Measurement of a possible signal for nitrogen starvation in a cyanobacterium-plant symbiosis OUTLINE

I. Introduction

- A. We rely heavily on nitrogenous fertilizers, and this causes big problems. Cost and ecology.
- B. Legumes don't need nitrogenous fertilizers, from symbioses with rhizobia. But they are minor players.
- C. How to extend N-fixation to major crops? Rhizobia are specific to legumes. *Nostoc* is a generalist, a more likely candidate.
- D. The host plant modifies *Nostoc* perception of starvation. Response by *Nostoc* to ammonia differs in free-living and symbiotic states
- E. α -ketoglutarate may play key role in perception of starvation.
- F. Li et al (2003) test of α -ketoglutarate as signal for N-starvation Introduction of α -ketoglutarate into *Nostoc* causes misperception of starvation.
- G. Maybe plants manipulate α -ketoglutarate in *Nostoc* to simulate starvation?
- II. Experiment
 - A. Summary of experiment: Measure α-ketoglutarate in Nostoc with biosensor
 - B. FRET biosensors as sensitive detectors of metabolites Principle behind method
 - C. Example of FRET use (Hires et al, 2008)Show spectra. Show biological utility (glutamate biosensor measures time course of neurotransmitter release)
 - D. Introduce biosensors used in experiment.
 No α-ketoglutarate biosensor! Use glutamate and glutamine biosensors instead.
 - E. Introduction of biosensors into Nostoc and Nostoc into plant
 - F. Measurement of fluorescence
- III. Discussion
 - A. Best possible results.

But even this isn't good enough: glutamate/glutamine isn't α -ketoglutarate

- B. Discussion of α-ketoglutarate biosensor
 Choice of base protein. Very time consuming.
- C. Problems with glutamate and glutamine biosensors
 - endogenous fluorescence
 - wrong sensitivity
 - activation by aspartate
 - dependence on ionic strength
- D. Inspirational final words