Healthcare Superbugs: The Re-Emergence of Hospital Pathogens

Virginia Geriatrics Society Annual Conference

Gonzalo Bearman MD, MPH
Associate Professor of Medicine, Epidemiology and Community Health
Associate Hospital Epidemiologist
Virginia Commonwealth University
April 3rd, 2009
Staphylococcus aureus Facts

- Half of all *S. aureus* strains in U.S. healthcare facilities are resistant to methicillin
- Historically, methicillin-susceptible *S. aureus* (MSSA) strains were mostly acquired in the community, whereas methicillin–resistant strains (MRSA) were typically acquired in healthcare facilities
- There have been increasing reports of MRSA acquired in the community setting
Community Associated MRSA

• Definition:
 – MRSA clinical isolate from a patient *without* established risk factors for MRSA infection
 – Risk factors include:
 • Within the last year:
 – History of hospitalization, surgery, or residence in a long term care facility
 • Presence of indwelling catheter or percutaneous device
 • Prior history of MRSA infection or colonization

Adapted from Fridkin et al. New England Journal of Medicine, April 7, 2005
Community Acquired MRSA

- PVL positive Community acquired MRSA
 - Panton-Valentine-Leukocidin (PVL) gene
 - Cytotoxin produced by <5% of S. aureus strains
 - Lina et al* screened for PVL in 172 S. aureus strains
 - 93% of strains associated with furunculosis
 - 85% of strains associated with severe, necrotizing pneumonia

MRSA-Skin and Soft Tissue Infections
MRSA-Necrotizing Pneumonia
Clinical and Molecular Epidemiology of Nursing Home-Associated *Staphylococcus aureus* Bacteremia

- 7 year retrospective review of hospital medical records of nursing home residents from 22 separate facilities who had *S. aureus* bacteremia
 - 39 episodes of *S. aureus* bacteremia were identified
 - 15 MSSA
 - 24 MRSA

Clinical and Molecular Epidemiology of Nursing Home-Associated *Staphylococcus aureus* Bacteremia

- **Source of bacteremia**
 - Urinary tract -18% of all episodes
 - 44% episodes with unidentifiable focus
- **PFGE analysis of MRSA strains**
 - Two pulsed-field types predominated
 - USA100- (N = 13)
 - USA 800-like strains (N = 7)

Nursing Home-Acquired Bloodstream Infections

• Review of NH-acquired BSIs over 20 years
 – Low Incidence of 0.3 episode per 1,000 resident care-days
 – Sources of BSI changed little:
 • Urinary tract infection -50% of the episodes
 • Bacteriology
 – Gram-negative bacilli -50%
 » Escherichia coli
 » Resistance to fluoroquinolones and broad-spectrum penicillins and cephalosporins was uncommon
 » MRSA was the most common MDRO causing BSI

Epidemiology of *Staphylococcus aureus* Colonization in Nursing Home Residents

- 213 residents +/- indwelling device, from 14 nursing homes
- Samples obtained from the nares, oropharynx, groin, perianal area, wounds, and enteral feeding tube site
- Standard microbiology to identify MRSA
 - Pulsed - field gel electrophoresis, PCR detection of Panton - Valentine leukocidin, and SCC*mec* and *agr* typing

Mody et al. *Clinical Infectious Diseases* 2008;46:1368–1373
Epidemiology of *Staphylococcus aureus* Colonization in Nursing Home Residents

- 86 colonized with MRSA
 - 75 with MRSA only
 - 11 with both MRSA and MSSA
- 45 were colonized with MSSA only

Frequency of colonization at multiple sites with MSSA / MRSA

Mody et al. *Clinical Infectious Diseases* 2008;46:1368–1373
Epidemiology of *Staphylococcus aureus* Colonization in Nursing Home Residents

- Residents with devices more likely to be MRSA colonized at multiple sites
- Eleven different strains of MRSA PFGE phenotypes
 - 73 (85%) were colonized with hospital-associated SCC\textit{mec} II strains
 - 8 (9%) were colonized with community-associated SCC\textit{mec} IV strains
 - 2 were PVL positive

Mody et al. Clinical Infectious Diseases 2008;46:1368–1373
Antibiotics for CA-MRSA

• CA-MRSA bacteria are usually susceptible to more types of antibiotics than are healthcare-associated strains of MRSA
 • Typically susceptible to
 • Bactrim
 • Clindamycin
 • Doxycycline
 • Vancomycin
 • Linezolid
 • Rifampin
New Treatments for MRSA/VRE

<table>
<thead>
<tr>
<th>Drug</th>
<th>FDA Indication</th>
<th>Activity</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daptomycin (Cubicin)</td>
<td>cSSI MRSA/MSSA Bacteremia</td>
<td>Bactericidal MRSA/MSSA VRE</td>
<td>IV formulation only Dose dependent myositis</td>
</tr>
<tr>
<td>Linezolid (Zyvox)</td>
<td>HA + CA Pneumonia cSSI/SSI</td>
<td>Bacteriostatic MRSA/VRE (E.faecium)</td>
<td>IV and PO formulation Thrombocytopenia Neuropathy</td>
</tr>
<tr>
<td>Tigecycline (Tygacil)</td>
<td>cSSI cIA Infections</td>
<td>Bacteriostatic Gram positive Gram negative Anerobes</td>
<td>IV formulation only Hepatic impairment requires dose modification Does not have pseudomonas coverage</td>
</tr>
<tr>
<td>Ceftibiprole 4th generation ESC</td>
<td>Pending</td>
<td>MSSA / MRSA</td>
<td>IV formulation only Non-inferior to Vancomycin in clinical trial</td>
</tr>
</tbody>
</table>
MRSA-Skin and Soft Tissue Infections

- Incision and Drainage is mainstay of treatment
- Antibiotics if there secondary cellulitis for 10-14 days
 - Doxycycline
 - Bactrim
 - Clindamycin
 - Linezolid
MRSA and VRE Treatment

• Treat infection and not colonization
• Complicated skin and soft tissue infections; bacteremias; UTI/urosepsis
 – Maximally bactericidal therapy, consider ID consult
 • Vancomycin (MRSA)
 • Daptomycin (MRSA + VRE)
 • Tigecycline (MRSA + VRE)
 • Linezolid (MRSA + VRE- faecium)

• MRSA Pneumonia
 – Vancomycin (+/- Clindamycin) OR Linezolid
 • * Clindamycin or Linezolid associated with decreased toxin production in laboratory setting and may be warranted in RX of CA-MRSA necrotizing pneumonia
What about active MRSA screening?

• The debate about the value of MRSA ASC continues in part because of:
 – Limited reports of success so far
 – Some reports of the failure of screening
 – The costs of screening and isolation
 – The unwanted side effects of patient isolation
 – The inability to find sufficient isolation rooms for all patients

What about active MRSA screening?

- Focusing hospital resources on a single antibiotic-resistant pathogen as a sole approach to infection control is inherently flawed
- Emergence of MDROs as well as the recognition of the value of team-based infection control programs supports a population-based approach to IC

Screening for MRSA: A Flawed Hospital Infection Control Intervention

- Focus resources on population-based infection control intervention program utilizing evidence-based processes
 - Hand hygiene promotion and surveillance
 - Promotions/surveillance and feedback
 - Central line checklists
 - Head of bed elevation
 - Review and discontinuation of unnecessary catheters

Screening for MRSA: A Flawed Hospital Infection Control Intervention

Screening for MRSA: A Flawed Hospital Infection Control Intervention

Screening for MRSA: A Flawed Hospital Infection Control Intervention

1 = *Staphylococcus aureus* resistant to methicillin
2 = *Enterococci* resistant to vancomycin
3 = *Pseudomonas aeruginosa* resistant to imipenem
4 = *Acinetobacter* spp resistant to imipenem
5 = *Candida* spp resistant to fluconazole

VCUMC Approach to MRSA Active Surveillance – select patient populations

- **High risk surgeries**
 - Cardiothoracic surgery
 - CABG
 - Valve replacements
 - Neurosurgeries
 - Craniotomies
 - Spinal fusion
 - Orthopedic surgery
 - Joint replacement

- **Outbreak situations**
 - For epidemiologic surveillance and source/cross transmission control
Highly Effective Regimen for Decolonization of Methicillin-Resistant *Staphylococcus aureus* Carriers

- Prospective cohort study with a mean follow-up period of 36 months
- 62 patients
 - Decolonization treatment was performed
 - At least 6 body sites were screened for MRSA (including by use of rectal swabs) before the start of treatment

Highly Effective Regimen for Decolonization of Methicillin-Resistant *Staphylococcus aureus* Carriers

- Standardized decolonization treatment
 - Mupirocin nasal ointment
 - Chlorhexidine mouth rinse
 - Full-body wash with chlorhexidine soap for 5 days.
 - Intestinal and urinary-tract colonization treated with oral vancomycin and cotrimoxazole
 - Vaginal colonization treated with povidone-iodine or with chlorhexidine
 - Successful decolonization was considered to have been achieved if results were negative for 3 consecutive sets of cultures

Highly Effective Regimen for Decolonization of Methicillin-Resistant *Staphylococcus aureus* Carriers

Decolonization was successful in 54 (87%) of the patients in the intent-to-treat analysis.

Figure 2. Number of decolonization courses needed for successful methicillin-resistant *Staphylococcus aureus* (MRSA) eradication, overall (bold line) and stratified according to number of sites initially colonized by MRSA ($P = .004$)

Extended Spectrum Beta-Lactamases
Beta-Lactamases: What are they?

• Enzymes produced by certain bacteria that provide resistance to certain antibiotics
• Produced by both gram positive and gram negative bacteria
• Found on both chromosomes and plasmids
Epidemiology

• Today, 30 – 50% of E. coli are resistant to ampicillin and amoxicillin due to a beta-lactamase

• ESBLs have been reported for *E.coli, Klebsiella, Enterobacter, Proteus, Pseudomonas, Salmonella, Serratia*

• ESBLs have emerged as pathogens of epidemiologic significance
 – In long term care facilities emerging as uropathogens
Beta-lactamase inhibitor

- Clavulanic acid + amoxicillin = Augmentin
- Clav. Acid + ticarcillin = Timentin
- Sulbactam + ampicillin = Unasyn
- Tazobactam + piperacillin = Zosyn

Good News: Beta-lactamase inhibitors inhibit the beta-lactamase thereby not allowing the molecule to hydrolyze the antibiotic. Most ESBLs remain susceptible to Beta-lactamase inhibitors

Bad News: some ESBL producing bacteria produce large amounts of beta-lactamase thereby overwhelming the beta-lactamase inhibitors
The story is more complicated….

- Multiple antimicrobial resistance is often a characteristic of ESBL producing gram-negative bacteria.
 - Ceftazidime
 - Cefotaxime
 - Ceftriaxone
 - Aztreonam

- Genes encoding for ESBLs are frequently located on plasmids that also carry resistance genes for:
 - Aminoglycosides
 - Tetracycline
 - TMP-SULFA
 - Chloramphenicol
 - Fluoroquinolones
Extended-spectrum β-lactamases in long-term-care facilities

Extended-spectrum β-lactamases in long-term-care facilities

Prevalence and risk factors of extended-spectrum beta-lactamase-producing *Escherichia coli* and *Klebsiella pneumoniae* in an Israeli long-term care facility

- Urine samples positive for *E. coli* or *K. pneumoniae* from 1/2003 to 10/2003 were tested for the presence of ESBL
 - Overall rate of ESBL+ was 25.6%
 - 350 *E. coli* isolates
 - 77 (22%) were ESBL+
 - 84 *K. pneumoniae* isolates
 - 34 (40.5%) were ESBL+

However: ESBL producing organisms are still susceptible to:

- Cephæmycins:
 - Cefoxitin
 - Cefotetan

- Carbapenems:
 - Meropenem
 - Imipenem

Carbapenems are becoming the therapeutic option of choice
What about skin decolonization for gram negative rods?

- 4% chlorhexidine whole-body washing and *A. baumannii* skin colonisation among patients in a medical ICU
 - Daily whole-body disinfection with 4% CG can significantly reduce *A.baumanii*
 - *A.baumanii*-BSIs decreased from 4.6 to 0.6 per 100 patients (P ≤ 0.001)
- Although not studied in LTCF may be an effective IC adjunct

Clostridium difficile

- *Clostridium difficile* is a gram-positive, anaerobic, spore-forming bacillus that is responsible for the development of antibiotic-associated diarrhea and colitis.
Epidemiology of CDAD

- *C. difficile* is the leading cause of nosocomial enteric infection
- Three million new cases of *C. difficile* diarrhea and colitis in United States hospitals per annum
- CDAD affects 10% of hospitalized patients

Hospital-acquired *Clostridium difficile*-associated disease in the intensive care unit setting: epidemiology, clinical course and outcome

- Historical cohort study on 58 adults with CDAD occurring in intensive care units at VCUMC
- In ICU patients with CDAD, *advanced age* and increased severity of illness at the onset of infection were independent predictors of death
- The in-hospital mortality was 27.6%

Marra A, Edmond MD, Wenzel RP and Bearman G. *BMC Infectious Diseases* 2007, 7:42
Antibiotics and CDAD

<table>
<thead>
<tr>
<th>Highly associated</th>
<th>Moderately Associated</th>
<th>Rarely Associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>Other Beta-lactam antibiotics</td>
<td>Parenteral Aminoglycosides</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>Sulfonamides</td>
<td>Tetracyclines</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td>Erythromycin</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>Trimethoprim</td>
<td>Metronidazole</td>
</tr>
<tr>
<td></td>
<td>Quinolones</td>
<td>Vancomycin</td>
</tr>
</tbody>
</table>
Risk Factors and Pathophysiology

Receipt of antibiotics

Disruption of microflora in colon

Exposure and colonization by C. difficile

Release of toxins A and B with resultant mucosal injury
Antibiotic Associated Diarrhea Without Colitis

• Common in hospitalized patients
• Diarrhea is mild
 – 3-4 loose watery stools per day
 – Cramping
• Physical examination is normal with only minimal lower abdominal tenderness
• Fever, leukocytosis, and dehydration are mild or absent
• C. difficile toxins present in stool
• Sigmoidoscopic examination is normal
Pseudomembranous Colitis

- Appears as raised yellow or off-white plaques ranging up to 1 cm in diameter scattered over the colorectal mucosa
- Similar clinical symptoms of diarrhea, fever, leukocytosis and abdominal pain
Fulminant Colitis and Toxic Megacolon

- 2 or 3 percent of patients
- Marked leukocytosis (>30,000 to 40,000 WBC/microL)
- Fever, chills, dehydration and metabolic (lactic) acidosis
Diagnosis: ELISA for Toxin Detection

- More rapid assays with comparable sensitivity (70 to 90 percent) and specificity (99 percent)
- Some detect Toxin A only
 - Toxin A variant strains (toxin A-negative, toxin B-positive strains) relatively infrequent
 - (1-2% of all isolates)

Emergence of Highly Toxigenic Strain

- Hospital and nursing home outbreaks of severe disease particularly in elderly patients
- Strain is generally resistant to fluoroquinolones
- Prior receipt of fluoroquinolones is a risk factor
- Increase in mortality
- 10% of case patients required admission to the ICU
- 2.5 percent underwent an emergency colectomy
Toxin gene-variant and highly toxigenic strains - NAP1/BI/027

- Genes
 - *tcdA* Toxin A
 - *tcdB* Toxin B
 - *tcdC* porin gene
 - Partial deletions of *tcdC*
 - The expression of *tcdA* and *tcdB* is down regulated by the *tcdC* gene

Mechanism for the overproduction of toxins in the NAP1/BI/027 strain is a partial deletion in the *tcdD* gene resulting in overproduction toxins A and B
States with BI/NAP1/027 strain of *C. difficile* (N=38), November, 2007

Updated Nov. 9, 2007

http://www.cdc.gov/ncidod/dhqp/id_Cdiff_data.html
Vancomycin vs Metronidazole?

• Randomized, prospective, double blinded placebo controlled trial

• Treatments
 – Oral metronidazole 250mg QID x 10 days
 – Oral vancomycin 125mg QID x 10 days

• Outcomes
 – Clinical cure/ recurrence
 • Stratified by disease severity

Zar et al. Clinical Infectious Diseases, 2007:45: 302-7
Vancomycin vs Metronidazole?

<table>
<thead>
<tr>
<th>Severity</th>
<th>Clinical Cure</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metronidazole</td>
<td>Vancomycin</td>
<td>P Value</td>
<td></td>
</tr>
<tr>
<td>Mild CDAD N=81</td>
<td>90%</td>
<td>98%</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Severe CDAD N=69</td>
<td>76%</td>
<td>97%</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

Disease severity scoring system: one point each was given for age >60 years, temperature >38.3°C, serum albumin <2.5 mg/dL (25 g/L), or peripheral white blood cell count >15,000 cells/µL within 48 hours of enrollment. Two points were given for endoscopic evidence of pseudomembranous colitis or treatment in the intensive care unit. Patients with >2 point considered to have severe disease.

<table>
<thead>
<tr>
<th></th>
<th>Vancomycin</th>
<th>Metronidazole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colonic levels</td>
<td>> 500 mcg/mL</td>
<td>0–10 mcg/mL</td>
</tr>
<tr>
<td>In vitro activity</td>
<td>≤ 1.0 mcg/mL</td>
<td>≤ 1.0 mcg/mL</td>
</tr>
<tr>
<td>FDA-approved</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Clinical trials</td>
<td>Unbeaten</td>
<td>Beaten</td>
</tr>
<tr>
<td>Mild disease</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Severe disease</td>
<td>Superior</td>
<td>Inferior</td>
</tr>
<tr>
<td>Relapse rate</td>
<td>10%–25%</td>
<td>10%–25%</td>
</tr>
<tr>
<td>Cost/day (AWP)</td>
<td>$36/$17</td>
<td>$10</td>
</tr>
<tr>
<td>Promotion of VRE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

AWP = average of wholesale price; FDA = Food and Drug Administration; VRE = vancomycin-resistant enterococci.
Nitazoxanide vs Metronidazole

Nitazoxanide – oral antiprotozoal agent

Prospective, randomized, double blind study

Treatments:
Metronidazole 250mg po QID x 10 days
Nitazoxanide 500mg bid x 7 days
Nitazoxanide 500mg po bid x 10 days

Nitazoxanide was at least as effective as metronidazole in treating *C. difficile* colitis

Relapse- Increasingly More Common

• Relapse of CDAD occurs in 10-50% of patients
 – Likely due to persistence and germination of *C. difficile* spores
 • However, up to 50% of relapses may be due to reinfection with a new strain of *C. difficile*

Mylonakis et al. *Archives of Int Med.* 2001; 161:525-33
Malnick SDH. *Annals of Pharmacotherapy.* 2002;36:1767-75
Relapse

- There are no evidence based guidelines for the treatment of multiple relapses

| 1st Recurrence | • Repeat metronidazole therapy
| | • Repeat Vancomycin therapy
| | • Nitazoxanide |
| Multiple Recurrences | • Dose titration of vancomycin
| | • Vancomycin or metronidazole with probiotic agent
| | • Vancomycin + colestipol
| | • Vancomycin+rifaximin
| | • Fecal transplantation |
Vancomycin

• Dose titration with pulse dosing
 – Week 1: 125mg QID
 – Week 2: 125mg BID
 – Week 3: 125 mg QD
 – Week 4: 125mg QOD
 – Weeks 5 and 6: 125 mg every 3 days

 • Intermittent administration of antibiotics permits germination of residual spores on the off days
 • With the reintroduction of antibiotics, the organism is consequently destroyed

Anion Binding Resins

- Resins bind toxins produced in CDAD
- Bowel flora are not altered by resins
- Anion-exchange resins bind vancomycin and resin must be taken two or three hours apart

Cholestyramine
Treatment of recurrent antibiotic-associated pseudomembranous colitis

- 11 patients with relapses of antibiotic-associated pseudomembranous colitis
 - Treated with a tapering dose schedule of vancomycin and colestipol
- All patients responded and were asymptomatic at least 6 wks

Tedesco FJ. Am J Gastroenterol 1982 Apr;77(4):220-1
Treatment summary

| Mild CDAD | • Discontinue offending antibiotic
| | • Oral Metronidazole |
| Moderate to severe | • Oral vancomycin
| | • Oral metronidazole
| | • IV metronidazole (ileus) + oral vancomycin via NG tube
| | • Antibiotics + IVIG |
| 1st Recurrence | • Repeat metronidazole therapy
| | • Repeat Vancomycin therapy
| | • Nitazoxanide |
| Multiple Recurrences | • Dose titration of vancomycin
| | • Vancomycin or metronidazole with probiotic agent
| | • Vancomycin + cholestipol
| | • Vancomycin+rifaximin
| | • Fecal transplantation |
| Severe ileus, toxic megacolon | • Surgical evaluation for complete colectomy |
Healthcare Associated Urinary Tract Infections

• Virtually all patients develop bacteriuria by 30 days of catheterization
• Of patients who develop bacteriuria, 3% will develop bacteremia
• Vast majority of catheter-associated UTIs are silent
 These comprise the largest pool of antibiotic-resistant pathogens in the hospital

Treat Infection and Not Colonization

• Is this a UTI vs asymptomatic bacteruria?
 – Use clinical judgement
 - Urine WBC- pyuria
 - Bacterial colony counts > 10^3
 - Clinical signs/symptoms
• No antibiotic treatment for bacteruria
 - resolves with catheter removal
• 7-10 days of therapy for UTI
• Empiric therapy typically initiated pending microbiologic results
Prevention of Nosocomial UTIs

- Avoid catheter when possible & discontinue - **MOST IMPORTANT**
- Aseptic insertion by trained HCWs
- Maintain closed system of drainage
- Ensure dependent drainage
- Minimize manipulation of the system
- Silver coated catheters
Catheter Associated UTI

• Implement an organization-wide program to identify and remove catheters that are no longer necessary
 – Daily review of the necessity of continued catheterization

• Electronic or other types of reminders
 – *Automatic stop orders requiring renewal of the order*

Lo, E et al. *Infect Control Hosp Epidemiol* 2008; 299; supplement 1
Infection Control
The inanimate environment is a reservoir of pathogens

Recovery of MRSA, VRE, C. diff, CNS and GNR

Devine et al. Journal of Hospital Infection. 2001;43;72-75
Lemmen et al Journal of Hospital Infection. 2004; 56:191-197
The Inanimate Environment Can Facilitate Transmission

Contaminated surfaces increase cross-transmission

Opportunities for Hand Contamination are Multiple
Hand Contamination in HCWs

Hand Hygiene

Clostridium difficile

• Hand washing with antiseptic impregnated soap is preferred method for hand hygiene

• Alcohol based hand sanitizers do not consistently and adequately remove *Clostridium difficile* spores.

http://www.bumc.bu.edu/www/bumc/ehs/images/hands.jpg

http://www.bumc.bu.edu/www/bumc/ehs/images/hands.jpg
Contact Precautions for drug resistant pathogens.

Gowns and gloves must be worn upon entry into the patient’s room

Visitors: Report to nurse before entry

- Handwashing after all patient / environmental contact and glove removal.
- Gloves required for all patient / environmental contact.
- Long sleeved gown required for all patient / environmental contact.
Bare Below the Elbows for Inpatient Care

• Mandate across UK hospitals
• Recommended practice at VCUMC
• Ensure good hand and wrist washing

short sleeves, no wrist watch, no jewelry
avoidance of ties when carrying out clinical activity
Strategies for Control of MDROs in Nursing Homes

- Aggressive promotion of hand hygiene
- Meticulous compliance with contact isolation
- Indwelling central venous catheters and urinary catheters
 - Placed by formally trained personnel; compliance with insertion ‘checklist’
 - Discontinuation of unnecessary lines
 - Protocolized, daily review of catheters for discontinuation
- Consider chlorhexidine bathing of patients
- Consider Bare Below the Elbows Approach
- Active surveillance cultures for MRSA/VRE
 - Controversial; may not be effective in endemic settings
- Environmental decontamination by housekeeping
Summary

• Long term care facilities are not immune to the emergence of MDROs
 – MRSA, VRE, ESBL-NGR

• MRSA and CA-MRSA is an emerging issue in LTCFs
 – Treatment should be directed at infection and not decolonization
 – New antibiotics exist for MRSA and VRE
Summary

• Decolonization protocols exists for MRSA
 – Several decolonization attempts may be required
• ASC for MRSA/VRE are controversial
 – Efficacy is arguable for the control of MDROs in endemic settings
• *C. difficile* is re-emergent, relapses may be common, oral vancomycin may be the treatment of choice
Summary

- Infection Control Measures for LTCF
 - Hand hygiene
 - Contact Isolation Precautions
 - Bare below the elbows
 - Chlorhexidine bathing of patients
 - Use of central line insertion ‘checklists’
 - Daily review and prompt discontinuation of CVC and urinary catheters
 - Environmental decontamination
The End