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Humans, computers, and the route to biological insights:  
Regaining our capacity for surprise 

Jeff Elhai 
Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, U.S.A 

There's a person – a friend of mine – a microbiologist… I don't want to give his name, but I'm 
sure you know him. He's a really creative guy. He's able to look at problems that have stumped 
everyone else, important problems, and while the rest of us are plugging away, following general 
principles, he knows his system so well, the things that aren't in books, that it's like the system is 
speaking to him, and he can see what the critical principles are, in the same way that you'd 
recognize the voice of a friend. 
But here's what I want to tell you: He doesn't work in the lab. Of course that's not remarkable. 
LOTS of researchers don’t spend much time in the lab. But this guy, he's NEVER worked in the 
lab. He wouldn't know a pipette from a pipe cleaner. I wondered about this and asked him 
straight away what the story was. He told me he's always avoided going into the lab. It's too 
confusing, he said. He doesn't have the mind for that sort of thing. He's a biologist, not an 
engineer! 
That was difficult for me to believe. You see, I've read his papers… masterful experiments! Who 
did them? I asked. He told me that he made a point of hiring someone who was a superb 
technician. Doesn't know a thing about biology, but that's OK. My friend tells him exactly what 
to do in the lab, and he does it. 
It seemed rather strange to me, someone who knows nothing about experimental science 
directing someone who knows nothing about the subject of study. So I asked him, what  inspired 
him to adopt this strange arrangement? He told me about his grandfather. His grandfather was 
an explorer. Discovered the South Pole. What inspired him was the fact that his grandfather was 
actually blind. He had a map in Braille and specially trained huskies. He'd point to the spot he 
wanted to go to, the dogs would sniff the map, and off they'd go!  
But what if the map was wrong? …Wait, never mind that, wasn't he an explorer? Wasn't he 
supposed to look around and explore? No, my friend said. He was an adventurer, not a tourist! 
What made him successful was his single-minded determination. He wanted to go to the South 
Pole and he got there! 
He had other talents too. He invented a remarkable machine for his wife, my friend's 
grandmother. She was a musicologist. His machine allowed her to feed in any musical 
manuscript, and it would tell her what composer's work it was most similar to.  
“That’s a remarkable machine!” I remarked. “But how could she tell if the machine was telling 
her the truth? “ 
“Well,” my friend answered. “The answer came out with E-values. The lower the E-value…”  
“…I know what E-values are, but that doesn’t matter. Of course she could play the music herself 
to check up on the machine…  
“Well, no she couldn't do that.” My friend said. “She didn't know how to play any musical 
instrument. She was a musicologist, not a street musician! And anyway she'd been deaf since 
birth.” 

- - - - - - 
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…OK, I think I might have lost you with that one. You don't believe that there could be a 
musicologist who relies totally on a machine to understand music. Perhaps you also don't believe 
that there could be a South Pole explorer who can see nothing of the world around him. I get 
your point, but actually, it's the first case that I find the most unbelievable: an experimental 
researcher who is blind to the means by which experimental information is obtained and reliant 
on a black box for addressing questions of nature. Perhaps that’s not so unusual. The 
unbelievable part is that I said this guy was creative, able to sense from a deep connection with 
his experimental system directions others couldn't see. How could he find the unexpected if the 
mistakes, the accidents, the intermediate results, were all hidden from him? When the world 
happens to be as he imagines, he may churn out the predicted findings, but how could he 
perceive the more interesting part, the world that he cannot imagine? 
Let’s examine a situation that may seem more familiar. 

Scenario: Nagging doubts… 
Suppose that your experiments have focused your attention momentarily on a protein, Asr1156 
(GenBank NP_485199), from the cyanobacterium Anabaena PCC 7120, that seems to be 
important in differentiation. What could this protein do? You go to your favorite web site and 
look up the annotation of the gene: "Hypothetical", you’re told. Oh, well. No help there. Back to 
your experiments. 
Scenario (Part 2): …increased by a provocative Blast… 
Suppose you go a step further, extracting the sequence of the predicted protein (perhaps this 
takes some irritating fiddling with the web site) and submitting it to Blast. Are there any similar 
proteins known? The result comes back: the protein is similar to the C-terminus of proteins from 
a large number of cyanobacteria. The protein is usually annotated as "an anti-sigma factor 
antagonist", a type of protein that might indeed be interesting with respect to differentiation! But 
you’re concerned: Is the similarity incidental, perhaps just a conserved motif, or does it provide 
a sufficient basis to claim that your protein has the same activity as the rest? One web site says 
“hypothetical” and another suggests “anti-sigma factor antagonist”... how to decide? 
Scenario (Part 3): … inflamed by a remarkable alignment…  
On most days, that difficult question would remain unanswered, but suppose that today you 
expend the effort necessary to find the complete sequences of the similar proteins, download 
them, find a sequence alignment program, combine the sequences in a form acceptable to the 
program, and finally perform the alignment (Fig. 1A). It seems very peculiar that many proteins 
from organisms you know to be quite distant from each other have regions of very high similarity 
while other proteins appear truncated. For example, Anabaena variabilis (whose protein is just 
below Asr1156 in Fig. 1) and Prochlorococcus marinus MIT9303 (whose protein is sixth from 
the top) are as distant from each other as any two cyanobacteria can be, and yet their proteins 
have conserved residues not found in the truncated proteins of more closely related 
cyanobacteria. This strikes you as highly improbable and forces you to consider an alternative: 
Treachery! Perhaps the protein sequences are wrong! Perhaps what purports to be the start 
codons for the short open reading frames actually lie within the genes. Unfortunately, if you 
can’t trust the information you’re given, then what do you have to go on?  
Upon further reflection, you see an answer: you have the DNA sequences to go on, which are 
unlikely to be in error. Those sequences are the direct result of experiments, while the protein 
sequences are mere inferences. But the work required toget all those sequences and then to 
translate them… 
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FIG. 1. Alignment of sequences of cyanobacterial orthologs of Asr1156. The alignment was produced as shown later in 
Fig. 6. To conserve space, only part of the alignment is shown. The line for the 70-amino acid protein p-Asr1156 is 
outlined. (A) Alignment of nominal protein sequences, according to annotated boundaries. (B) Alignment of protein 
sequences plus upstream potential amino acids, up to the proximal stop codon. Note that the same regions of the 
proteins are shown as in panel A. 
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Scenario (Part 4): …satisfied by an astonishing retranslation 
Suppose that you are magically able to gather the upstream DNA sequences from the genes, 
virtually translate them in the genes’ reading frames, and realign them, giving Fig. 1B. Clearly, 
there is overwhelming sequence similarity going backwards from the nominal beginning of each 
protein up to a conserved isoleucine at position 95 in the alignment. Beyond that point, the 
sequences become dissimilar. The annotated start codons indeed must be wrong, and not only for 
Asr1156 but for every protein in the list! No other explanation can reasonably account for such 
sequence similarity in proteins whose organisms you know diverged well over a billion years 
ago. But why did the gene callers do such an abysmal job? You examine the DNA sequences: In 
most cases there is no conventional start codon between the conserved isoleucine and the next 
upstream stop codon. You realize that the beginnings of these genes are determined by 
something apart from one of the conventional start codons, most likely the codon of the 
isoleucine itself. 

- - - - - - 

I have described a scenario where the end result is at odds with conventional wisdom, a result 
ordinarily hidden by the model of molecular biology built into our preexisting tools. In fact, in 
the case of one of the orthologs of Asr1156, there is strong experimental evidence that the 
protein begins with a conserved ATT (isoleucine) codon at the expected position (Binns and 
Masters, 2002). Though not widely appreciated, ATT has been previously shown to function in 
some genes as a start codon (Sazuka and Ohara, 1996).  

All who work with their eyes open regularly encounter such situations where things seem to be 
profoundly wrong. Most of the time, there is a trivial explanation, but sometimes pursuing such 
anomalies leads to new and powerful ways of looking at the world. The history of scientific 
research is strewn with unsought accidental discoveries (Roberts, 1989). It is important to note 
that those in computer science generally hold a different view of serendipity (Saunders and 
Thagard, 2005). In the natural sciences, where the goal is understanding the sometimes 
mysterious ways of nature, surprise can be the impetus for basic change, but in computer science, 
where the goal may be to find the best process to reach a given end, surprise is generally an 
unwelcome irritant. One should not expect that a collaborator charged primarily with building a 
tool should view an accidental discovery in the same way as one charged primarily with using 
the tool to understand nature. 

Whether you recognize a serendipitous finding depends on the preparedness of your mind. 
Machines can’t do it, nor can technical specialists unfamiliar with the burning issues in your 
field. But there’s more to it than that. Following up the intriguing observation depends in part on 
the time required for the pursuit or even the ability to pursue. At many different points in the 
journey described above, most would have put aside their nagging doubts, filing away the 
curious circumstances or forgetting about them entirely, because a meaningful pursuit would 
require abilities that practically speaking most do not have. The sense that something is wrong is 
one of our greatest friends in research, but without the means to follow up an observation as it is 
made, with as low an energy barrier as possible, chance discoveries are lost. The precepts of our 
time remain unchallenged because they cannot be effectively challenged. 
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Choices in the face of overwhelming information 
In the past several years, biology has been showered with riches – genome sequences, gene 
expression information, huge positional data sets – literally beyond imagining, since the common 
thread is that the information is too much to fit in any human head. To extract its value, one must 
use computational tools that in some ways illuminate but in other ways obscure the fundamental 
data. That's true of any tool, and the greatest insight comes from combining the abstractions a 
tool provides with an appreciation of the process through which the abstractions were obtained 
(Pevzner and Shamir, 2009). However, few biologists understand the computational tools they 
use (and the assumptions hidden within those tools), and fewer still can meaningfully grapple 
with the underlying sequences and numbers in a creative way that requires the most basic and 
flexible of computational tools – computer programming. 

Biologists seem to be faced with a list of unpalatable choices: 

1. Ignore the wealth of information now available  
This choice has the advantage of rooting one's research in tools one understands, thereby 
making more certain the connection between phenomena and conclusions. A principled 
approach, perhaps, but how frustrating! 

2. Muddle through as best one can with a limited number of tools  
This strategy reduces the chance of attaining insights that require a broad understanding 
of a phenomenon, insights prompted by one of those annoying but precious results that 
wander outside the confines of our fixed tools. It promotes tool-directed rather than 
phenomenon-directed science. 

3. Divide responsibilities amongst those with different expertise  
Let the biologists think biological thoughts while working with computer types who think 
computational ones. This insidiously attractive option relies on the assumption that 
experimental results are produced by black boxes whose workings are of no scientific 
interest. The analogous situation would be directing a laboratory project from an office, 
with no knowledge of how experiments are being accomplished (or mushing blindly to 
the South Pole). We know well that a laboratory result has little scientific meaning 
without an appreciation of the experiment that produced it and the limitations of that 
experiment. Why should the experimental procedure be less critical for computational 
experiments? And if we give over the computational experiment to the programmer, then 
the unavoidable false turns and nonconformant intermediate results we are accustomed to 
see when we work with our own hands will be seen only by someone who is unprepared 
to grasp the biological implications and take the next step. By dividing responsibilities, 
we make rapid gains in predictable ways but slow the pace of insights that would 
radically change how we look at the world. 

4. Entice microbiologists into learning computer programming  
There has been ample incentive over the past 40 years for biologists to learn and use 
computer programming. They have voted overwhelmingly to this day not to do so.* 

                                                 
* In an informal survey of 6 departments of biology or microbiology in U.S. universities, only 4% of their members 
(out of 124) were reported able to write computer programs to the extent that they use them in their research. 
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Fortran (1950's) 

 
PL/I (1960's) 
/* Hello World in PL/1 */ 
 
Hello: procedure options(main); 
       put skip list('Hello World!'); 
end Hello; 

 
C++ (1990's) 
// Hello World in C++ 
 
#include <iostream.h> 
main() 
{ 
    cout << "Hello World!" << endl; 
    return 0; 

} 

 

Java (2000's) 
// Hello World in Java 
 
class HelloWorld { 
  static public void main( String args[] 
) { 
    System.out.println( "Hello World!" ); 
  } 
} 

Figure 3. Evolution of computer languages. Derived 
from the on-line Hello World collection, by Wolfram 
Rösler (http://www.roesler-ac.de/wolfram/hello.htm). 

TECO (1970's) 

WordStar (1980's) 

Word (2000's) 

Figure 2. Evolution of word processors. 
One might imagine an additional choice, one that does not yet exist but should: that computer 
programming become as accessible to typical researchers as word processing, so that anyone can 
use it to manipulate bioinformation in creative ways with minimal activation energy. 

Computation vs word processing 
The analogy of word processing is informative (Haigh, 2006). Just 35 years ago word processing 
was confined to those who worked with computers professionally. Originally commercial word 
processing programs were designed for pools of specialist within an automated office. This 
vision of the world did not last for long, as software companies discovered the more lucrative 
market of individual  users.  As  a  result, word  processors evolved rapidly (Fig. 2) from clumsy 
line editors, through full screen editors driven by numerous key combinations, to complex 
programs that could interact productively with a great number of computationally naïve users. 
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Compare this progression of word processors with the succession of programming languages 
from the 1950's until today (Fig. 3). Computer languages have become far more powerful during 
that period, but they have not become significantly more usable by those new to the game. It is 
no easier today than it was 50 years ago for a novice to learn how to write simple computer 
programs. Probably less so.  

Is it truly more difficult to encompass the operations necessary to program a computer to do what 
we wish than it is to encompass the operations necessary to run a full-featured word-processor? 
Computer programmers will generally respond with a resounding "Yes!", but is that really so? If 
we wish to write complex applications that are efficient, robust, and resilient, then programming 
a computer is indeed complicated, intrinsically so. But if we wish to do those things that are 
simple for researchers to conceive of, then programming should not be so complicated. Just 
because typesetting a newspaper is inherently difficult, that's no reason why we should not have 
the capability to compose our thoughts on a word processor. We gain enormously living in a 
society where almost all can read street signs and write shopping lists, even though very few 
amongst us are Shakespeares. 

In the end, however, I do confess that computer languages by their nature must be more 
complicated. After all, a word processor has only a limited number of things it can do (if we 
exclude the computer languages embedded in some), while, in contrast, connect a creative 
human, a digital computer, and a general purpose language and what is there that they cannot do? 
How do we avoid being overwhelmed by the complexity that seems inevitable from a language 
that gives free rein to creativity? I’ll return to this question in a moment. 

Summary of the problem 
Fundamental changes in our views of the world come about through anomalous observations that 
challenge and ultimately break the prevailing models through which we filter perception (Kuhn, 
1962). They are made possible by the ability to loosen the hold of the old paradigm and 
rearrange perceptions in a new way. The most basic discoveries are necessarily surprises, 
requiring a cohabitation in one mind of the surprising observation and the data (minimally 
filtered) that must be rearranged. 

That's the way science is supposed to work. Today, the enormous amount of biological 
information – genomes, microarrays, data from other high-throughput experiments – has allowed 
research to make breakneck progress in increasing our understanding of how cells and organisms 
function. However, this rapid progress has come at a cost: a reduced connection between 
researcher and unprocessed data and the consequent reduced possibility for the most fundamental 
surprises. We gain in the short term. In the long run, we're in for trouble. 

Most biologists are incapable of asking new questions directly about raw genomic information or 
any other mass data, because that would require going outside of fixed computational tools and 
making new tools. In short, it would require the ability to program a computer. We are stuck in 
our offices, cut off from the experiments that feed us the results we chew on, and oblivious to the 
surprising accidents that would rock our foundations. We are blind explorers, fixated on the 
South Pole but oblivious to new phenomena we don’t know exist and don’t know how to look 
for. 

But how can biologists become computationally adept? It takes considerable effort to learn a 
programming language sufficiently well so as to build a new computational tool, and it takes a 



Capacity for Surprise - 8 

Figure 4. Example of a BioBIKE function. The function makes an alignment (shown in Fig. 1B) of the 
sequences of all orthologs of a protein, starting as many as 100 amino acids before the nominal beginning of each
protein but going backwards only up to the first stop codon.  

particular cast of mind to enjoy the process. Understandably, few biologists have made the 
investment. Human nature is unlikely to change. Biologists: It’s not our fault! 

How about machine nature? Machine interfaces can change. Word processors have evolved from 
simplistic and clunky to powerful and intuitive. In contrast, computer languages have evolved 
from simplistic and clunky to powerful and clunky, from the perspective of the naïve biologist. 
Most efforts today at interfaces connecting biologists with bioinformation focus on providing 
pushbutton access to filtered information and tools. These have been valuable to achieve their 
limited purposes, but it has been a serious mistake to go no further. The reconnection of 
biologists with unprocessed data requires a rapid evolution of computer languages to those that 
can be used at a simple level to facilitate the manipulation of raw data in new and creative ways. 

Towards a solution: Human-centered programming 
If the article stopped here, you might be excused for leaving discouraged. I hope, however, that 
you will instead take away the brighter note sounded at the end, that given sufficient incentive, 
powerful interfaces can be developed to engage humans with minimal computational experience. 
Our group has taken initial steps in this direction, developing an integrated knowledge and 
programming environment, called BioBIKE (Biological Integrated Knowledge Environments; 
Elhai et al., 2009), freely accessible through the web at http://biobike.csbc.vcu.edu/ (with links 
on the site to many tours of the resource). While BioBIKE offers a considerably less intimidating 
interface than conventional languages, it still poses more challenges to a new user than a modern 
word processor, more than most biologists would tolerate. It is not yet a solution, but future 
efforts may build upon the results of our experiment. 

The main principles on which BioBIKE rests might be basic to any practical solution. First, 
knowledge is integrated with the means to manipulate it. Naïve users should not be asked to 
assume that most difficult and most tedious of programming chores: finding data and converting 
it from one form to another. Second, utterances must be comprehensible at sight to those in a 
targeted community. An example is provided in Fig. 4. Third, the language should cater to the 
needs of a specific clientele (in the case of BioBIKE, that would be those with questions in the 
domain of molecular biology). Questions or requests that are easy to pose in the language of the 
specified domain should be easy to express in the programming language. However, the 
language must still be capable of expressing anything within the realm of a general purpose 
language (perhaps with considerably more difficulty). Fourth, the language must be extensible by 
its practitioners, as a language can meet the needs of a community facing new phenomena only 
when that community is empowered to coin new tools and concepts. If a series of operations is 
found to be of general use, then a user should be able to package them into a chunk for use under 
a single name and that chunk incorporated into the language.  

Unfortunately, these principles are not sufficient, even when assiduously followed, to make 
programming accessible, in a practical sense, to most biologists. A statement may make perfect 
sense when a user sees it but that same user may well be at a loss to construct it from scratch. We 
need the computer in Star Trek, one that can understand our intentions and figure out a way to 
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satisfy them. Computer intelligence of that sort is far in the future. For now, the greatest progress 
may be made in developing a conversation between the language environment and the naïve 
user, where the interface does not need true intelligence but can nonetheless guide the user in the 
development of the needed tool. 

Programming a computer will never be easy, because it is difficult to formulate questions that are 
both unambiguous and meaningful. However, formulating logical questions is what researchers 
do for a living. This is not the primary obstacle to enabling biologists to program the computer. 
That obstacle is the high activation energy that currently needs to be overcome to gain sufficient 
proficiency in a language to pose meaningful questions to a computer.  So long as that obstacle 
remains in place, many biologists will continue to mush blindly forward, aided by easy-to-use 
programs built by many computer scientists. 

I have tried in this article to address those two audiences. First, to those who study nature, if you 
are satisfied with your rate of progress, understand that traveling exclusively by highways offers 
speed but sacrifices most possible destinations. And if you despair at being able to depart from 
the smooth bioinformatics superhighway, trade that in for anger, and demand a language that 
enables you to analyze and manipulate mass biological information in a way that makes sense to 
you. Second, to those who are inventors of computational tools, consider the greater impact of 
devising a more general language that could potentially engage a vastly greater audience than 
those served by current computer languages, not one that aids a transition from a neophyte to a 
programmer like yourself, but a language that is an end point, one serving the needs of biological 
researchers and students. With this push and pull, a human-centered language might be 
developed sufficient to enable biologists to embrace computation as a basic tool, and we can 
thereby regain our historical connection with the raw data we study and regain the agility 
necessary to pursue surprising results to new biological insights. 
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Partial output from SEQUENCE-OF

Appendix: Computer programming as a tool in biology education 
The disconnect from tangible reality that I argue now confronts researchers has long been a way 
of life for students of molecular biology, much to their detriment. The advantages of learning by 
discovery rather than relying on lecture and textbooks are well documented (Wood, 2009), but 
molecular biology laboratories are expensive in both time and resources. Computational 
experiments offer an attractive alternative, and I have used BioBIKE to present university and 
high school students with a playground through which they can discover some concepts of 
molecular biology. At first, students must be led step by step through the process of asking useful 
questions and using BioBIKE to answer them, but it doesn't take long for them to gain increasing 
independence and the ability to strike out on their own. 

I present here a highly abbreviated summary of an investigative tour that students without prior 
computational experience have used to discover concepts related to the nature of genes. You can 
find the complete tour by going to the BioBIKE portal (http://biobike.csbc.vcu.edu), clicking 
Guided Tours, and then What is a Gene? 

Students bring with them all sorts of 
fanciful notions concerning genes that 
connect verbally with textbook 
descriptions but bear little resemblance 
with reality. It is important to help them 
build a mental picture of a real genome. 
In this tour, they use the genome of the 
cyanobacterium Anabaena variabilis 
(nicknamed Avar) as their laboratory. BioBIKE allows them to explore the genome and realize 
the problem confronted by the cell: how is it possible to discern the beginning and end of a gene 
from a continuous sequence of nucleotides? 

Drawing on the analogy of picking out sentences from English text, students consider two 
strategies: find internal signals in genes that mark their beginnings (analogous to capital letters), 
and find special sequences preceding genes (analogous to periods). To see if the internal signal 
hypothesis is true, the investigators experiment first with extracting the beginning of a single 
gene and then generalize the procedure over all genes of Avar. Seeing that there is a recurring 
pattern in the first three nucleotides, they focus on them, giving the set of opening triplets a 
name. 

Many investigators 
come to the tour with 
an expectation of finding ATG at the beginning of genes, as is 
typically stated in textbooks. They are surprised to find that 
some genes begin with other similar triplets. Do these triplets 
account for the beginnings of all genes? This can be tested by 
counting each one and comparing the sum to the number of all genes. As it happens, 55 genes are 
missing, evidently beginning with some other triplet.  
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 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 
A  1 1 1       1 1 1   
C 1               
G     1 1  1 1     1 1 
T       1   1      

What are they? Filtering the list of triplets beginning genes, retaining only those that do not 
match the pattern of “A”, “G”, or “T” followed by “TG”, brings up a list of gene beginnings that 
are found to be associated with tRNA, rRNA, and other RNA-determining genes. In this way, 
investigators discover the concept of coding- and noncoding-genes. However, by counting the 
entire genome, they also find that there are many instances of “ATG” that do not begin genes. 
Some other feature must be important to signal the beginning of a gene.  

The second strategy they employ is to examine sequences upstream from genes, focusing on 
those genes that encode protein.  

At this stage, as in previous, investigators can go back to the genome sequence to make sure that 
the sequence extraction worked as expected. No obvious pattern emerges from inspection, so the 
upstream sequences are analyzed, counting the number of each nucleotide at each position, to 
obtain a Position-Specific Scoring Matrix (PSSM). The count is shown below, after the first gene 
has been tabulated: 

 

 

 

 

The complete count is done by the MAKE-PSSM-FROM function, and the results are plotted: 

It seems that there is a precipitous drop in A’s and G’s and 
corresponding rise in T’s and C’s before the beginning of 
genes. There’s also a rise and fall in G’s about 10 
nucleotides before the beginning, and a strange up and down 
pattern in the A’s. 

How much of this is real and how much imagined, just the 
result of random fluctuation? Investigators can readily get a 
feel for what random fluctuation there is by repeating the 
plot a few times with randomized sequences,  
giving a typical plot below. 

Positional frequencies of nucleotides 
upstream from the coding genes of 
A. variabilis. The positions 1 to 15 
correspond to -15 to -1 relative to the 
beginnings of genes.  

A

T

G

C
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Randomization is used in other investigative tours to give 
students an intuitive feel for what statistical tests do and how 
to interpret them. 

The tour ends with some hints but otherwise a free-form 
invitation for investigators to attempt to try out the tools they 
have used to find interesting features near the ends of genes. 

Needless to say, it is not of critical importance that students 
discover the diversity of start codons or the presence of 
ribosome binding sites typical of prokaryotic genes. What is 
important is that they discover – anything – so that they learn 
to make a habit of it. It is also not critical that they become 
comfortable with the latest bioinformatics tools (otherwise 
known as the obsolete tools of a decade from now). What is of 
lasting importance is a degree of comfort with uncertainty, a 
skepticism towards ideas and information, and an urge to 
check both in any way possible. Students learn that 
computation is a powerful ally in this regard and that they are 
capable of making use of it without losing control.   
 
Integrating computation and quantitative thinking into the biology curriculum can go a long way 
towards bridging the current gap felt by many to lie between biology and numbers. A computer 
programming language that meets students more than halfway is necessary to encompass the 
great majority of biology students who avoid computation. Students who gain computational 
skills may emerge as a new generation of biological researchers, one that is able to encounter the 
surprises that are hidden in bioinformation and to pursue them to new insights. 
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