## Journey into Clustered Repeats of Bacterial Genomes of the Pseudomonas Order

## Introduction:

In Biology we are usually just thrown information about how processes work and how certain actions of an organism are regulated. Very rarely do we actually get a chance to explore deeper into the structures that cause these points of regulation. Palindromic sequences are very abundant in genomes of bacteria. These palindromic sequences can range from any size and are often important in specific steps of gene transcription, and protein binding sites. I wanted to get a bit deeper than that, so I looked at clustered repeats.

Clustered repeats is a very broad and general term for sequences of nucleotides that are often repeated throughout the genome of a bacterium. This whole group is composed of sequences identified such as repetitive extragenic palindromic sequences (REPs), clustered regularly interspaced short palindromic repeats (CRISPRs), bacterial interspersed mosaic elements (BIME), and enterobacterial repetitive intergenic consensus sequences (ERICs) just to name a few. The history of how all of these clustered repeats came about in our modern day bacteria in such large numbers is still widely unknown. Some of these repeats have been more researched such as CRISPRs, while some still have lots of mystery surrounding their purpose and existence such as REPs.

CRISPRs in particular tend to diverge very quickly among species. [3]. REPs are usually very species specific but can share similar repeated elements. [1]. Both of these sequences are capable of acting as regulatory sites for a variety of functions such as transcriptional terminators, specific protein binding sites, and structure stabilizers. This is because many of these types of clustered repeats have a very unique trait in that they are palindromes and are capable of forming into stem-loop-structures or hair-pin structures by pairing up the nucleotides to their compliments on the same strand. [2].

These clustered repeats have been found extensively in Enterobacteriaecae which encompasses organisms such as E. coli and its many strains. I first started off with a known case of clustered repeated called REPs. It was the first time these REPs were found in bacteria outside of Enterobacteriaecae.[1]. Within the Pseudomondas order I was able to find the clustered repeat that they found in P. putida KT2440. However, as my journey into finding these clustered repeats progressed, my findings were quite different than I expected. My ultimate question was whether these repeats shared any conserved regions among the rest of the species in the same order?

## Methods and Results :

In PhAnToMe/BIOBike, I first loaded the COUNTS-OF-K-MERS function into BioBike. I first used the function to find the clustered repeat found in P. putida KT2440 by
 looking for the most repeated sequence and then using MATCHES-OF-PATTERN to find the sequence itself in the genome. I was able to find the sequence and note

```
COUNT
    73
    7 3
    73
    CGCGCTCGCGAAGAGCGCG
        CGCTCGCGAAGAGCGCGAC
    GCGCTCGCGAAGAGCGCGA
    AATCCACGCGCTCGCGAAG
    ATCCACGCGCTCGCGAAGA
        CAATCCACGCGCTCGCGAA
        CCACGCGCTCGCGAZGAGC
    GTTTCAATCCACGCGCTCG
    TCAATCCACGCGCTCGCGA
        TCCACGCGCTCGCGAAGAG
        TTCAATCCACGCGCTCGCG
        TTTCAATCCACGCGCTCGC
```

Figure 1: The COUNT-OF-K-MERS output for C. japonicus showing the most highly repeated sequences in the genome. The number on the left under count indicates how many times the sequence under word came up within the genome. that it was outside of genes and that it repeated 810 times throughout the genome. So after figuring out that my method worked for finding a clustered sequence, I used the COUNTS-OF-K-MERS function again to find the most repeated sequences throughout the genome of C. japonicus. I used this organism because it is in the same order as the P . putida and was readily available in BioBike. I wanted to determine if the conserved regions in P . putida would be found in any repeats found in C . japonicus. I chose a window size of 19 because these clustered repeats are generally from 20 to 40 nucleotide repeats so I felt that 19 would be a good number to encompass a broad range of possibilities of the repeats and also because the program wouldn't work for any number past 20 . I looked at the top results and found them to repeat 72 times in the genome of C . japonicus which can be seen in Figure 1.

I ran a MATCHES-OF-PATTERN of the sequence circled in red in Figure 1 and found there to be the same 72 repeated sequences in the genome of C . japonicus. The chances of a specific 19 nucleotide sequence occurring the genome size of C . japonicus is about $3.63 \times 10^{-12}$ in this genome size because the ratios of $\mathrm{A}, \mathrm{G}, \mathrm{C}$, and T are all about $1 / 4$. So it was highly unlikely that this sequence came about by chance. The results of the first search can be seen in the Figure 2 Appendix.

Something that was interesting about this sequence was that they were palindromic sequences with a 7-nucleotide linker. It actually looks like it could form a stem-loop-structure or even a hairpin structure because of this. I didn't realize until I looked more closely that the sequence being repeated actually extended 11-nucleotides downstream(to the left) and 2 nucleotides upstream (to the left) with those sequence parts being conserved $100 \%$ in the other 71 repeats. At first I also thought that this was an REP because the sequence had the general structure of an REP, two tandem inverted repeats separated by a linker with most of these repeats
outside of genes (extragenic). However, what caught my eye was that every single one of these repeats was separated by about 34 nucleotides and were only located in this one specific portion of the genome. The full repeated sequence can be seen in Appendix Figure 3.

I did a BLASTN search of this repeated sequence (found in Appendix Figure 3) with all of the organisms in the Pseudomonas order in order to determine if this sequence was conserved in any other species. I picked to run with the somewhat similar matches just because I know that many of these clustered sequences are species-specific. One of the organisms that I was interested in was A. vinelandii, however the organism's genome is not complete on BioBike so I looked up the specific strain that I thought had a lot of matches to the sequence I was looking for. Then I performed a MATCHES-OF-PATTERN to see if I could get the same matches that I did on the blast search.


It was interesting to see that there were actually many matches ( 47 to be exact) to this sequence in this organism each with a conserved 8 nucleotide sequence similar to the sequence found in C. japonicus. All of the repeats also ranged between 50-60 nucleotides in distance from each other. However, there doesn't seem to be a palindromic sequence within this repeat. Since all of these matches seemed to be perfect matches, I wanted to expand it and see how long this repeat actually was. Through an unpractical, but working way, I just placed the rest of the repeat in and extended the "*" until it stopped repeating perfectly. The "*" denotes an unspecified nucleotide. When the function iterates through the genome, only the matches containing the specific nucleotides written will be found and all of the "*" can be any other nucleotide.


The perfect repeat was 32 nucleotides long with a gap between each repeat ranging from 30 to 35 nucleotides on average. Again, it still contained the conserved sequence "GTTTCAATCCAC" found at the beginning of the sequence in C. japonicus as well. The results of this search can be found in Appendix Figure 5.

Most of the Pseudmonas did not seem to have good matches except for P. stutzeri according to the blast output. However, when I tried to search for it at first there didn't seem to be any matches. I relooked at it again and I realized that it was actually located on the opposite strand.


So after taking the complement of the sequence I wanted to try to see if I could locate these repeats. What surprised me was that the repeats were exactly the same as the ones found in C. japonicus except just on the opposite strand.

I wanted to see if this sequence occurred outside of the Pseudomonas so I went up one level to see if it occurred in any organisms in the Moraxellaceae. I did the MATCHES-OFPATTERN on Acinetobacter-sp-ADP1 as well as psychrobacter-sp-prwf-1 and could not find the sequence or its compliment. So then I wanted to determine if they had these repeats of their own that I could compare. So again I did COUNTS-OF-K-MERS on both and looked at the most repeated sequences. What was interesting about the Acinetobacter-sp-ADP1 was that it went through many different genes with unknown functions. This repeated sequence can be found in Appendix Figure 8. Acientobacter-sp-ADP1 had about 32 nucleotides separating between each of the repeats and occurred 90 times, which was a lot more frequent than the previous organisms that I looked at. None of the repeats seemed to be significantly similar to anything found in psychobacter-sp-prwf-1.

## Conclusion and Future Plans:

Based on the data that was collected, I realized that the original clustered repeat that I was looking for did not share any conserved regions in the clustered repeats found in C. japonicus, A. vinelandii, or P. stutzeri. However, I did find conserved regions present in the Pseudomondas order. I also believe that the repeated sequence found in C. japonicus that I had found first is actually a CRISPRs and not an REP. I believe this is because of the way it is oriented one after another and also because the sequence happens to lie next to a Cas(CRISPR associated sequence). [3]. The same thing could be said about the repeated sequence in A. vinelandii, however I did not see a Cas near the repeated sequence in P. stutzeri. Another interesting thing that I observed was that all of the repeats that I found were also exactly 32 nucleotides in length. The lengths of the gaps between each repeat were different, but I found it quite interesting that the size of the repeat itself was conserved. This could mean they share a similar origin and could definitely point to how the clustered repeat came about in the genomes of their respective bacterial species. I hypothesized that there would be conserved regions of clustered repeats within the Pseudomonas order and I was able to observe some of those conserved regions. However, I also wanted to know whether or not these regions would be conserved specifically in this group of organisms or could it be found elsewhere. So when I looked at the organisms in Moraxellaceae, I did not find a repeat that was conserved between the two organisms nor did I find a similarity with those found in Pseudomondas. It has been said that most of these repeated sequences don't share similarities to others and are species specific. However, I was able to find at least some conserved regions of repeated sequences within the Pseudomondas order.

In the near future, I would hope to determine where these sequences come from. It has been stated in past studies that these could have come from transposases or even from phages. If I were to continue this research, I would look into what phages, if any, would have similar sequences to the one found in C. japonicus. I feel like this would be able to help the scientific community be one step closer to locating another origin of these repeated sequences in bacterial genomes.

| 2797491 | 2797509 | CGCGCT | CGCGA | GCGCG |
| :---: | :---: | :---: | :---: | :---: |
| 2797557 | 2797575 | CGCGCI | GGCGA | AGCGCG |
| 2797625 | 2797643 | CGCGCI | GGCGA | AGCGCG |
| 2797690 | 2797708 | CGCGCI | GGCGZ | AGCGCG |
| 2797757 | 2797775 | CGCGCI | EGCGA | AGCGCG |
| 2797823 | 2797841 | CGCGCI | GGCGA | AGCGCG |
| 2797889 | 2797907 | CGCGCI | GGCGA | AGCGCG |
| 2797955 | 2797973 | CGCGCI | -GCGR | CGCG |
| 2798021 | 2798039 | CGCGCI | EGCGA | AGCGCG |
| 2798087 | 2798105 | CGCGCI | -GCGR | GCGCG |
| 2798154 | 2798172 | CGCGCI | GGCGI | CG |
| 2798222 | 2798240 | CGCGCI | GCG | GCG |
| 2798288 | 2798306 | CGCGCI | GGCGA | AGCGCG |
| 2798354 | 2798372 | CGCGCI | GGCGA | AGCGCG |
| 2798421 | 2798439 | CGCGCI | GGCGA | GCGCG |
| 2798487 | 2798505 | CGCGCI | GGCGA | CGCG |
| 2798553 | 2798571 | CGCGCI | GGCGA | AGCGCG |
| 2798619 | 2798637 | CGCGCI | -GCGz | CGCG |
| 2798685 | 2798703 | CGCGCI | GC | GCG |
| 2798752 | 2798770 | CGCGCI | GGCG | GCG |
| 2798818 | 2798836 | CGCGCI | -GCGI | GCG |
| 2798885 | 2798903 | CGCGCI | -GCGZ | GCGCG |
| 2798952 | 2798970 | CGCGCI | GGCGA | CGCG |
| 2799019 | 2799037 | CGCGCI | GGCGA | CGCG |
| 2799085 | 2799103 | CGCGCI | EGCGA | AGCGCG |
| 2799151 | 2799169 | CGCGCI | GGCGA | CGCG |
| 2799217 | 2799235 | CGCGCI | GGCGA | GCG |
| 2799282 | 2799300 | CGCGCI | GGCGA | GCGCG |
| 2799348 | 2799366 | CGCGCI | -GCGI | GCG |
| 2799415 | 2799433 | CGCGCI | GGCGA | CGCG |
| 2799481 | 2799499 | CGCGCI | -GCGZ | CGCG |
| 2799547 | 2799565 | CGCGCI | GGCGA | GCGCG |
| 2799613 | 2799631 | CGCGCI | GGCGA | AGCGCG |
| 2799679 | 2799697 | CGCGCI | GGCGA | CGCG |
| 2799746 | 2799764 | CGCGCI | GGCGA | CGCG |
| 2799812 | 2799830 | CGCGCI | EGCGA | AGCGCG |
| 2799878 | 2799896 | CGCGCI | GGCG | GCGCG |
| 2799944 | 2799962 | CGCGCI | GGCGA | CGCG |
| 2800010 | 2800028 | CGCGCI | -GCGR | CGCG |
| 2800076 | 2800094 | CGCGCI | EGCGA | CGCG |
| 2800142 | 2800160 | CGCGCI | GGCGA | CGCG |
| 2800208 | 2800226 | CGCGCI | GGCGA | CGCG |
| 2800273 | 2800291 | CGCGCI | GGCGA | GCGCG |
| 2800339 | 2800357 | CG | CGC | GCG |
| 2800406 | 2800424 | CG | CGCGR | CGC |
| 2800471 | 2800489 | CGCGCI | CGCGZ | GC\% |
| 2800536 | 2800554 | CGCGC] | CGCGR | CGCG |
| 2800601 | 2800619 | CGCGC? | CGCGR | GCGC\% |
| 2800668 | 2800686 | CGCGC | CGCGR | GCGC |
| 2800735 | 2800753 | CGCGC | CGCG | CGC |
| 2800802 | 2800820 | CGCGC | CGCGR | GCGCO |
| 2800868 | 2800886 | CGCGC | CGCG | GC\% |
| 2800934 | 2800952 | CGCGCI | CGCGA | AGCGCG |
| 2801000 | 2801018 | CGCGCT | EGCGA | AGCGCG |
| 2801066 | 2801084 | CGCGCI | EGCGA | AGCGCG |
| 2801132 | 2801150 | CGCGCI | EGCGA | AGCGCG |
| 2801198 | 2801216 | CGCGCI | EGCGA | GCGCG |
| 2801265 | 2801283 | CGCGCI | EGCGA | AGCGCG |
| 2801332 | 2801350 | CGCGCI | EGCGA | AGCGCG |
| 2801398 | 2801416 | CGCGCI | EGCGA | AGCGCG |
| 2801465 | 2801483 | CGCGCI | EGCGA | AGCGCG |
| 2801532 | 2801550 | CGCGCI | EGCGA | AGCGCG |
| 2801598 | 2801616 | CGCGCI | EGCGA | GCGCG |
| 2801664 | 2801682 | CGCGCI | EGCGA | AGCGCG |
| 2801730 | 2801748 | CGCGCI | EGCGA | AGCGCG |
| 2801796 | 2801814 | CGCGCI | GGCGA | AGCGCG |
| 2801862 | 2801880 | CGCGCI | EGCGA | AGCGCG |
| 2801929 | 2801947 | CGCGCI | EGCGA | AGCGCG |
| 2801994 | 2802012 | CGCGCI | EGCGA | AGCGCG |
| 2802059 | 2802077 | CGCGCI | EGCGA | AGCGCG |
| 2802125 | 2802143 | CGCGCI | EGCGA | AGCGCG |
| 2802191 | 2802209 | CGCGCI | EGCGA | AGCGCG |
| 2802258 | 2802276 | CGCGCI | CgCga | AGCGCG |

> This was just the original MATCHES-OFPATTERN search that I used to figure out where in the genome the repeated sequence was located. The reason why I searched for this specific sequence at first was because I was originally looking for two inverted repeats with a variable-sized linker in between.

> As you can see in the figure to the left, the palindromic parts are circled in blue while the linker is circled in red.

APPENDIX: Figure 2: C. japonicus MATCHES-OF-PATTERN output

## Figure 3: C. japonicus Sequence

2797546 GGAGGAGTTTGTAAGAGAGCAGGAGAGGGATAGGGTAATAGCTGCCAATTAAATACCACT 2797606 ACTCACGCGCTCGCGAAGAGCGCGACACTGAAACTGGCTCGCACGGCTCGCGCAGTACAA 2797666 GTTTCAATCCACGCGCTCGCGAAGAGCGCGACTGTAATCAACGACCGGGCTTTCTGCTCG 2797726 ATACCCTCGTTTCAATCCACGCGCTCGCGAAGAGCGCGACGCAGCGGCAGATGGTTTCTT 2797786 CCTGGCCGGTTTTGTTTCAATCCACGCGCTCGCGAAGAGCGCGACCCGGGAGCGCCGTTG 2797846 GGCGCGGGACCCCGTGAGCGGTTTCAATCCACGCGCTCGCGAAGAGCGCGACTGGGTTTA 2797906 ACTGCTGGTGCAGATGCTCATTGAGTGTTTCAATCCACGCGCTCGCGAAGAGCGCGACCG 2797966 ATGCCGCGTAAGCGAACCTTTACCCTTGAGCAGTTTCAATCCACGCGCTCGCGAAGAGCG 2798026 CGACCGGCGCTGGTAGTCGTACAGGGGCAATGCTGGCTGTTTCAATCCACGCGCTCGCGA 2798086 AGAGCGCGACGCATAACCAGCTGCCAACCTTTGAGGTGTTATATGTTTCAATCCACGCGC 2798146 TCGCGAAGAGCGCGACGCACCCGCTCGGCATCGGTACCAACAATTGTTGAGTTTCAATCC 2798206 ACGCGCTCGCGAAGAGCGCGACCACCTGTGGTGGGCTAGATGCGACTGCGGGAACGAGTT 2798266 TCAATCCACGCGCTCGCGAAGAGCGCGACGTCCGCGAGGATCTGCGCTGTACGGGTGTAG 2798326 TTCTCGTTTCAATCCACGCGCTCGCGAAGAGCGCGACTTTTAGACTGCAACGCAAAACAA 2798386 ATTTGCGTGGAGTTTCAATCCACGCGCTCGCGAAGAGCGCGACCCGCCAAGCAATCCACG 2798446 TTTGTCACCGAATATCTGTTTCAATCCACGCGCTCGCGAAGAGCGCGACGGACAACATCC 2798506 GGTGCTTTCAGCTTTCATCCACAGGTTTCAATCCACGCGCTCGCGAAGAGCGCGACTTCT 2798566 TGATGCTTTACCAGGGCCACTTTGCTCCCTGTTTCAATCCACGCGCTCGCGAAGAGCGCG 2798626 ACCATTAAATTCAGGGCAGAGAGCAACACCACCTATGTTTCAATCCACGCGCTCGCGAAG 2798686 AGCGCGACTCGATCAATAGATAGGTTAACATCTCGCCGAGTCGTTTCAATCCACGCGCTC 2798746 GCGAAGAGCGCGACCGCTGCGCTTTTTTGCCCTCGGCAAAATTAGCCGGTTTCAATCCAC 2798806 GCGCTCGCGAAGAGCGCGACCCCTTGGCGCGCTTTATAGACTACTCGACCTGTAGGTTTC 2798866 AATCCACGCGCTCGCGAAGAGCGCGACAACCGTATCACTGTCGGGTAGTCGTTTTTATTA 2798926 CGTTTCAATCCACGCGCTCGCGAAGAGCGCGACCAATCATGGCGGCTGCCAATAATCAAT 2798986 TAACGCCTGTTTCAATCCACGCGCTCGCGAAGAGCGCGACGGTATCAAGCCGCTGGCAAA 2799046 TGCTGCAAAAGCTGTGTTTCAATCCACGCGCTCGCGAAGAGCGCGACTATCCAATTTCGA 2799106 TTTACTCCGACCCATACATGAAGTTTCAATCCACGCGCTCGCGAAGAGCGCGACTTCGGG 2799166 TTAATACCGCACCGACAGATATACCGGTGTTTCAATCCACGCGCTCGCGAAGAGCGCGAC 2799226 GCGCTTTAATGATTCTACGCGTGACTGATATGCAGTTTCAATCCACGCGCTCGCGAAGAG 2799286 CGCGACTGCGCTACCCAGGTGAGCCGTCTGCACTCACCTGGTTTCAATCCACGCGCTCGC 2799346 GAAGAGCGCGACTTATAATCCGCCGTGCCTGTCTCCAGGTAGACCGTTTCAATCCACGCG 2799406 CTCGCGAAGAGCGCGACACTTTAGCGATGGCAACCAGAACATCAACAACAAGTTTCAATC 2799466 CACGCGCTCGCGAAGAGCGCGACGGCAATTCCTCTACATGATCGATGACGTACCTCCTGT 2799526 TTCAATCCACGCGCTCGCGAAGAGCGCGACTTGTGCGCGTTTACGCTCAGCGGCAGACAT 2799586 GGCAGTTTCAATCCACGCGCTCGCGAAGAGCGCGACCAAAAGTGTTTAAGGGGTAGGGTA 2799646 TGTTTATTCTGTTTCAATCCACGCGCTCGCGAAGAGCGCGACATCTGTTCGCGGCTATCG 2799706 ATCTGGCCAATCCCTGGTTTCAATCCACGCGCTCGCGAAGAGCGCGACGTGTGGTGGCCG 2799766 TTGGCCTGGTGGCGTGGGCATTGTTTCAATCCACGCGCTCGCGAAGAGCGCGACCACATT 2799826 AACCAGAGAAAACTTGGTGATGTCACAGGGTTTCAATCCACGCGCTCGCGAAGAGCGCGA 2799886 CGTTCAGCGTGTATTGATTCCTGCACTGCAAGCGGGTTTCAATCCACGCGCTCGCGAAGA 2799946 GCGCGACACATGTACCCAAAGAGGCTACCTATTTGCTGGATGTTTCAATCCACGCGCTCG 2800006 CGAAGAGCGCGACGCGTATCCATAACACGGCCACTGGGCACAAGAATGTTTCAATCCACG 2800066 CGCTCGCGAAGAGCGCGACCCGGCTGGATGACATTACGCATTTGATTCATGGTGTTTCAA 2800126 TCCACGCGCTCGCGAAGAGCGCGACATTTATGCGCGTATGGTGTGGGGGCTCGACAAGTG 2800186 TTTCAATCCACGCGCTCGCGAAGAGCGCGACTGGTGTTCAGGGATTCGCAGCTAAAGAGA 2800246 GGCAAGTTTCAATCCACGCGCTCGCGAAGAGCGCGACTTTCTTATCCCTTGGTGTCAATT 2800306 TCAATATTAATGTTTCAATCCACGCGCTCGCGAAGAGCGCGACTTACAAGCGGATCTTTG 2800366 TTGTTGTTGAAATACAGTTTCAATCCACGCGCTCGCGAAGAGCGCGACCTGGTAGAGACT

2800426 GCAGCCGCAGAAACCCTGTGCGGTTTCAATCCACGCGCTCGCGAAGAGCGCGACCAGGTG 2800486 TCGGGCTCAGAGGGTGATATAGGGTCACTGTTTCAATCCACGCGCTCGCGAAGAGCGCGA 2800546 CCAAGGGGATCGATATTAGTGTTACCGATGCAGTGTTTCAATCCACGCGCTCGCGAAGAG 2800606 CGCGACCCACCAAGATCGCTTAAAGATTTTTTGGCGTTAGTTTCAATCCACGCGCTCGCG 2800666 AAGAGCGCGACCTTTAGGTTTGCCCTAACTCCAAGCCTTTCTGAGTTTCAATCCACGCGC 2800726 TCGCGAAGAGCGCGACTTCGCCCGCTTCGGTCGCTTTGCCGATAATCGCATGTTTCAATC 2800786 CACGCGCTCGCGAAGAGCGCGACTCGGAATGCTTGGTATTGCTGCGGTCGCAGAACTTGT 2800846 TTCAATCCACGCGCTCGCGAAGAGCGCGACACGGCTTCAGCTATTGACTCGTCACCGGTG 2800906 CGGCTGTTTCAATCCACGCGCTCGCGAAGAGCGCGACCTGAAACATACCTTCGCGCCAAG 2800966 CAAATGCTTTTGTTTCAATCCACGCGCTCGCGAAGAGCGCGACCAGATCGGACGCGCTAC 2801026 CACTTCTTGTGCACGATGTTTCAATCCACGCGCTCGCGAAGAGCGCGACCTTCCGTGTTA 2801086 CCTGTCTGGTTGTAGTACCCGCTGTTTCAATCCACGCGCTCGCGAAGAGCGCGACAGGAG 2801146 CTCTTGCCACAGTTGCACACCGGTGGCTTGTTTCAATCCACGCGCTCGCGAAGAGCGCGA 2801206 CTTCTCTTGAAGTTAAAGACGCTGCTACAGATGCAGTTTCAATCCACGCGCTCGCGAAGA 2801266 GCGCGACCGAACAATGCGATACTTGTTGTTCTGTTAACATTGTTTCAATCCACGCGCTCG 2801326 CGAAGAGCGCGACTAAGGCAAACAGCAGAAATTGATGGCCATAGTATTGTTTCAATCCAC 2801386 GCGCTCGCGAAGAGCGCGACACTATCTTGGGCGTGAAGTTGGTCGTCCTGACCTTGTTTC 2801446 AATCCACGCGCTCGCGAAGAGCGCGACTAAATCCGTTAATAGAGCTCTTCTGATGGATAA 2801506 AGTTTCAATCCACGCGCTCGCGAAGAGCGCGACGCGCGGCATTGCAAGGTAGAACTTTTA 2801566 CGATAGCAGTTTCAATCCACGCGCTCGCGAAGAGCGCGACTTTCCCAGGTGGTTAATGTC 2801626 CGTACTTCAGTTTTTGTTTCAATCCACGCGCTCGCGAAGAGCGCGACCCCGCTTTACTGT 2801686 ATAGCCAAATACCAAGAGCGCGTTTCAATCCACGCGCTCGCGAAGAGCGCGACTGGATGA 2801746 ATAGTTACCATCGTACCGCCAGGCGTTGTTTCAATCCACGCGCTCGCGAAGAGCGCGACC 2801806 CACCACCATCTGTTCCTGCCTTGTCCCAATAACGTTTCAATCCACGCGCTCGCGAAGAGC 2801866 GCGACCCGAGATTATCAGCGCACATGCTGAGGCCAGTCTGTTTCAATCCACGCGCTCGCG 2801926 AAGAGCGCGACCATTGACTCTGCGTAGCAGTGATCGCATCCAGGGGTTTCAATCCACGCG 2801986 CTCGCGAAGAGCGCGACTACCAGCGTGTGAGTGGGGCGAACGATATAGCCGAGTTTCAAT 2802046 CCACGCGCTCGCGAAGAGCGCGACACAAACGGGGCTTTGACATACAAAAAACTTGCTGTT 2802106 TCAATCCACGCGCTCGCGAAGAGCGCGACTTGTAGGGCCATCGGCTGTTGGCCCGGCTGG 2802166 CAGTTTCAATCCACGCGCTCGCGAAGAGCGCGACCTTCCGCTGCGCGAATAATCAATTCA 2802226 AATTGGCTGTTTCAATCCACGCGCTCGCGAAGAGCGCGACGTGCTACGAAGACAACCCTC 2802286 ACGATGCTCTTGAGGTTTCAATCCACGCGCTCGCGAAGAGCGCGACTTTCATGTCCGAAT 2802346 TATCAAAAACTTTCTGCGACAGTTTCAATCCACGCGCTCGCGAAGAGCGCGACTGCATTA 2802406 AGGTAACCTATTGGTAAATAAAAAGAAAACTGAAAAATTCCGCTAACCAGGGATATATTT

The repeated sequence is highlighted in grey. The repeat goes through an unknown protein highlighted in pink.

The chances of this specific 32 nucleotide sequence occurring in this organism is about $5.42 \times 10^{-20}$. So it is actually highly unlikely that it is occurring by chance in such high frequency.

| 3261290 | 3261303 | GTTTCAATCCACAC |
| :---: | :---: | :---: |
| 3261358 | 3261371 | GTTTCAATCCACAC |
| 3261424 | 3261437 | GTTTCAATCCACAC |
| 3261491 | 3261504 | GTTTCAATCCACAC |
| 3261557 | 3261570 | GTTTCAATCCACAC |
| 3261624 | 3261637 | GTTTCAATCCACAC |
| 3261690 | 3261703 | GITTCAATCCACAC |
| 3261758 | 3261771 | GTTTCAATCCACAC |
| 3261825 | 3261838 | GTTTCAATCCACAC |
| 3261891 | 3261904 | GTTTCAATCCACAC |
| 3261960 | 3261973 | GTTTCAATCCACAC |
| 3262028 | 3262041 | GTTTCAATCCACAC |
| 3262094 | 3262107 | GITTCAATCCACAC |
| 3262161 | 3262174 | GTTTCAATCCACAC |
| 3262228 | 3262241 | GTTTCAATCCACAC |
| 3262294 | 3262307 | GTTTCAATCCACAC |
| 3262360 | 3262373 | GTTTCAATCCACAC |
| 3262428 | 3262441 | GTTTCAATCCACAC |
| 3262494 | 3262507 | GTTTCAATCCACAC |
| 3262562 | 3262575 | GTTTCAATCCACAC |
| 3262628 | 3262641 | GTTTCAATCCACAC |
| 3262695 | 3262708 | GITTCAATCCACAC |
| 3262761 | 3262774 | GTTTCAATCCACAC |
| 3262829 | 3262842 | GTTTCAATCCACAC |
| 3262895 | 3262908 | GTTTCAATCCACAC |
| 3262960 | 3262973 | GTTTCAATCCACAC |
| 3263026 | 3263039 | GTTTCAATCCACAC |
| 3265050 | 3265063 | GTTTCAATCCACAC |
| 3265118 | 3265131 | GTTTCAATCCACAC |
| 3265185 | 3265198 | GTTTCAATCCACAC |
| 3265252 | 3265265 | GTTTCAATCCACAC |
| 3265319 | 3265332 | GTTTCAATCCACAC |
| 3265387 | 3265400 | GTTTCAATCCACAC |
| 3265454 | 3265467 | GTTTCAATCCACAC |
| 3265520 | 3265533 | GTTTCAATCCACAC |
| 3265588 | 3265601 | GITTCAATCCACAC |
| 3265655 | 3265668 | GTTTCAATCCACAC |
| 3265721 | 3265734 | GITTCAATCCACAC |
| 3265787 | 3265800 | GTTTCAATCCACAC |
| 3265854 | 3265867 | GTTTCAATCCACAC |
| 3265922 | 3265935 | GTTTCAATCCACAC |
| 3265989 | 3266002 | GTTTCAATCCACAC |
| 3266056 | 3266069 | GTTTCAATCCACAC |
| 3266122 | 3266135 | GTTTCAATCCACAC |
| 3266188 | 3266201 | GTTTCAATCCACAC |
| 3266255 | 3266268 | GITTCAATCCACAC |
| 3266321 | 3266334 | GITTCAATCCACAC |

Figure 4: A. vinelandii DJ MATCHES-OF-PATTERN output 1

My initial search for any matches of the sequence found in C. japonicus

Figure 5: A. vinelandii DJ MATCHES-OF-PATTERN output after extending with "*"

| 3261020 | 3261055 | G |
| :---: | :---: | :---: |
| 3261088 | 3261123 | GGGTTTCAATCCACACGCCCGCATGGGGCGTGACTG |
| 3261154 | 3261189 | ATGTTTCAATCCACACGCCCGCATGGGGCGTGACAT |
| 3261222 | 3261257 | CCGTTTCAATCCACACGCCCGCATGGGGCGTGACAC |
| 3261288 | 3261323 | CAGTTTCAATCCACACGCCCGCATGGGGCGTGACAT |
| 3261356 | 3261391 | GTGTTTCAATCCACACGCCCGCATGGGGCGTGACAG |
| 3261422 | 3261457 | ATGTTTCAATCCACACGCCCGCATGGGGCGTGACGG |
| 3261489 | 3261524 | GAGTTTCAATCCACACGCCCGCATGGGGCGTGACGC |
| 3261555 | 3261590 | GTGTTTCAATCCACACGCCCGCATGGGGCGTGACCT |
| 3261622 | 3261657 | CCGTTTCAATCCACACGCCCGCATGGGGCGTGACCG |
| 3261688 | 3261723 | AAGTTTCAATCCACACGCCCGCATGGGGCGTGACAG |
| 3261756 | 3261791 | CTGTTTCAATCCACACGCCCGCATGGGGCGTGACGT |
| 3261823 | 3261858 | TTGTTTCAATCCACACGCCCGCATGGGGCGTGACGG |
| 3261889 | 3261924 | GCGTTTCAATCCACACGCCCGCATGGGGCGTGACGA |
| 3261958 | 3261993 | CTGTTTCAATCCACACGCCCGCATGGGGCGTGACGC |
| 3262026 | 3262061 | TGGTTTCAATCCACACGCCCGCATGGGGCGTGACTC |
| 3262092 | 3262127 | TTGTTTCAATCCACACGCCCGCATGGGGCGTGACCC |
| 3262159 | 3262194 | ATGTTTCAATCCACACGCCCGCATGGGGCGTGACTG |
| 3262226 | 3262261 | GCGTTTCAATCCACACGCCCGCATGGGGCGTGACTG |
| 3262292 | 3262327 | GTGTTTCAATCCACACGCCCGCATGGGGCGTGACGC |
| 3262358 | 3262393 | ACGTTTCAATCCACACGCCCGCATGGGGCGTGACTA |
| 3262426 | 3262461 | ACGTTTCAATCCACACGCCCGCATGGGGCGTGACAG |
| 3262492 | 3262527 | CAGTTTCAATCCACACGCCCGCATGGGGCGTGACCA |
| 3262560 | 3262595 | ACGTTTCAATCCACACGCCCGCATGGGGCGTGACTC |
| 3262626 | 3262661 | CCGTTTCAATCCACACGCCCGCATGGGGCGTGACGA |
| 3262693 | 3262728 | GAGTTTCAATCCACACGCCCGCATGGGGCGTGACCT |
| 3262759 | 3262794 | AGGTTTCAATCCACACGCCCGCATGGGGCGTGACGC |
| 3262827 | 3262862 | GCGTTTCAATCCACACGCCCGCATGGGGCGTGACCC |
| 3262893 | 3262928 | ACGTTTCAATCCACACGCCCGCATGGGGCGTGACCA |
| 3262958 | 3262993 | CAGTTTCAATCCACACGCCCGCATGGGGCGTGACAT |
| 3265048 | 3265083 | ATGTTTCAATCCACACGCCCGCATGGGGCGTGACCA |
| 3265116 | 3265151 | CGGTTTCAATCCACACGCCCGCATGGGGCGTGACTT |
| 3265183 | 3265218 | GTGTTTCAATCCACACGCCCGCATGGGGCGTGACCA |
| 3265250 | 3265285 | CCGTTTCAATCCACACGCCCGCATGGGGCGTGACGT |
| 3265317 | 3265352 | CTGTTTCAATCCACACGCCCGCATGGGGCGTGACCT |
| 3265385 | 3265420 | AAGTTTCAATCCACACGCCCGCATGGGGCGTGACCG |
| 3265452 | 3265487 | CCGTTTCAATCCACACGCCCGCATGGGGCGTGACTG |
| 3265518 | 3265553 | GTGTTTCAATCCACACGCCCGCATGGGGCGTGACAT |
| 3265586 | 3265621 | GCGTTTCAATCCACACGCCCGCATGGGGCGTGACTC |
| 3265653 | 3265688 | TTGTTTCAATCCACACGCCCGCATGGGGCGTGACGC |
| 3265719 | 3265754 | AAGTTTCAATCCACACGCCCGCATGGGGCGTGACCT |
| 3265785 | 3265820 | GGGTTTCAATCCACACGCCCGCATGGGGCGTGACAA |
| 3265852 | 3265887 | AAGTTTCAATCCACACGCCCGCATGGGGCGTGACGT |
| 3265920 | 3265955 | TTGTTTCAATCCACACGCCCGCATGGGGCGTGACCC |
| 3265987 | 3266022 | ATGTTTCAATCCACACGCCCGCATGGGGCGTGACTC |
| 3266054 | 3266089 | CTGTTTCAATCCACACGCCCGCATGGGGCGTGACTG |
| 3266120 | 3266155 | AGGTTTCAATCCACACGCCCGCATGGGGCGTGACGC |
| 3266186 | 3266221 | TTGTTTCAATCCACACGCCCGCATGGGGCGTGACAC |
| 3266253 | 3266288 | GTGTTTCAATCCACACGCCCGCATGGGGCGTGACCG |
| 3266319 | 3266354 | AAGTTTCAATCCACACGCCCGCATGGGGCGTGACCC |

> You can see in the figure to the left that the repeat highlighted in yellow is very similar to that found in C . japonicus

The chances of this specific 32 nucleotide sequence occurring by chance is about $5.15 \times 10^{-19}$. So it is highly unlikely that this repeat occurred by chance. This is different from that of C . japonicus because the ratios of $\mathrm{G}, \mathrm{C}, \mathrm{T}$, and A are different. This organism has a higher abundance of $G$ and $C$ compared to $T$ and $A$.

Figure 6: Pseudomonas stutzeri Matches of Pattern output

| 4056652 | 4056687 | TGGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAA | $F$ |
| :--- | :--- | :--- | :--- | :--- |
| 4056720 | 4056755 | ACGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAA | $F$ |
| 4056786 | 4056821 | CGGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAA | F |


| 4056853 | 4056888 | AAGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAC | F |
| :---: | :---: | :---: | :---: |
| 4056923 | 4056958 | GCGTCGCGCCCCACGCGGGCGCGTGGATTGAAACCA | F |
| 4056989 | 4057024 | CCGTCGCGCCCCACGCGGGCGCGTGGATTGAAACTG | F |
| 4057055 | 4057090 | ACGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAC | F |
| 4057121 | 4057156 | TTGTCGCGCCCCACGCGGGCGCGTGGATTGAAACCT | F |
| 4057187 | 4057222 | CGGTCGCGCCCCACGCGGGCGCGTGGATTGAAACTG | F |
| 4057254 | 4057289 | ATGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAA | F |
| 4057320 | 4057355 | GAGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAA | F |
| 4057386 | 4057421 | TCGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAA | F |
| 4057452 | 4057487 | TGGTCGCGCCCCACGCGGGCGCGTGGATTGAAACTT | F |
| 4057518 | 4057553 | GCGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAC | F |
| 4057585 | 4057620 | TGGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAC | F |
| 4057651 | 4057686 | GGGTCGCGCCCCACGCGGGCGCGTGGATTGAAACTT | F |
| 4057717 | 4057752 | GAGTCGCGCCCCACGCGGGCGCGTGGATTGAAACTC | F |
| 4057786 | 4057821 | CTGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAT | F |
| 4057852 | 4057887 | CGGTCGCGCCCCACGCGGGCGCGTGGATTGAAACTG |  |
| 4057918 | 4057953 | GAGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAT | The repeated sequence is highlighted |
| 4057983 | 4058018 | ACGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAG | in yellow to the right. You can see |
| 4058049 | 4058084 | CCGTCGCGCCCCACGCGGGCGCGTGGATTGAAACTT | that it is the exact compliment to the |
| 4058115 | 4058150 | GCGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAG | repeated sequence shown in Figure 3. |
| 4058180 | 4058215 | TCGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAT |  |
| 4058247 | 4058282 | CCGTCGCGCCCCACGCGGGCGCGTGGATTGAAACTG | This is an interesting find because |
| 4058314 | 4058349 | CGGTCGCGCCCCACGCGGGCGCGTGGATTGAAACTG | these organisms are different, but |
| 4058381 | 4058416 | GTGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAT | they are just in the same group. |
| 4058450 | 4058485 | CTGTCGCGCCCCACGCGGGCGCGTGGATTGAAACCA |  |
| 4058517 | 4058552 | TAGTCGCGCCCCACGCGGGCGCGTGGATTGAAACGA | The chances of this happening |
| 4058584 | 4058619 | CAGTCGCGCCCCACGCGGGCGCGTGGATTGAAACCT | completely by chance is $5.42 \times 10^{-20}$ |
| 4058651 | 4058686 | CTGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAT |  |
| 4058720 | 4058755 | ATGTCGCGCCCCACGCGGGCGCGTGGATTGAAACCT | so it is highly unlikely this sequence |
| 4058786 | 4058821 | GGGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAA | occurred by chance. |
| 4058853 | 4058888 | AGGTCGCGCCCCACGCGGGCGCGTGGATTGAAACAG |  |
| 4058918 | 4058953 | CCGTCGCGCCCCACGCGGGCGCGTGGATTGAAACCT | F |
| 4058983 | 4059018 | GCGTCGCGCCCCACGCGGGCGCGTGGATTGAAACGT | F |
| 4059049 | 4059084 | AAGTCGCGCCCCACGCGGGCGCGTGGATTGAAACGA | F |
| 4059114 | 4059149 | TGGTCGCGCCCCACGCGGGCGCGTGGATTGAAACTA | F |
| 4059247 | 4059282 | ACGTCGCGCCCCACGCGGGCGCGTGGATTGAAACTT | F |
| 4059313 | 4059348 | GAGTCGCGCCCCACGCGGGCGCGTGGATTGAAACGG | F |

Figure 7: Acinetobacter Count of K-mers to determine most repeated sequences output

```
Warning: Threshold set to 3 to save memory
COUNT WORD
    91 ATCGCATAGATGATTTAGAA
    91 CATCGCATAGATGATTTAGA
    91 CGTCATCGCATAGATGATTT
    91 GTCATCGCATAGATGATTTA
    91 TCATCGCATAGATGATTTAG
    91 TCGCATAGATGATTTAGAAA
    91 TCGTCATCGCATAGATGATT
    91 TTCGTCATCGCATAGATGAT
    90 GTTCGTCATCGCATAGATGA
```

Figure 8: Acinetobacter Output of the Repeats found in this organism

2447995 ACATATGTAGTAAAATCAAATAAAATCAAACAATTAACTCAAGTGATTCATAACGAAGTA 2448055 TTTTTACTCATTAAAAGCTTATATAATTGATATCAAGGGTTTTGTTTTGACTTAACTCTA 2448115 GTTCGTCATCGCATAGATGATTTAGAAAGACACCAAAGGTAATAAAGCTATGAAAGAATA 2448175 GTTCGTCATCGCATAGATGATTTAGAAATTTACTCTTATTATACTATTACCCCTAACCCC 2448235 GTTCGTCATCGCATAGATGATTTAGAAATCCAGCTAAAATCGTTTGAGGGTGAAACTCCT 2448295 GTTCGTCATCGCATAGATGATTTAGAAAATGATTTCGAAAGGCTCTCCGAGTACGTTATT 2448355 GTTCGTCATCGCATAGATGATTTAGAAAATTCCCAGCATTCACGCTGAGTGCTTCGGCAC 2448415 GTTCGTCATCGCATAGATGATTTAGAAATGTGCAGCCGTTTGGCGCGCCCCAGATATGCG 2448475 GTTCGTCATCGCATAGATGATTTAGAAAAGGAACCGTGGCAGATTGCGTTAATATGTTAG 2448535 GTTCGTCATCGCATAGATGATTTAGAAATAACGATGGAATAACGTTCAAAGAATCTAACG 2448595 GTTCGTCATCGCATAGATGATTTAGAAAAATTCATGAAAGATCATTCGCTGTGTTTGGGG 2448655 GTTCGTCATCGCATAGATGATTTAGAAAATTTGCCGCTTTGAATATTTGATGCACCTGCT 2448715 GTTCGTCATCGCATAGATGATTTAGAAAAAATCGATGAGGGACAACATCAGGCACTCGAC 2448775 GTTCGTCATCGCATAGATGATTTAGAAAACAGGGCAGGGAAATAACCAAAAATCGATATA 2448835 GTTCGTCATCGCATAGATGATTTAGAAAGACATAGGAACGATATGAAGATGATTTTTTTT 2448895 GTTCGTCATCGCATAGATGATTTAGAAAATCAAGCTATCGTCATTTGGCCGATACACAGC 2448955 GTTCGTCATCGCATAGATGATTTAGAAATCTGCCATGCATACAATTTGATTTGGCTGCGT 2449015 GTTCGTCATCGCATAGATGATTTAGAAAAATCATCAATATCTTTTTGCGCTTTGCGTGAA 2449075 GTTCGTCATCGCATAGATGATTTAGAAATCTCACGTACAAAAAAAAATCCTATTTGATGT 2449135 GTTCGTCATCGCATAGATGATTTAGAAAGCGATTGAATACCGATAGATCGGGGATATTAA 2449195 GTTCGTCATCGCATAGATGATTTAGAAAATACACTACATTGAACTGCTCGGACTTAAGCA 2449255 TGTTCGTCATCGCATAGATGATTTAGAAAAAAAAAAGTGTAGCCAACTTCATACAGTTAC 2449315 CGTTCGTCATCGCATAGATGATTTAGAAACAGGTGGCAGCGTTCCATTTTCGGGGGCAAA 2449375 TGTTCGTCATCGCATAGATGATTTAGAAAAAAACCACATTATAAGGCTCGGTAAATGTGT 2449435 AGTTCGTCATCGCATAGATGATTTAGAAAATGAAAATAAGCCCCAATATTGTCAGTGTTC 2449495 CGTTCGTCATCGCATAGATGATTTAGAAAGTTTCCGCGTCATTCGGGTACAGTTGCGACA 2449555 TGTTCGTCATCGCATAGATGATTTAGAAATTGAAACCTATGAACTTTGTGTTATACGTGT 2449615 CGTTCGTCATCGCATAGATGATTTAGAAACTTATCAAAATCGGTGGGATCTTTGTCGTAC 2449675 TGTTCGTCATCGCATAGATGATTTAGAAAGAATTATGCTTTAAAAAATCCTTTCGCGGGT 2449735 AGTTCGTCATCGCATAGATGATTTAGAAAAATCCGATTTCTGCTGTTGCTGGGGTTAGAG 2449795 CGTTCGTCATCGCATAGATGATTTAGAAAATGTACTATAAGTCACATGGTAAAGACACGA 2449855 AGTTCGTCATCGCATAGATGATTTAGAAAGAAACGTTGAATCCAGAACCAGCAATCCCAG 2449915 CGTTCGTCATCGCATAGATGATTTAGAAAAAACTGTGGAGCATTACATCTACCATACTGC 2449975 CGTTCGTCATCGCATAGATGATTTAGAAATAAAACAGTCAATGTTAATTGGGGTGAACAA 2450035 TGTTCGTCATCGCATAGATGATTTAGAAAGCGGTAGCTGGCGCGGTGTTTGCGTTTTTTG 2450095 GGTTCGTCATCGCATAGATGATTTAGAAATATAACTAGCATGTCAGAAATAAAACTATCC 2450155 GGTTCGTCATCGCATAGATGATTTAGAAACGTTGGTACTGTTGCAGGTGGTGCATTGGGG 2450215 AGTTCGTCATCGCATAGATGATTTAGAAAGACTCCGCTACTTAAGAAAGAGAGCATAGGT 2450275 GGTTCGTCATCGCATAGATGATTTAGAAATAGAAGTAACTTACGATAACATCTTTGGCGC 2450335 CGTTCGTCATCGCATAGATGATTTAGAAATCAAGCATGTGATCACTAATGATTCGGTTTT 2450395 TGTTCGTCATCGCATAGATGATTTAGAAATATACTCCTTATATGTAATTTACGCGTAAAC 2450455 CGTTCGTCATCGCATAGATGATTTAGAAACACTACATTTATACCCGCCGTTTACGCTCTT 2450515 AGTTCGTCATCGCATAGATGATTTAGAAAGTTTAATGTGGCGTTCAGGTCTTGTTCGCCA 2450575 AGTTCGTCATCGCATAGATGATTTAGAAAACTCAGTTGACCAATCTTACTGCTTCACTTA 2450635 AGTTCGTCATCGCATAGATGATTTAGAAAAGAAGATTTGGTGGGCAAAAATATGGAATAT 2450695 AGTTCGTCATCGCATAGATGATTTAGAAAATTCTTAGCTGCATCACGCAAGATTTGCTTT 2450755 TGTTCGTCATCGCATAGATGATTTAGAAACTCATCGAAACATACATTGAGAAAAATCATT 2450815 TGTTCGTCATCGCATAGATGATTTAGAAAAATCATCATCGACCGCAGTATTGAAGCGAAG 2450875 CGTTCGTCATCGCATAGATGATTTAGAAAAGCCCTTCGTATATTTGAATAGTGCATTGGC 2450935 TGTTCGTCATCGCATAGATGATTTAGAAAAAAAATACCCGCGCCCAAGTGATCCTGAAGA 2450995 GTTCGTCATCGCATAGATGATTTAGAAAAACCATATAGAATTGTTAACTTTTGTAAATAA 2451055 GTTCGTCATCGCATAGATGATTTAGAAAGATCAAAACAACAAGCGTACCAATGATGCCGA 2451115 GTTCGTCATCGCATAGATGATTTAGAAAACAAGGGATGTATTGACCAGGTGTGAGCGCAA 2451175 GTTCGTCATCGCATAGATGATTTAGAAAATTCTTGAGCCGCCTGCAGATTTGTTATGTCA 2451235 GTTCGTCATCGCATAGATGATTTAGAAAATGGTTCGGGGTTGTAGCTGTACGCCCCAGAT 2451295 GTTCGTCATCGCATAGATGATTTAGAAAAAGAGCAAAAGGTAACTTGGATCTACCGCCAC

2451355 GTTCGTCATCGCATAGATGATTTAGAAACACGGAAATTGGAATGATGATTTCGACGGTAA 2451415 GTTCGTCATCGCATAGATGATTTAGAAATTGTTGAGCAGCAGAACGGCCTTTTACCAACC 2451475 GTTCGTCATCGCATAGATGATTTAGAAAAGATACCTCAGTCCAAGCTGCTGAATTTTATC 2451535 GTTCGTCATCGCATAGATGATTTAGAAAAAGAGACAACAGGGCTTATTAAAGTAACTTGT 2451595 GTTCGTCATCGCATAGATGATTTAGAAAAAGTTTTATTTAAGCCCAAAGCTAAAGATAGT 2451655 GTTCGTCATCGCATAGATGATTTAGAAAGTTAGCTGCACAAGCTCTGGGACTTTAATAAA 2451715 GTTCGTCATCGCATAGATGATTTAGAAAAATCGCTAACCAGTAGAACCCGCGTAGCAGCG 2451775 GTTCGTCATCGCATAGATGATTTAGAAAAAGCGTTGCGAGCGCTCAAAAAGTGGCTGATC 2451835 GTTCGTCATCGCATAGATGATTTAGAAAGTCTACCAAAGCGAAAGTATCATTTTCAATGA 2451895 GTTCGTCATCGCATAGATGATTTAGAAATGTATCGGAGCTACGTCAGAAGGTCAAGCACA 2451955 GTTCGTCATCGCATAGATGATTTAGAAAAGGTCGATTTATCATAAACATCGGGCACGATA 2452015 GTTCGTCATCGCATAGATGATTTAGAAAGCCAGAAATTTTGACACTTGCGTTTAGCAATA 2452075 GTTCGTCATCGCATAGATGATTTAGAAAAGATTGTCTCTAAATTTAACGCGTGGCTTTGT 2452135 GTTCGTCATCGCATAGATGATTTAGAAAAAAGCCGAGCCCAACTTTTGACGCACAAAAAG 2452195 GTTCGTCATCGCATAGATGATTTAGAAAGTCAGTGATTGCTTTCATTGCCGTAGCTACGT 2452255 GTTCGTCATCGCATAGATGATTTAGAAAATCCGCGCCCAATTTGTCCCACCAATCTTTTT 2452315 GTTCGTCATCGCATAGATGATTTAGAAAGATTCCATAGAACGTACCATTGACGCGCAACA 2452375 GTTCGTCATCGCATAGATGATTTAGAAATGGATCTCTGCAGAAATCACATTGTCCAAATA 2452435 GTTCGTCATCGCATAGATGATTTAGAAAAACAGGCGTTACTGAGCTATGTGTCGTTAAAA 2452495 GTTCGTCATCGCATAGATGATTTAGAAAAAGCATGCCTTGATGCATACAACAAAATTGCC 2452555 GTTCGTCATCGCATAGATGATTTAGAAATGCGAGTTCAAACTTCTTTAAAGATGCAACAT 2452615 GTTCGTCATCGCATAGATGATTTAGAAACGTGGAATCATAATCATAAGCTTCACCGACAC 2452675 GTTCGTCATCGCATAGATGATTTAGAAAGATCAGTGGCGCGTCTACAGTGAGCGAGTGGG 2452735 GTTCGTCATCGCATAGATGATTTAGAAAATAATTGCAACAACAGCATAATATACATACCA 2452795 GTTCGTCATCGCATAGATGATTTAGAAACTTACTTTCGCTTGCGCTTCGTTACGAATGCC 2452855 GTTCGTCATCGCATAGATGATTTAGAAATCAACCAGGATCGGATAACCATCAATTCTAAA 2452915 GTTCGTCATCGCATAGATGATTTAGAAAAACAGGCGTTACTGAGCTATGTGTCGTTAAAA 2452975 GTTCGTCATCGCATAGATGATTTAGAAAAAGCATGCCTTGATGCATACAACAAAATTGCC 2453035 GTTCGTCATCGCATAGATGATTTAGAAACAAATGTAATCAGGATTAGTCGATTGCAGCGT 2453095 GTTCGTCATCGCATAGATGATTTAGAAAAGATCGCCTGTGCGTAGGTCAACTGCACCATT 2453155 GTTCGTCATCGCATAGATGATTTAGAAAAGCTGAACACGCCGTTTTTTAACTTCCGCCAT 2453215 GTTCGTCATCGCATAGATGATTTAGAAAATGCACCTGATCCTGCCCAATGAGGGATTTAC 2453275 ATTCGTCATCGCATAGATGATTTAGAAATGATGGTGCAGGAACCACAGCAACATCAGTCA 2453335 GTTCGTCATCGCATAGATGATTTAGAAAGATTGAAATACTATTAAGGCTGTTCGTAAAGC 2453395 GTTCGTCATCGCATAGATGATTTAGAAAACACACGCTGCCAATTCTTCGTTAGAGTGTAT 2453455 GTTCGTCATCGCATAGATGATTTAGAAAAGCAGTAAAAGCCATGACCGTTAAGATCGCTC 2453515 GTTCGTCATCGCATAGATGATTTAGAAATATTAAAAGCAACATCGATAAGATCTAGCTGT

You can see that the repeat is highlighted in grey. This repeat in particular seems to be mostly intragenic (found within genes) as there actually seems to be little extragenic space.

This repeat also seems to only be 28 nucleotides in length as opposed to 32 like in the other organisms examined.

## Works Cited

[1]Aranda-Olmedo, I., Tobes, R., Manzanera, M., Ramos, J. L., \& Marqués, S. (2002). Speciesspecific repetitive extragenic palindromic (REP) sequences in Pseudomonas putida. Nucleic Acids Research, 30(8), 1826-33. Retrieved from
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=113213\&tool=pmcentrez\&rend ertype=abstract
[2]Petrillo, M., Silvestro, G., Di Nocera, P. P., Boccia, A., \& Paolella, G. (2006). Stem-loop structures in prokaryotic genomes. BMC Genomics, 7, 170. doi:10.1186/1471-2164-7-170
[3]Sorek, R., Kunin, V., \& Hugenholtz, P. (2008). CRISPR - a widespread system that provides acquired resistance against phages in bacteria and archaea, 6 (march), 181-186.
[4]BioBike PhAnToMe http://biobike.csbc.vcu.edu/
[5] Basic Local Alignment Search Tool.
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn\&PAGE_TYPE=BlastSearch\&LINK_
LOC=blasthome

