0. Special problem (not for the exam, but an example of how genetic knowledge can serve as a beacon of light for the world). The officials in Florida still can't get things right, so they call in you, known for your prowess in genetic analysis (always a valuable commodity). You randomly sample 1% of the total ballots to see if any had been miscounted, and you find 25 erroneously tallied. From this, you estimate that there are 2500 wrong ballots in the total, but you realize that by chance your sample might have picked up a greater or lesser percentage of wrongly counted ballots. Given that, you decide to say that there are 2500 wrong ballots plus or minus one standard deviation in the number of wrong ballots (if you were able to sample a lot of times). Presuming the ballots you counted to be a completely random sample, what's your best guess as to how far off your estimate might be?

If you have no clue how to proceed, take a look at the italicized special feature in the notes for Wednesday, November 15, p.3.

1. Match each of the following mutations to the mutagen(s) that might have produced it.
 a. GGG (glycine) → TGG (tryptophan) A. Nitrous acid
 b. GCT (alanine) → GTT (valine) B. Ultraviolet radiation
 c. CCC (proline) → CAC (histidine) C. Aflatoxin

2. The couple of hundred lacI mutations described in the notes of November 15 took an incredible amount of work to obtain in the 1980's. With present day tools, the job would not be nearly so onerous. After obtaining mutants on PGal plates, you could use PCR to clone the lacI gene and send the DNA out to an automatic DNA sequencing service to determine the site of the mutation. Suppose, as a service to science, the UR Biology Department decides to set as a requirement for graduation that each major clone and characterize 10 lacI mutants.

 Now fast forward fifty years and some tens of thousands lacI mutants later. Frustration has set in because despite the large number of mutations characterized, there are still lots of the 1080 bases comprising lacI at which no mutation has ever been recovered. Provide at least three explanations why this is not so unexpected a result.

3. You are a world famous geneticist testifying in a wrongful death suit brought against Philip Morris by the estate of a man who died of lung cancer. Prior to his death, the deceased worked in a chemical factory that manufactured hydroxylamine. The plaintiffs maintain that the deceased’s smoking habit caused the lung cancer, while the cigarette company argues that the cancer was due to his job in the chemical factory. You have cloned and sequenced DNA encoding p53, a tumor suppressor, from the deceased. You find that the gene was indeed mutated (as is typical in lung cancers), and the mutation was an arginine residue at position 248 that mutated to a leucine. You testify that the major carcinogen in tobacco smoke is benzo[A]pyrene ("Objection! That's 'suspected carcinogen', your Honor."), which acts by forming a bulky addition primarily on guanine residues. DNA replication is unable to proceed past the modified base. What will be the remainder of your testimony? What can you say regarding the claims of the disputants?

1 See table at end of this problem set for useful information regarding mutagens

Problem Set 11 - 1
4. You want to analyze your fly mutants to an even more detailed level, to determine what the molecular nature of the mutation each suffers from. You go back to your original mutant fly stocks and expose them to the mutagens shown below. In some cases wild-type revertants are obtained, but in some cases not. From the information below, identify the kind of mutation responsible for each mutant fly:

<table>
<thead>
<tr>
<th>Mutant</th>
<th>5-Bromouracil</th>
<th>Hydroxylamine</th>
<th>Proflavin</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

5. Fanconi anemia is an inherited condition that confers on the individual a hypersensitivity to DNA-damaging agents. People with Fanconi anemia suffer from a high incidence of leukemia and other cancers. The gene responsible for the condition has recently been cloned, and Levran et al [(1997) Proc Natl Acad Sci USA 94:13051-13056] sequenced the gene from 97 ethnically diverse individuals affected by Fanconi anemia. Thirty of the patients had mutations in the same position of the gene, a deletion of three basepairs (underlined below). Suggest in less than 10 words why this position might be particularly prone to mutation, and draw a diagram illustrating your suggestion.

CysGluArgGluGluLeuLeuValPheLeuPhePhePheSerLeuMetGlyLeuLeu
TGCAGAGAGAGGAGCTATTGGTTTTCTTCTTCTTCTTCTTGATGGCCTGCTG

6. Consider two mutations: one in Ura-DNA glycosylase, the enzyme that detects and removes uracils from DNA, and one in AP endonuclease, which detects and excises apurinic/apyrimidinic residues. If the two mutations are combined into the same strain, which phenotype is epistatic over the other (i.e., does the resulting strain have the same phenotype as the Ura-DNA glycosylase-minus mutant or the AP endonuclease mutant)?

7. You wish to find the spectrum of possible \(\text{lacI} \) mutations, and so you borrow a bit of a culture of wild-type \(E. \text{coli} \) from a nearby genetics lab and grow up a large culture for the experiment. You isolate hundreds of \(\text{PGal}^+ \) mutants and from them clone and sequence \(\text{lacI} \). You find, to your surprise, that almost all of the \(\text{lacI} \) sequences you obtain contain the same base substitution.

a. How do you explain these results?

You repeat the experiment, this time being careful to start from single cells. Nonetheless, you can't get reproducible results. In most repetitions of the experiment you get about 200 \(\text{lacI} \) mutants per ml (per \(2 \times 10^9 \) cells), but sometimes you get several hundred mutants and occasionally many thousands!

b. Why won't this experiment sit still? (Hint: when during growth of the culture do mutations occur? Reflect on this and your answer to part a)
8. What would be the phenotype of E. coli that lacks the ability to methylate GATC sequences? What would be the phenotype of E. coli that overmethylates GATC sequences (i.e., has such a high activity of the methylating enzyme that the sequences are methylated almost immediately after DNA replication)?

9. Several members of a family exhibit the symptoms of myotonic dystrophy, a condition typified by wasting away of muscles and a variety of other problems. The pedigree of the family is shown to the right. The gene responsible for the disease is on chromosome 19 and is preceded by a long untranslated stretch of repeated GCT nucleotides. DNA is isolated from the living members of the pedigree shown, the 5' region amplified by PCR, and the number of GCT nucleotides inferred by the size of the resulting fragment, determined by gel electrophoresis. The numbers of repeats for each individual are shown on the pedigree.

 a. Why are two numbers shown for each individual?

 b. What do you think is the relationship between the number of repeats and the disease state?

10. In a study aimed at understanding the basis of warts [Murray et al (1971) Nature 232:51], the authors isolated protein from blood and from warts of twelve female individuals. The twelve samples were run on a gel and stained in a way that visualized the activity of glucose-6-phosphate dehydrogenase, an enzyme encoded by a gene on the X chromosome. A cartoon of the stained gel is shown below. Each band represents the position of glucose-6-phosphate dehydrogenase protein, which exists in the general population in two forms. B indicates a sample taken from blood, W indicates a sample taken from wart tissue.

 Glucose-6-Phosphate Dehydrogenase Phenotypes of 12 Individuals and Their Warts

 a. Which of the proposed scenarios fit the data?

 A. Wart viruses infect cells within a tissue. In some cases, the virus lyses the cell and spreads progeny virus particles to other cells. In most cases, however, the virus remains within the living cell and changes it into a wart cell.

 B. Warts are caused by a mutation that occurs in the gene encoding glucose-6-phosphate dehydrogenase.
C. Warts are caused by mutations that occur in rare cells, causing the production of a hard case around them.

D. Wart viruses infect rare cells within a tissue. The infection causes the cell to change into a cell with a hard case and also to increase the rate of cell division of that cell and its progeny.

E. Warts are caused by a mutation that increases the rate of cell division of that cell.

b. Aren't you happier knowing where warts come from?

11. Li-Fraumeni syndrome is inherited in much the same fashion as familial retinoblastoma. It is caused by mutation in the p53 gene, a tumor suppressor gene.

a. Which of the following genotypes would you not be surprised to find in cells isolated from malignant tissue from a person with Li-Fraumeni syndrome?

b. Which of the following genotypes would you not be surprised to find in normal cells isolated from the same individual?

c. Which of the following genotypes would you not be surprised to find in germ line cells isolated from the same individual?

A. p53\(^+\)/p53\(^+\)
B. p53\(^+\)/p53\(^-\)
C. p53\(^-\)/p53\(^-\)
D. p53\(^-\)/deleted p53\(^-\)
E. p53\(^+\)/deleted p53\(^-\)

*** 12. Light-induced skin cancer is among the most rapidly increasing cancers in the U.S. In an effort to identify the causes of skin cancer, Brash et al [(1991) Proc Natl Acad Sci USA 88:10124-10128] examined the pattern of mutation in skin tumors of fourteen unrelated individuals. DNA was isolated from each patient and amplified with oligonucleotide primers that flank the gene encoding p53. The DNA from each patient was sequenced and compared with the sequence of the wild-type gene (see next page). Note that the sequence shown is the non-template strand, not necessarily the strand that was altered during the original mutagenic event.

a. Do you think the mutations within the p53 gene are spontaneous or rather due to a mutagen? If the latter, then what's the identity of the mutagen? Why?

b. Argue for one of the following two propositions (Hint: What kind of mutation do you not find?):

 A. Mutation of p53 is a harmless byproduct of the process of tumorigenesis in skin cancer.

 B. Mutation of p53 is an important part of at least one route to skin cancer.
Mutations within p53 Gene from Human Carcinomas

Met Glu Glu Pro Gln Ser Asp Pro Ser Val Glu Pro Pro Leu Ser Gln Glu Thr Phe Ser Asp Leu Trp Lys
ATG GAG GAG CCG CAG TCA GAT CCT AGC GTC GAG CCC CCT CTG AST CAG GAA ACA TTG TCA GAC TTA CGG
C
Leu Leu Pro Glu Asn Asn Val Leu Ser Pro Leu Pro Ser Gln Ala Met Asp Asp Leu Met Leu Ser Pro Asp
CTA CCT CCT GAA AAC ACC TTC TCC CCC GTG CGG TCC CAA GCA ATG GAT CAT TTG TTG CTG TCC CGG GAC
A
Asp Ile Glu Glu Trr Phe Thr Glu Asp Pro Gly Asp Glu Ala Pro Arg Met Pro Glu Ala Ala Pro Arg
GAT ATT GAA CAA TGG TCA ACT GAA GAC CAA GTT CCA GAT GAA GCT GCC AGA ATGCCA GAG GCT GCC CCC
C
Val Ala Pro Ala Pro Ala Thr Pro Ala Pro Ala Pro Ser Trp Pro Ser Ser Ser
GTC CCT TCC CAG AAA ACC TAC CAG GCC AGC TAC GTC ACT TCT CTG ATC TTC CAT TCT GGC ACA GCC AGG
D
Ser Val Thr Cys Thr Tyr Ser Pro Ala Leu Asn Lys Met Phe Cys Glu Leu Ala Lys Thr Cys Pro Val Glu
TCT GTG ACT TCC TGG CCC GCC TCT ACC AAC AAG ATT TGG GAT GAC CTA CTG TTG CAG CC
C
Leu Trp Val Asp Ser Thr Pro Thr Val Arg Val Arg Met Ala Ile Tyr Glu Ser Glu His
CTG TGG GTT GAC TCC ACA CCC CGC GCC ACC GCCT GCC ATG GCC ATC TAC AAG CAG TCA AGC CAC
A
Met Thr Glu Val Val Arg Arg Cys Pro His His Glu Arg Cys Ser Asp Ser Asp Gly Leu Ala Pro Glu
ATG GAG GTT GAC CCG TCC CCC CAG CAT GAG CCG TGG TCA GAT AGC GAT GTG GCC CCT CCT CAG
A
His Leu Ile Arg Glu Gly Asn Leu Arg Val Glu Tyr Leu Asp Arg Asp Thr Phe Arg His Ser Val
CAT CTT ATC CGA GTG GAA GGA AAT TTG CGT GGT GAT CAT TTG GAT GAC AGA ACT TTT CTA CAG TAT
C
Val Val Pro Tyr Glu Pro Pro Glu Val Gly Ser Asp Cys Thr Thr Ile His Tyr Asn Tyr Met Cys Asn Ser
GTT GTG CCC TAT GAG CGG CCT GAG GTC ACT TCC ACC GCC ACC ACC ACC ATC CTG AAA GCC TGC TAT
A
Ser Cys Met Gly Met Asn Arg Arg Pro Ile Leu Thr Ile Ile Thr Leu Glu Asp Ser Ser Gly Asn Leu
TCC TGC ATG GCC GGC ATG AAG CAG CCC CCC CAG CAC TCT ACC ACC ATC ACA CTG GAA GAC TCC AGT
A
AA
Leu Gly Arg Asn Ser Phe Glu Val Arg Val Cys Ala Cys Pro Gly Arg Asp Arg Arg Thr Glu Glu Asn
CTG GGA CGG AAC AGC ATT GAT GGG GAT CCT GTT GTT GCC ATG CTT GAG GCC GAG CCC ACA GAG GAA GAT
T
AA
Leu Arg Lys Gly Glu Pro His His Glu Leu Pro Pro Gly Ser Thr Lys Arg Ala Leu Pro Asn Asn Thr
CTC CCC AAG AAA GGG GAG CAC CAG CAC GAG CTG CCC CCA GGG AGC ACT AAG CCA GCA CTG CCC ACC ACC
A
Ser Ser Ser Pro Glu Pro Lys Lys Pro Gly Glu Gly Tyr Phe Thr Leu Ala Leu Gly Asp Arg Gly Arg Glu
AGC TCC TCC CCC CAG CCA AAG AAA AAA CAG CTG GAT GGA GAA TAT TTG ACC CTG CAT TTC GAG GGT GAG
T
Arg Phe Glu Met Phe Arg Glu Leu Asn Glu Ala Leu Glu Leu Lys Asp Ala Glu Glu Lys Gly Pro Glu
CGC TCC GAG ATT TCC GTA GAG GCT GAT TCC GAG TGA AAA CCC GAA ACC GAT GGC GAT GAC CAG GCT
A
Gly Ser Arg Ala His Ser Ser His Leu Ser Lys Lys Gly Glu Ser Thr Ser Arg His Lys Lys Leu Met
GGG AGC AGG GCT TAC TCC AGC AAG GGC TAT ACC TCC AGC GAG TCA GGC TGG GAG
T
Phe Lys Thr Glu Gly Pro Asp Ser Asp
TTC AAG ACA GAA GGG CCT GAC TCA GAC

*p53 amino acid sequence is given above the DNA sequence from the nontemplate strand. Bases in bold below the sequence represent mutations found in fourteen separate carcinomas. Adjacent bases (e.g., AA or T-T) were found in the same carcinoma.
*** 13. You’ve hit upon an idea to reduce the incidence of lung cancer. Lung cancer is associated with the loss of p53 genes in cancerous tissue. You have cloned p53 and placed it in the DNA of adenovirus, a virus that can live within human cells, often with no ill effect but sometimes causing mild respiratory infections. You spray the recombinant virus into the lungs of several heavy smokers at risk for lung cancer but who are at present tumor-free. After allowing time for infection, you isolate RNA and DNA from the lungs of the volunteers and learn: (a) only 50% of the cells in their lung epithelial tissue has been infected with the virus, and (b) for some reason the p53 gene on the virus is not producing RNA.

a. Which of the following are appropriate responses:

A. Dismay. You were hoping that p53 would be expressed at a very high level that could not be overcome by subsequent mutation.

B. Mild amusement. The expression of p53 doesn’t matter. A cell still needs to mutate all cellular copies of p53 in order to become tumorigenic.

C. Disappointment. Lack of expression of p53 means that your idea won’t work.

D. Disgust. Whenever you inhale adenovirus, every cell in your lungs gets infected and you get a world-beating cold. Now, the cells that have escaped the virus remain at high risk to mutate the two cellular copies of p53 and become tumorigenic.

E. Frustration. You were hoping that the p53 gene you introduced would replace nonfunctional p53 genes.

To top it off, some time later a tumor is found in the lungs of one of the volunteers. DNA isolated from the cancerous tissue shows that 100% of its cells carry the adenovirus/ p53 DNA. All eyes turn to you.

b. Has your experiment somehow caused the tumor to occur? Can you think of some other way of explaining what has happened?

14. How likely are you to get cancer?

a. How likely is it that a cell in your body has a mutation in a gene encoding p53? Suppose that mutations arise solely from replication error, and errors occur at a rate of about 1 error per 10^9 bases per generation.

Strategy: estimate mutation rate for p53 per generation, then:

\[
\text{(Number of cells in body)} \times (\text{mutation rate of p53/generation}) \times \text{(generations)}
\]

a1. What is the mutation rate of p53 per generation?

Strategy: estimate number of mutable bases in p53, then:

\[
\text{Mutation rate of p53/generation} = \frac{\text{mutations per base per generation}}{\text{mutable bases in p53}}
\]

a1.1. How many mutable bases in p53?

Strategy: estimate size of p53, then estimate fraction of bases which, when mutated, will affect function of p53.

- What is the size of p53?

- What is the fraction of bases which, when mutated will affect the function of p53?
 Strategy: make an estimate based on shards of knowledge
 \(\Sigma \) Most mutations in 3rd position of a codon are silent
 \(\Sigma \) Many mutations lead to substitutions of similar amino acids

a2. How many cells are in your body?
Strategy: \((\text{Your volume})/(\text{volume per cell})\) = number of cells

a2.1 What's the volume of a cell?
Strategy: approximate a cell as a cube, then volume of cell \(\approx (\text{estimated length of cell})^3 \)

- What's the length of a typical human cell?
 Strategy: make an estimate based on shards of knowledge
 \(\Sigma \) You can't see most human cells without a microscope (what size is the limit of human detection?)
 \(\Sigma \) You can see human cells easily with even a crude microscope (say 100x magnification). So 100x the length of the cell is significantly greater than the limit of human detection.
 \(\Sigma \) Even the smallest human cells are several times bigger than run-of-the-mill bacteria like E. coli.
 \(\Sigma \) You can just barely see E. coli with 100x magnification. So 100x the length of E. coli is barely greater than the limit of human detection.

a2.2. What's the volume of you?
Strategy: volume = weight / density

- How much do you weigh?

- What is your approximate density? (Do you float or sink in water? How far away are you from equal density?)

a3. How many generations worth of cells are in your body?
Strategy: Don't know. Simplify by considering only one generation. Worry about other generations later if necessary.

Things look bleak. Fortunately, getting a mutation in a p53 gene is not by itself very serious. A specific cell needs to lose both copies of the gene. Furthermore, the cell has many ways of protecting itself against unbridled growth. Many genes must be lost to make a cell that divides without regulation. Suppose a single cell must suffer mutations in both alleles of a half-dozen genes in order to lead to a tumor.
b. How likely is it that your body will have such a cell in your lifetime?

Strategy: Calculate the probability that a one allele will suffer a mutation over the estimated number of generations of a cell, then multiply that number by itself as many times as there are alleles to be mutated.

b2. How many generations worth of cells do you have in a lifetime?

Strategy: No clue how to get a reasonable number. Go instead for a maximum number. Presume that every cell divides once a day (generous) and that the number of cells remains constant from birth to death (gross overestimate). Estimate a lifespan.

b1. What's the probability that one allele will suffer a mutation over a lifetime of cell generations?

Strategy: Presume that all alleles are about the size and mutability of p53. Multiply the mutation rate per base per generation by the number of mutable bases of p53, then multiply the product by the maximum number of cell generations over a lifetime.

If you've gotten this far, you may conclude that getting cancer is wildly unlikely. No person in the history of the universe should have been so unlucky.

c. How do you explain the fact that cancer exists? What in the nature of cancer shoots a hole in the above calculation?

d. From the insights gained above, comment on a popular argument against evolution of life from nonliving antecedents that runs something like this:

...how do you get the specific sequences necessary in proteins and in DNA? Consider proteins: the sequence of amino acids determines the way the molecule will "fold up", which gives it physical properties. For a particular function, an exact sequence is required. What are the odds of this occurring by accident? The odds of forming a specific molecule with 100 amino acids is \((1/20)^{100} = 10^{130}\) (the number 10 with 130 zeros following it) to 1. Forget it!^{3}

^{3}Creation Science home page: http://emporium.turnpike.net/C/cs/ol3.htm