidazole

Nitazoxanide – oral antiprotozoal agent

Prospective, randomized, double blind study

Treatments:
Metronidazole 250mg po QID x 10 days
Nitazoxanide 500mg bid x 7 days
Nitazoxanide 500mg po bid x 10 days

Nitazoxanide was at least as effective as metronidazole in treating *C. difficile* colitis

Musher et al, Clinical Infectious Diseases, 2006:43: 421-7
Relapse- Increasingly More Common

- Relapse of CDAD occurs in 10-50% of patients
 - Likely due to persistence and germination of *C. difficile* spores
 - However, up to 50% of relapses may be due to reinfection with a new strain of *C. difficile*

Mylonakis et al. *Archives of Int Med.* 2001; 161:525-33
Malnick SDH. *Annals of Pharmacotherapy.* 2002;36:1767-75
Relapse

• Risk factors
 – From prospective studies
 • Increasing age
 • Abdominal surgery
 • Prior episodes of CDAD
 – From retrospective studies
 • Leukocytosis
 • Renal failure
 • Female gender

Young G et al. Gastroenterology 1986;90:1098-9
Relapse

- There are no evidence based guidelines for the treatment of multiple relapses

<table>
<thead>
<tr>
<th>1st Recurrence</th>
<th>Repeat metronidazole therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Repeat Vancomycin therapy</td>
</tr>
<tr>
<td></td>
<td>Nitazoxanide</td>
</tr>
</tbody>
</table>

Multiple Recurrences	Dose titration of vancomycin
	Vancomycin or metronidazole with probiotic agent
	Vancomycin + colestipol
	Vancomycin+rifaximin
	Fecal transplantation
Vancomycin

- Dose titration with pulse dosing
 - Week 1: 125mg QID
 - Week 2: 125mg BID
 - Week 3: 125 mg QD
 - Week 4: 125mg QOD
 - Weeks 5 and 6: 125 mg every 3 days

- Intermittent administration of antibiotics permits germination of residual spores on the off days.
- With the reintroduction of antibiotics, the organism is consequently destroyed.

Interruption of Recurrent *Clostridium difficile*–Associated Diarrhea Episodes by Serial Therapy with Vancomycin and Rifaximin

- **Rifaximin** is a semisynthetic, rifamycin-based non-systemic antibiotic, poorly absorbed
- One recent study
 - 8 women with 4–8 episodes each of CDAD
 - 2 week course of rifaximin following vancomycin therapy
 - 7 of 8 patients experienced no further diarrhea recurrence.
- Rifaximin has been shown to cause minimal changes in fecal flora, possibly suppressing the recrudescence of vegetative *C. difficile* growth

Probiotic Therapy

• Randomized placebo controlled trial
 – \textit{S. boulardii} (500 mg twice daily for 4 wk) was administered in combination with metronidazole or vancomycin in 124 patients with CDAD.

• Results:
 – No effect on the relapse rate in 64 patients treated for a first episode of CDAD
 – Significant reduction in the relapse rate in patients with at least 1 prior episode of CDAD (35\% vs. 65\%; \(p = 0.04\)).

McFarland et al. \textit{JAMA} 1994;271:1913-8
Anion Binding Resins

- Resins bind toxins produced in CDAD
- Bowel flora are not altered by resins
- Anion-exchange resins bind vancomycin and resin must be taken two or three hours apart
Treatment of recurrent antibiotic-associated pseudomembranous colitis

- 11 patients with relapses of antibiotic-associated pseudomembranous colitis
 - Treated with a tapering dose schedule of vancomycin and colestipol
- All patients responded and were asymptomatic at least 6 wks

Tedesco FJ. Am J Gastroenterol 1982 Apr;77(4):220-1
Fecal Transplantation

• Case series over nine years involving 18 patients with recurrent *C. difficile* colitis treated with donor stool via nasogastric tube
 – 90 days of follow up:
 • 2 patients died of unrelated illnesses.
 • 1 recurrence in 16 patients
 • No adverse effects associated with stool treatment

Aas et al. *Clinical Infectious Diseases* 2003;36:580–585
Fecal Transplantation

Table 3. Preparation of stool transplant recipient and description of the transplantation procedure.

<table>
<thead>
<tr>
<th>Procedure Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat the stool transplant recipient with vancomycin hydrochloride capsules (250 mg q8h) starting 4 days before the transplantation procedure. The last dose should be given on the evening before the transplantation.</td>
</tr>
<tr>
<td>Treat with omeprazole capsules (20 mg po) on the evening before and on the morning of the stool transplantation.</td>
</tr>
<tr>
<td>Immediately before the stool transplantation, a nasogastric tube is placed. Radiography should be used to verify that the tube tip position is in the gastric antrum.</td>
</tr>
<tr>
<td>A total of 25 mL of the transplantation stool suspension is aspirated into a syringe and instilled into the recipient via the nasogastric tube.</td>
</tr>
<tr>
<td>After the stool instillation, the nasogastric tube is flushed with 0.9 N NaCl. The nasogastric tube is then withdrawn.</td>
</tr>
<tr>
<td>The patient is permitted to resume a normal diet and all customary physical activities immediately after discharge from the gastroenterology clinic.</td>
</tr>
<tr>
<td>The patient should be evaluated 14–28 days after transplantation with a routine outpatient interim history, physical examination, and stool examination for presence of Clostridium difficile toxin.</td>
</tr>
</tbody>
</table>
Clinical outcomes of intravenous immune globulin in severe *Clostridium difficile*-associated diarrhea

- Retrospective analysis of 79 patients with CDAD
- Standard therapy for severe CDAD including intravenous metronidazole, oral vancomycin, or vancomycin enema
 - 18 patients received IVIG treatment (200-300 mg/kg)
 - 18 matched patients with similar CDAD severity but did not receive IVIG treatment
- There were no statistical differences in clinical outcomes:
 - Mortality, colectomies, and length of stay

Surgery

- Surgical intervention is warranted in the setting of peritoneal signs, severe ileus, or toxic megacolon.
- From retrospective data-
 - Colectomy most beneficial in:
 - Immunocompetent patients
 - Age >65 years
 - WBC > 20,000 cells/microL
 - And/or a plasma lactate between 2.2 and 4.9 meq/L

Treatment summary

| Mild CDAD | • Discontinue offending antibiotic
<table>
<thead>
<tr>
<th></th>
<th>• Oral Metronidazole</th>
</tr>
</thead>
</table>
| Moderate to severe | • Oral vancomycin
| | • Oral metronidazole
| | • IV metronidazole (ileus) + oral vancomycin via NG tube
| | • Antibiotics + IVIG |
| 1st Recurrence | • Repeat metronidazole therapy
| | • Repeat Vancomycin therapy
| | • Nitazoxanide |
| Multiple Recurrences | • Dose titration of vancomycin
| | • Vancomycin or metronidazole with probiotic agent
| | • Vancomycin + cholestipol
| | • Vancomycin+rifaximin
| | • Fecal transplantation |
| Severe ileus, toxic megacolon | • Surgical evaluation for complete colectomy |

Infection Control and C. difficile
The inanimate environment is a reservoir of pathogens

Recovery of MRSA, VRE, C. diff, CNS and GNR

Devine et al. Journal of Hospital Infection. 2001;43;72-75
Lemmen et al Journal of Hospital Infection. 2004; 56:191-197
The inanimate environment is a reservoir of pathogens

Recovery of MRSA, VRE, CNS. C. diff and GNR

Lemmen et al Journal of Hospital Infection. 2004; 56:191-197
Walther et al. Biol Review, 2004
Hand Hygiene

- Single most important method to limit cross transmission of nosocomial pathogens
- Multiple opportunities exist for HCW hand contamination
 - Direct patient care
 - Inanimate environment
Hand Hygiene

Clostridium difficile

- Hand washing with antiseptic impregnated soap is preferred method for hand hygiene
- Alcohol based hand sanitizers do not consistently and adequately remove *Clostridium difficile* spores.
Contact Precautions for drug resistant pathogens.

Gowns and gloves must be worn upon entry into the patient’s room.

Visitors: Report to nurse before entry

- Handwashing after all patient / environmental contact and glove removal.
- Gloves required for all patient / environmental contact.
- Long sleeved gown required for all patient / environmental contact.
Terminal Disinfection of Patient Rooms Harboring Drug Resistant Pathogens

• All touchable surfaces and all equipment in the room should be cleaned thoroughly at the time of patient discharge using a hospital approved disinfectant

• Sodium hypochlorite (bleach) preferred over Quaternary Ammonium products

• Goal: Decontamination of inanimate environment
Antibiotic Restriction

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalosporins</td>
<td>Restriction of third generation cephalosporins has been successful in reducing CDAD rates</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Fluoroquinolone use appears to be a class effect in outbreaks caused by the NAP1/BI/027 strain. Restriction of entire FQ class likely needed for effective control</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>During C. difficile outbreaks in the 1990s, clindamycin restrictions were followed by reductions in CDAD</td>
</tr>
</tbody>
</table>

Settle, CD et al. Aliment Pharmacol Ther 1998; 12:1217.31
Khan, R. Cheesbrough, J Hosp Infect 2003; 54:104.32
Triple Threat to *C. difficile*

- Hand Hygiene
- Antibiotic Restriction
- Disinfection of Inanimate Environment

Decrease in colonization pressure, environmental contamination and cross transmission
Summary

• *C. difficile* has become a resurgent nosocomial pathogen
• New data suggest that CDAD is now associated with both hyper-virulence and an increased rate of relapse
• Evidence based treatment guidelines do not exist for the management of CDAD
Summary

- Newer data suggest that oral vancomycin may now be preferred over metronidazole for severe CDAD
- For recurrent CDAD, multiple treatment options exist, none significantly superior than the others
- Meticulous hand hygiene, terminal disinfection and antibiotic restriction is the cornerstone of effective prevention and infection control
The End