Derivation of formula to calculate loss of stable RNA and mRNA

Definitions:

 S_n = amount of stable RNA in sample *n* M_n = amount of mRNA in sample *n* S_n' = amount of stable RNA per cell in sample *n* M_n' = amount of mRNA per cell in sample *n* C_n = number of cells in sample *n* f_s = factor relating S_1' to S_2' ($S_1' * f_s = S_2'$) f_m = factor relating M_1' to M_2' ($M_1' * f_m = M_2'$) $R = M_1' / S_1'$

1. Equal RNA is loaded (more or less), giving:

1a. $S_1 + M_1 = S_2 + M_2$ 1b. $(S_1' * C_1) + (M_1' * C_1) = (S_2' * C_2) + (M_2' * C_2)$

2. The ratio of total fluorescent intensity in the experimental condition (condition 2) and that of the control condition (condition 1) is:

2a.
$$M_2/M_1 = (S_1 + M_1 - S_2) / M_1$$

= $(S_1' C_1 + M_1' C_1 - S_1' f_s C_2) / (M_1' C_1)$ [definition]
= $(S_1' + M_1' - S_1' f_s C_2/C_1) / M_1'$
= $(1 + R - f_s C_2/C_1) / R$
2b. $C_2/C_1 = (S_1' + M_1') / (S_2' + M_2')$ [1b]
= $(S_1' + M_1') / (S_1' f_s + M_1' f_m)$
= $(1 + R) / (f_s + R f_m)$
2c. $M_2/M_1 = (f_s + R f_m + R f_s + R^2 f_m - f_s - R f_s) / (R f_s + R^2 f_m)$
= $(f_m + R f_m) / (f_s + R f_m)$

3. R is very small. 2% in *E. coli* growing under normal conditions, 5% for *E. coli* growing very slowly (1.5 hr doubling)

3a.
$$\mathbf{M}_2/\mathbf{M}_1 \approx f_m / f_s$$
 [2c, $\mathbf{R} \approx 0$]

4. f_s can be calculated, given M₂/M₁ and f_m

M₂/M₁ is measurable, as the ratio of total signal in the experimental condition to the total signal in the control condition (no normalization).

 f_m is measurable as the same ratio but after normalization

$$\begin{aligned} 4a. f_s &= f_m \left[(1 + R) / (M_2/M_1) - R \right] \\ 4b. &\approx f_m / (M_2/M_1) \end{aligned} [2c] \\ [3a]$$

The calculated value of f_s is not very sensitive to **R**. If **R** is as high as 50% (which would be pretty remarkable), then the error in the calculation of f_s is only:

 $(1 - M_2/M_1) / (2 M_2/M_1) = 13\%$ for the most extreme case of $M_2/M_1 = 1.34$