Identification of Small Regulatory RNA within Miniature Inverse-Repeat Elements of E. Coli K-12.

Introduction

Within the genome of Escherichia coli, short non-coding sequences (about 127 base pairs), called ERICs are transcribed and reinserted into the genome. ERICs are enterobacterial repetitive intergenic consensus sequences. ERICs are a type of sequence that is repeated many times in the genome and are part of a class of small repetitive sequences known as mobile inverted repeat transposable element. Figure 1 shows the general structure and possible activity of a mobile inverted repeat transposable element (Delhias et al 2008).

Noncoding small regulatory RNA can influence gene expression in animals and bacteria. They achieve this by affecting the stability of mRNA transcripts. In eukaryotes, miRNA are responsible for this action. In bacteria, sRNA are known to have this affect, but are usually 50-200nt in length. Kang et al found that miRNA-sized molecules exist in E. coli and have the ability to alter gene expression like miRNA in eukaryotes (Kang et al 2013).

Since ERICs are noncoding sequences that have the ability to be transcribed, it is possible that miRNA-sized sequences can exist within them, considering that E. coli has only 15% noncoding DNA. The

Figure 1. Shows the structure and possible activity of a MITE. TIR represents the terminal inverted repeated sequences that are characteristic of ERICs. (Taken from Delihas et al 2008) purpose of this experiment is to locate msRNA within ERICs.

Methods

The PhAnToMe version of BioBIKE was used to analyze all sequences described (http://biobike.csbc.vcu.edu)(Elhai et al 2009). The genome sequence used to locate ERICs corresponds to the Escherichia coli str. K-12 sub-strain MG1655 assembly ASM584v2 on National Center for Biotechnology Information (NCBI). The coordinates of the ERIC sequences used in this analysis correspond to those found using the method described by Wilson et al (2006). Genome sequences were searched exhaustively for matches above a certain threshold
to ERIC sequences containing a single deletion at any position between sites 7 and 120. To evaluate the significance of the matches found, the same search was conducted against random sequences with the same length and dinucleotide content as the intergenic sequences of E. coli K-12 (Wilson et al 2006).

The genome sequence used to locate the msRNA corresponds to the ASM1942v1 assembly of Escherichia coli substrain DH10B (NCBI) using methods described by Kang et al 2013. Total RNA of E. coli was extracted and sequenced. Micro-RNA-sized sequence reads were collected and the relative abundance of each read was calculated. Some sequences were verified using qRT-PCR and northern blot (Kang et al 2013).

The sequences of ERICs were extracted from the E. coli genome using the coordinates provided by Wison et al (2006). ERIC sequences 127nt in length, which is the length of the consensus sequence of ERICs, were selected for analysis. The msRNA sequences provided by Kang et al (2013) were co-located with the ERIC sequences. Co-location was achieved by searching each ERIC sequence for each msRNA sequences. msRNA sequences with 100% match with one or more ERIC sequences were collected for analysis. To confirm the significance of the matches, random DNA with the same length and GC content as the ERIC sequences were searched for each msRNA sequence.

127nt ERIC sequences	
AATTTCCTTCGTCTTTCACGCCATAGCGGCGTTGGCGTCGCCCGCTCACCCCGGTCACTTACTTGTGTAAGCTCCCG GGGATTCACAGGCTAGCCGCCTTGCTCTGACGCGAAATACTTCGGAAATT (127755-127881)	
CATACCCTATGGATTTCTGGGTGCAGCAAGGTAGCAAGCGCCAGAATCCCCAGGAGCTTACATAAGTAAGTGACTGG GGTGAGGGCGTGAAGCTAACGCCGCTGCGGCCTGAAAGACGACGGGTATG (190613-190739)	
CTCCCCCAAAATAGTTCGAGTTGCAGAAAGGCGGCAAGCTCGAGAATTCCCGGGAGCTTACATCAGTAAGTGACCGG GATGAGCGAGCGAAGATAACGCATCTGCGGCGCGAAATATGAAGGGGGAG (253339-253465)	
TATACTCTAAATAATTCGAGTTGCAGGAAGGCGACAAGCGAGTGAATCGCCAGGAGCTTACATAAGTAAGTGACTGG GGTGAACGAACGCAGTCGCAGTACATGCAACTTGAAGTATGACGAGTATA (437374-437500)	
TATACTCGTCATACTTCAAGTTGCATGTGCTGCGGCTGCATTCGTTCACCCCAGTCACTTACTTATGTAAGCTCCTG GGGCTTCACTCGTTTGCCGCCTTCCTGCAACTCGAATTATTTAGAGTCTA (596203-596329)	
TATACTCGTCATACTTCAAGTTGCATGTGCTGCGTCTGCGTTCGCTCACCCCAGTCACTTACTTATGTAAGCTCCTG GGGATTCACTCGCTTGTCGCCTTCCTGCAACTCGAATTATTTAGAGTATG (638731 - 638857)	
TATTCTCGTCATACTTCAAGTTGCATGTGCTGCGTCTGCGTTCGCTCACCCCAGTCACTTACTTATGTAAGCTCCTG GGGATTCACTCGCTTGTCGCCTTCCTGCAACTCGAATTATTTAGAGTATA (802545-802671)	
TATACACAAAATCATTCAAGTTGCATCAAGGCGGCAAGTGAGCGAATCCCGATGAGCTTACTCAGGTAAGTGATTCG GGGGAGCGAACGCAGCCAAGGCAGAGGCGGCTTGAAGGATGAAGTGTATA (1360538-1360664)	
TATACACTTTATCCTTCACGCTGCCTCTTCGTTGACTGCCTTCGCTCATCCCATTCACATAGTTATCTATGCTCATG GGAGTTCACTCAGTTGCCGCCTCGATGCAACGCGAATGATTTCGTGTATT (1946638-1946764)	
TACTCGTCATACTTCAAGTTGCATGTGCTGCGTCTGCGTTCGCTCACCCCAGTCACTTACTTATGTAAGCTCCTGGG GATTCACTCTCTTGTCGCCTTCCTGCAACTCGAATTATTTAGAGTATGAA (3069293-3069419)	
CACCAGCTGTTTGCCCTGTACGGCATCGAAGCGACGCTGTTCATAACGCGGCGTAATACCGTTTTCTTCAGGCATGA TCCAGATCTGATACAGATGCAGACGCTCGGTGCTGCTTGGGTTGTACTCT (3576845-3576971)	
ATCGTAGTTAAAGACGTGCGTCACTGCCGGAATATGCAAACCACGCGCGGCAACGTCGGTGGCAACCAGAATATCCA GATCGCCACGGGTAAATTCATCAAGAATACGCAGACGTTTTTTCTGCGCG (3962250-3962376)	
CCTGTTCCGTATTGGTCGTGGACGTGCGCCGACTGGCGAACCTGCGGCGGCAGCGGAAATGACCAAATGGTTTAACA	

| CCAACTATCACTACATGGTGCCGGAGTTCGTTAAAGGCCAACAGTTCAAA | $(4010927-4011053)$ |
| :--- | :---: | :---: |
| GTCTCTTTCCATGCTTTGCGCAGGGAAGATTCCTCAAAGTGCTGGCGGTCAAACCACTCCTGTAGCTCGACCAGCCC | |
| TTTACGGGTGAGATCGCGCGGGCGATTAATAACTGCCTGCAATGCCGGTT | $(4581141-4581267)$ |

Figure 1. List of ERIC sequences 127 nt in length. Coordinates are given after the sequence.

Example of msRNAs
TGTGGGCACTCGAAGATACGGAT
GTTGTGAGGTTAAGCGACT
TTTGCTCTTTAAAAATC
CTCGAAGATACGGATTCTTAAC
TCAAGACGATCCGGTACGCGTGAT
CTTAAGACCGCCGGTCTTGTC
ACAATCTGTGTGGGCACTCGA
TTTGTAGGCCTGATAAG
TTTCTCCCTCTCCCTG
Table Lis 10 highly

Table 2. List of 10 highly expressed msRNA in E. coli. (of 503 total).

Results and Discussion

Fifteen known ERICs sequences 127nt in length were searched for 503 msRNA sequences that were experimentally determined (Wilson et al 2006)(Kang et al 2013). Matches of msRNA sequences within ERIC sequences found to be a 100% match were collected. Sequences less than 100\% matched or overlapped were not counted. Two ERIC sequences were found to contain two msRNA sequences. One ERIC sequence was found to contain one msRNA sequence (Figure 2)

Figure 2. Shows the msRNA sequences found within the fifteen ERIC sequences. The red sequences are the msRNA sequences. The blue, yellow, and green sequences are characteristic structural elements of ERICs.

To test for significance, the number of expected matches were calculated and compared to the observed matches using the Poisson expression.

By definition, ERICs are found exclusively within the intergenic sequences of E. coli (with the exception of rRNA sequences, because an insertion of a sequence within a rRNA gene or its promoter would be harmful to the cell).

The length of the total intergenic sequence in E. coli minus the lengths of the rRNA genes and -35nt) is 571410nt.

The total length of ALL fifteen ERIC sequences (127nt each) is $15 \times 127 \mathrm{nt}=1835 \mathrm{nt}$. The chances of a hit within the total ERIC length is $1835 / 571410$.

The expected number of hits (λ) for $503 \mathrm{msRNA}=503 \times 1835 / 571410=1.6$
The observed number of hits (k) for $503 \mathrm{msRNA}=5$
The probability of k number of hits for $\mathrm{P}(\mathrm{k} \mid \lambda)=\frac{\lambda^{k}}{k!} e^{-\lambda}$
$P(5 \mid 1.6)=\left(1.6^{5} \div 5!\right) \times \mathrm{e}^{-1.6}=0.01764$
$P(4 \mid 1.6)=\left(1.6^{4} \div 4!\right) \times e^{-1.6}=0.05513$
$P(3 \mid 1.6)=\left(1.6^{3} \div 3!\right) \times e^{-1.6}=0.13782$
$P(2 \mid 1.6)=\left(1.6^{2} \div 2!\right) \times \mathrm{e}^{-1.6}=0.25842$
$P(1 \mid 1.6)=\left(1.6^{1} \div 1!\right) \times \mathrm{e}^{-1.6}=0.32303$
$P(0 \mid 1.6)=\left(1.6^{0} \div 0!\right) \times e^{-1.6}=0.20189$

The expected number of msRNA hits $\left(\lambda_{2}\right)$ for a SINGLE ERIC is 0.111
k_{2} for two of the ERICs is 2
k_{2} for one of the ERICs is 1
k_{2} for the rest is 0

$$
\begin{aligned}
& P(2 \mid 0.111)=0.00551 \\
& P(1 \mid 0.111)=0.09933 \\
& P(0 \mid 0.111)=0.89493
\end{aligned}
$$

Works Cited

Delihas, N. (2008). Small mobile sequences in bacteria display diverse structure/function motifs. Molecular microbiology, 67(3), 475-81. doi:10.1111/j.1365-2958.2007.06068.x

Elhai, J., Taton, A., Massar, J. P., Myers, J. K., Travers, M., Casey, J., ... Shrager, J. (2009). BioBIKE: a Web-based, programmable, integrated biological knowledge base. Nucleic acids research, 37(Web Server issue), W28-32. doi:10.1093/nar/gkp354

Kang, S.-M., Choi, J.-W., Lee, Y., Hong, S.-H., \& Lee, H.-J. (2013). Identification of microRNAsize, small RNAs in Escherichia coli. Current microbiology, 67(5), 609-13. doi:10.1007/s00284-013-0411-9

Wilson, L. A., \& Sharp, P. M. (2006). Enterobacterial repetitive intergenic consensus (ERIC) sequences in Escherichia coli: Evolution and implications for ERIC-PCR. Molecular biology and evolution, 23(6), 1156-68. doi:10.1093/molbev/msj125

