Derivation of formula to calculate loss of stable RNA and mRNA

Definitions:

$\mathbf{S}_{\boldsymbol{n}}=$ amount of stable RNA in sample n
$\mathbf{M}_{n}=$ amount of mRNA in sample n
$\mathbf{S}_{\mathbf{n}}{ }^{\prime}=$ amount of stable RNA per cell in sample n
$\mathbf{M}_{n}^{\prime}=$ amount of mRNA per cell in sample n
$\mathbf{C}_{\boldsymbol{n}}=$ number of cells in sample n
$\boldsymbol{f}_{s}=$ factor relating $\mathbf{S}_{\mathbf{1}}{ }^{\prime}$ to $\mathbf{S}_{\mathbf{2}}{ }^{\prime} \quad\left(\mathbf{S}_{\mathbf{S}^{\prime}}{ }^{\prime} * \boldsymbol{f}_{s}=\mathbf{S}_{\mathbf{2}}{ }^{\prime}\right)$
$\boldsymbol{f}_{\boldsymbol{m}}=$ factor relating $\mathbf{M}_{\mathbf{1}}{ }^{\prime}$ to $\mathbf{M}_{\mathbf{2}}{ }^{\prime} \quad\left(\mathbf{M}_{\mathbf{1}}{ }^{\prime} * \boldsymbol{f}_{\boldsymbol{m}}=\mathbf{M}_{\mathbf{2}}{ }^{\prime}\right)$
$\mathbf{R}=\mathbf{M}_{\mathbf{1}}{ }^{\prime} / \mathbf{S}_{\mathbf{1}}{ }^{\prime}$

1. Equal RNA is loaded (more or less), giving:

1a. $\mathbf{S}_{1}+\mathrm{M}_{1}=\mathbf{S}_{\mathbf{2}}+\mathrm{M}_{\mathbf{2}}$
1b. $\left(\mathbf{S}_{1}{ }^{\prime} * \mathbf{C}_{1}\right)+\left(\mathbf{M}_{1}{ }^{\prime} * \mathbf{C}_{1}\right)=\left(\mathbf{S}_{2}{ }^{\prime} * \mathbf{C}_{2}\right)+\left(\mathbf{M}_{2}{ }^{\prime} * \mathbf{C}_{2}\right)$
2. The ratio of total fluorescent intensity in the experimental condition (condition 2) and that of the control condition (condition 1) is:

$$
\begin{aligned}
& \text { 2a. } \mathbf{M}_{2} / M_{1}=\left(S_{1}+M_{1}-S_{2}\right) / M_{1} \\
& =\left(\mathbf{S}_{1}{ }^{\prime} \mathbf{C}_{\mathbf{1}}+\mathbf{M}_{1}{ }^{\prime} \mathbf{C}_{\mathbf{1}}-\mathbf{S}_{1}{ }^{\prime} f_{s} \mathbf{C}_{2}\right) /\left(\mathbf{M}_{1}{ }^{\prime} \mathbf{C}_{1}\right) \quad \text { [definition] } \\
& =\left(\mathbf{S}_{1}{ }^{\prime}+\mathbf{M}_{1}{ }^{\prime}-\mathbf{S}_{1}{ }^{\prime} f_{s} \mathbf{C}_{2} / \mathbf{C}_{1}\right) / \mathbf{M}_{1}{ }^{\prime} \\
& =\left(\mathbf{1}+\mathbf{R}-f_{s} \mathbf{C}_{2} / \mathbf{C}_{1}\right) / \mathbf{R} \\
& \text { 2b. } \mathbf{C}_{2} / \mathbf{C}_{1}=\left(\mathbf{S}_{1}{ }^{\prime}+\mathbf{M}_{1}{ }^{\prime}\right) /\left(\mathbf{S}_{\mathbf{2}}{ }^{\prime}+\mathbf{M}_{2}{ }^{\prime}\right) \\
& =\left(S_{1}{ }^{\prime}+M_{1}{ }^{\prime}\right) /\left(S_{1}{ }^{\prime} f_{s}+M_{1}{ }^{\prime} f_{m}\right) \\
& =(\mathbf{1}+\mathbf{R}) /\left(f_{s}+\mathbf{R} f_{m}\right) \\
& \text { 2c. } \mathbf{M}_{2} / \mathbf{M}_{1}=\left(f_{s}+\mathbf{R} f_{m}+\mathbf{R} f_{s}+\mathbf{R}^{2} f_{m}-f_{s}-\mathbf{R} f_{s}\right) /\left(\mathbf{R} f_{s}+\mathbf{R}^{2} f_{m}\right) \\
& =\left(\boldsymbol{f}_{\boldsymbol{m}}+\mathbf{R} \boldsymbol{f}_{m}\right) /\left(\boldsymbol{f}_{s}+\mathbf{R} \boldsymbol{f}_{m}\right)
\end{aligned}
$$

3. R is very small. $\mathbf{2 \%}$ in E. coli growing under normal conditions, 5% for E. coli growing very slowly (1.5 hr doubling)
3a. $M_{2} / M_{1} \approx f_{m} / f_{s}$
[2c, $\mathbf{R} \approx 0$]
4. f_{s} can be calculated, given M_{2} / M_{1} and f_{m}
M_{2} / M_{1} is measurable, as the ratio of total signal in the experimental condition to the total signal in the control condition (no normalization).
f_{m} is measurable as the same ratio but after normalization

$$
\begin{align*}
& \text { 4a. } f_{s}=f_{m}\left[(1+R) /\left(\mathbf{M}_{2} / \mathbf{M}_{1}\right)-R\right] \tag{2c}\\
& \text { 4b. } \quad \approx f_{m} /\left(\mathbf{M}_{2} / \mathbf{M}_{1}\right) \tag{3a}
\end{align*}
$$

The calculated value of $\boldsymbol{f}_{\boldsymbol{s}}$ is not very sensitive to \mathbf{R}. If \mathbf{R} is as high as 50% (which would be pretty remarkable), then the error in the calculation of \boldsymbol{f}_{s} is only:
$\left(1-\mathbf{M}_{2} / \mathbf{M}_{1}\right) /\left(2 \mathbf{M}_{2} / \mathbf{M}_{1}\right)=13 \%$ for the most extreme case of $\mathbf{M}_{2} / \mathbf{M}_{\mathbf{1}}=1.34$

