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BNFO301: Introduction to Bioinformatics 

Calculation of probability of rare events 

Perhaps the prime directive to genome analysis is Go forth and discover meaning. But how do 

you find meaning in a bunch of letters that make up a genome? As you'll recall from one of our 

previous adventures, Fuller et al (1984) noted four instances of the sequence 

TTAT[CA]CA[CA]A in the 540-bp region identified as the origin of replication of E. coli. 

Suppose that you didn't know that this sequence is important or even that the 540-bp region has 

an interesting function. Would you be surprised to find four instances of that sequence in the 

540 basepairs?  

This is what life is like in studying genomes. You look for a pattern in what at first seems like 

noise. You find a pattern and are so happy, you want to celebrate. But before you get too ecstatic, 

try this:  

SQ1. Display the first 100 nucleotides of the genome of Prochlorococcus marinus Med4 

(also known as Prochlorococcus marinus subsp Pastoris CCMP1986), nicknamed 

med4 in CyanoBIKE and CCMP1986 in PhAnToMe/BioBIKE. Do you see anything 

striking about it? (Hint: Look at the T's. See any clusters?) 

That's pretty remarkable, no? 

I. How to calculate the probability of multiple rare occurrences (Part 1) 

Or is it remarkable? By "remarkable", I mean something well beyond what you'd expect by 

chance. So, we have to know, what would you expect by chance? 

SQ2. Modifying SQ1, what is the probability of finding TTTT at a specific position? 

You might quickly crank out (1/4)*(1/4)*(1/4)*(1/4), arguing that starting at that specific 

position, n, 

 

the probability of T at coordinate n is ¼, the probability of T at coordinate n+1 is also ¼, and so 

on, and you just have to multiply the four probabilities together to get the joint probability that 

all four positions contain T. 

SQ3. What assumptions are you making in calculating the probability in this way? Are 

they valid? 

Well, you're way beyond that level of sophistication now. Leaving aside the question of whether 

the four positions are independent of one another,
1
 you wouldn't dream of presuming that all 

four nucleotides are equally likely.
2
  

SQ4. Determine the appropriate nucleotide frequencies for this calculation and recalculate 

the probability of TTTT at a specific position. 

You could readily calculate those frequencies using the tools you know from What is a Gene, but 

an easier way to do it is using the BioBIKE function GC-FRACTION-OF. This gives you the 

                                                 
1
 If you don't understand the significance of "independent", then see the presentation Probability and Genomes. 

2
 Of course you wouldn't. For one thing, you've completed Problem Set 1, problem 3. 
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http://www.people.vcu.edu/~elhaij/bnfo301-12/Units/Intro/probability-with-explanation.pps
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fraction of a sequence or set of sequences that are either G or C. From this, you can calculate the 

frequencies of all four nucleotides. 

But wait a second! What sequence(s) should you give GC-FRACTION-OF? You can ask for the 

GC-FRACTION of the entire Med4 genome, but perhaps it's significant that the possibly 

remarkable clustering of TTTT in the first 100 nucleotides occurred in a region that was not a 

gene. Does that make a difference? 

SQ5. Calculate the GC-FRACTION-OF the entire Med4 genome and also the GC-

FRACTION-OF just the INTERGENIC-SEQUENCES-OF Med4 (making use of the 

BioBIKE function of that name). Is there any significant difference in the nucleotide 

frequencies of the intergenic sequences relative to those of the entire genome? 

OK. Now you have possibly appropriate nucleotide frequencies and can calculate the probability 

of a single instance of TTTT at a specific position. Call this probability p. But p isn't good 

enough --  you didn't see just one instance. 

SQ6. What's the probability of finding all three of the TTTT sequences you observed in 

the first 100 nucleotides?  

You might think that the probability of one instance is p, so the probability of three simultaneous 

instances must be p
3
.  You'd have a stronger argument for that position if you were calculating 

the probability of TTTT at coordinate 14 AND coordinate 23 AND coordinate 78. But – be 

honest – you'd have been equally surprised if you had found TTTT at, say, coordinates 29, 47, 

and 88 or at any other three coordinates. There are lots of sets of three positions that would have 

surprised you. Lots... Hmmm, we need a bit more precision here.  

SQ7. Exactly how many ways are there of finding three instances of TTTT in 

100 nucleotides? For example, you could find them at coordinate 1, coordinate 2, and 

coordinate 3. Or you could find them at coordinate 1, coordinate 2, and coordinate 4. 

And so forth. How many possible starting coordinates are there? Within that set, 

how many subsets of three coordinates are there? 

In other words, how many ways are there of picking three coordinates from 97 of them? This, of 

course, is high school math – combinations. But who amongst us remembers the equation for 

calculating combinations? I'm talking about "How many ways are there of picking k objects from 

N total objects"?  

II. Aside: How to remember combinations 

You're going to remember combinations if I can help it, since you'll certainly have ample need 

for them in genome analysis. Let's consider a specific instance, one you can do by hand: How 

many ways are there of picking 2 objects from 5 objects? Never mind the math, just count them. 

SQ8. List in a systematic way all the ways of picking two numbers from the set (1 2 3 4 5), 

without repetitions. How many pairs did you get? 

If you like, you can check yourself by goint into CyanoBIKE and using the COMBINATIONS-

OF function. It may be convenient to display the result, one result per line: 
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Fig. 1. (A) Portion of listing of 

permutations of (1 2 3 4 5). 

(B) Graphic depiction of combi-

nations of 5 elements choosing 2 

(with repeats). 

This is fine for cases where you can write out all of the combinations, but usually this isn't 

practical. You're going to have to find a way to calculate it. Here's how, using the case where you 

know the answer. First, calculate all the ways you can permute the set (1 2 3 4 5).  To see how 

many there are, it might help again to write out all the possibilities. BioBIKE can help here: 

 

 

SQ9. How many permutations are there of that set of five numbers?  

Please don't count them. And don't look up a formula either. 

Instead, look at the numbers and see the formula. I'll help you 

with Fig. 1A, which shows only part of the listing of the 

permutations. If you look at the full listing, you'll see that the 

first column consists first of the group of permutations starting 

with 1, then those starting with 2, and so forth.  

SQ10. How many such groups are there? 

Focus on one of the groups. It doesn't matter which one. I chose 

the group that begins with 2. Within that group, there is a 

subgroup that begins with 1, another that begins with 3, and so 

forth. 

SQ11. How many such subgroups are there? 

Focus on one of the sub-subgroups. I chose the one beginning 

with 3. It has three sub-sub-subgroups, each of which has 2 sub-

sub-sub-subgroups, each of which has 1 line.  

SQ12. From this analysis, how many total lines are there?  

5 groups, each with 4 subgroups, each with 3 sub-subgroups, 

each with 2 sub-sub-subgroups, each with 1 line. Simple 

multiplication (or more compactly, 5!) and you’re there.
3
 

You can readily move from there to the number of combinations 

of two elements from 5 elements, as shown in Fig 1B, which 

shows all the possible combinations in the leftmost red box, all 

5! of them. 

…no, wait, there aren't as many as 5!, because many are listed 

twice. Consider (2 1). It's listed as many times as there are 

permutations of (3 4 5). And (2 3) is listed as many times as 

there are permutations of (1 4 5).  

SQ13. How many times is each pair listed? How many permutations are there of 3 

elements?  

If I collapse each group , for example collapsing ((2 1 3 4 5) (2 1 3 5 4)…) to a single line (2 1 (3 

4 5)) and do the same with all of the groups, I get what's shown in Fig 2.  

                                                 
3
 This strategy predates genomic analysis by a few thousand years. 

http://en.wikipedia.org/wiki/As_I_was_going_to_St_Ives
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Fig. 2. Combina-

tions of 5 elements 

choosing 2, par-

tially collapsed to 

remove repeats. 

 

SQ14. How many lines are there in Fig. 2. Use that number and the fact 

that there used to be 3! copies of each line before the collapse to 

recalculate the total number of lines in Fig. 1.  

But this isn't the end either, because there is still much double counting. For 

example, how many times does (1 2) appear (bearing in mind that (1 2) is no 

different from (2 1). In fact every pair is listed two times. Why two times? 

Because there are that many permutations of two elements. Cross out the 

duplicates and you end up the true number of combinations 

In brief, if you're interested in the number of combinations of 5 elements 

choosing two of them at a time, then you get them by listing the total number 

of permutations (5!) and dividing by the permutations of the two elements 

(2!) and the elements that are left (3!). 

SQ15. From this, come up with a general formula to obtain the 

combinations of N elements, choosing k of them at a time.  

Sure you know the formula, but take the time to say it while thinking of the 

process we went through, so that the formula becomes a summary of that 

process.  

III. How to calculate the probability of multiple rare occurrences (Part 2) 

Back to our problem. We calculated the probability of finding TTTT at a specific position – a 

small number. What we want is the probability of finding TTTT at three positions, any three 

positions within 100 nucleotides. At least in a naïve way, we know how to calculate the 

probability of finding TTTT at three specific positions and figure that we'd be home by 

multiplying this number by the number of combinations of three instances in the 100 nucleotides. 

Let's continue with this naïve analysis with the tools developed in Section II.  

SQ16 (=SQ7). Exactly how many ways are there of finding three instances of TTTT in 

100 nucleotides? For example, you could find them at coordinate 1, coordinate 2, and 

coordinate 3. Or you could find them at coordinate 1, coordinate 2, and coordinate 4. 

And so forth. How many possible starting coordinates are there? Within that set, 

how many subsets of three coordinates are there? 

SQ17.  Why did I claim (at the end of Section I) that there were 97 possible coordinates in 

100 where you could find TTTT? Consider, if there were only 4 nucleotides, how 

many possible coordinates would there be? 

So it seems we have our answer: 

          Probability of  

             3 TTTT in       = 

               100 bp 

You can read this as the probability of one placement of the three red TTTT's times the number 

of possible placements there are. …but wait a second! I said this is the probability of three 

TTTT's, but what about the black regions in between the red regions. There's nothing in my 

expression that excludes the possibility that another TTTT might sneak in. So it's not clear what 

1 100
TTTT

TTTT

TTTT
1 100

TTTT

TTTT

TTTT

 

97!

3! (97-3)!
p397!

3! (97-3)!
p3
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my expression means, but it's not the probability of precisely 3 TTTT's. To get that I have to add 

another factor that ensures that there are no additional TTTT's. 

SQ18.  If p is the probability that a given coordinate begins TTTT, then what is the 

probability that a given coordinate does not begin TTTT?
4
 

SQ19.  Suppose that 3 and only 3 positions begin TTTT. Then how many of the 97 total 

positions do not begin TTTT? Using your answer to SQ18, what is the probability 

that all of those positions simultaneously to not begin TTTT? 

So now we have: 

          Probability of  

       precisely 3 TTTT  = 

             in 100 bp 

SQ20.  Generalize this expression, replacing 97 with N (the total number of sites), 3 with k 

(the total number of hits), so that the expression contains no numbers, only symbols.  

Understand that there are many problems with this expression. For one thing, it matters what the 

sequence is. If TTTT is at coordinate 14, then another instance may be at coordinate 15, 

overlapping by three nucleotides. In fact, it's way more likely to be at coordinate 15 than some 

distant coordinate. However, if TTAA is at coordinate 14, then there is no possibility of TTAA 

appearing at coordinate 15. So there aren't necessarily 97 possible coordinates. Some, but not all, 

of the problems go away as p, the probability of getting a hit gets smaller and smaller. 

The expression above is called a binomial coefficient, because it is one term in the expansion of 

(x + y)
N
, where in this case x = p, and y = (1-p). 

IV. Practical calculation of the probability of multiple rare occurrences: Poisson expression  

We now have a general expression that works best when p, the probability of a hit,  

          Probability of  

       precisely k hits  = 

             in N bp 

where p, as usual, is the probability of one hit. As it stands, this equation is not very useful, as it 

doesn't work well with large values for N, and when you're dealing with genomes, N will often 

have very large values. The equation won't be very useful so long as it contains N. Fortunately, it 

can be simplified in a few steps that whisk N away, and only one step requires anything more 

than middle school math (that steps requires the first semester of calculus). 

First, p is replaced by a different entity that is sometimes easier to measure, the expected number 

of hits, λ, where λ = N p. This should make sense… here, let's try it. 

SQ21.  If each lottery ticket has a 1 in a million chance of success, and 10 million people buy 

lottery tickets, what is the expected number of winners? Cast this problem in terms 

of λ, N, and p.  

Substituting for p: 

                                                 
4
 If you don't understand how to do this, then see the presentation Probability and Genomes. 
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N!

k! (N-k)!
pk (1 – p)N-kN!

k! (N-k)!
pk (1 – p)N-k

 

http://www.people.vcu.edu/~elhaij/bnfo301-12/Units/Intro/probability-with-explanation.pps
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          Probability of  

       precisely k hits  =                                                      = 

             in N bp 

Now we come to the first trick: simplifying some of those factorials:  

  N! = N · (N-1) · (N-2) · …  · ((N-k)+1) · (N-k) · ((N-k)-1) · ((N-k)-2) · …  · 2 · 1 

                 = N · (N-1) · (N-2) · …  · ((N-k)+1) · (N-k)! 

(and since N is way bigger than k:
5
) 

                     1         2              3                              k 
                 ≈ N ·  N      ·  N  

 
   

 
· …  ·   N            · (N-k)! 

                 = N
k
                                                

 
  · (N-k)! 

Replacing N! 

          Probability of  

       precisely k hits  =                                                      = 

             in N bp 

Almost all the N's have disappeared! Our focus turns to the last one. Simplifying (1 – λ/N)
N-k

 may 

not look very promising, until you recall a famous word problem: 

Suppose you have a bank account that pays you an interest of r and that interest is 

compounded 2 times a year. What is the effective interest? What if it is compounded 4 

times a year? 12 times a year? 365 times a year? Continuously? 

Such problems are solved with the following equation: 

$ at end of year = principle (1 + r / 1)    [if not compounded]  

                          = principle (1 + r / 2)
2
  [if compounded twice a year] 

                          = principle (1 + r / 4)
4
  [if compounded four times a year] 

                          = principle (1 + r / n)
 n

 [if compounded n times a year] 

Using L'Hospital's rule (or a calculator), you can show that as n goes to infinity, the expression 

has a limit of: 

$ at end of year = principle
  
· e 

r             
    [if compounded continuously (n  infinity)] 

Note that the key factor in the problem is the same form as the problematic factor in our 

expression, so long as r is taken to be -λ and N and N-k go to infinity. The factor can therefore be 

replaced by e
-λ

! This gives the final result: 

          Probability of  

       precisely k hits  =                                             

             in N bp 

To remind you, k is the number of hits (in our case 3), and λ is the expected number of hits (in 

our case 97 p). It's all easy for a calculator to handle because there are no huge numbers 

anywhere. 

SQ22.  Using this equation, calculate the probability of finding precisely 3 TTTT's in the 

first 100 nucleotides of Prochlorococcus.  

                                                 
5
 Plug in some numbers and you'll see that it's true, like N = 10

6
 and k = 3. 
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k! (N-k)!
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(λ/N)k (1 – λ/N)N-k
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V. Who needs math? Getting answers by computer simulation 

There may be days where you don't remember compound interest or how to calculate 

combinations. It happens to everyone. In such cases, consider turning to your friend, the 

computer. If you can create a plausible computer model for your problem, then let it replace the 

math. 

SQ23.  Recall your goal: You want to know what is the probability of observing what you in 

fact observed – 3 instances of TTTT's in the first 100 nucleotides of Prochlorococcus 

– but in 100 random nucleotides instead. If you're going to model this on the 

computer, what specific tasks will you need to be able to accomplish? 

BioBIKE gives you tools that make simulating this sort of problem very easy. First, you're going 

to need 100 random nucleotides. Go to the ALL menu and bring into the workspace the 

RANDOM-DNA function, then execute it. In a second you'll get a sequence in the Result pane 

(though not all of it will be visible). 

SQ24.  How does this sequence compare to the first 100 nucleotides of Procholococcus. 

You'll want to look at least at its length and its nucleotide composition. 

The notion of "random DNA sequence" is surprisingly difficult to define. The sequence you're 

looking at has approximately the same frequencies of nucleotides. As such, it's nothing at all like 

the Prochlorococcus genome, and it would be a very poor random DNA sequence to use for 

comparison. Perhaps you want a random sequence that matches the nucleotide frequencies of the 

Prochlorococcus genome. Or maybe matches those of the intergenic sequences of 

Prochlorococcus. Or perhaps those of this particular intergenic sequence or this particular 100-nt 

region. For the sake of simplicity, let's say you want a random sequence like the one you were 

looking at, i.e. the first 100 nucleotides of the genome. Now look at the Options for RANDOM-

DNA and note with glee that there is an option called LIKE. If you give it a sequence or set of 

sequences (or even an entire organism), it will create a piece of DNA the same length and 

nucleotide composition but different sequence. 

SQ25.  Do an experiment, getting the COUNT-OF the number of TTTT's in a RANDOM-

DNA sequence LIKE the first 100 nucleotides of Prochlorococcus. How many did 

you count? Try it again… now how many? 

Since the sequence you're examining is made at random each time, you may get a different 

answer each time you run the function. The last step is to repeat the experiment many times and 

get a COUNT-OF how many times you get 3 instances of TTTT. The REPEAT-FUNCTION 

function allows you to do this: 

 

 

Drag the function you made to count TTTT's in the random sequence into the function box. Then 

specify in the number box how many times you want to do the experiment. Then execute the 

function.  

SQ26.  How close does your experimental value come to the theoretical value you calculated 

in the last section? 

SQ27.  How remarkable do you think is the occurrence of the TTTT's? 

 


