
(27/iii/13)

Problem Set 8 - 1

Introduction to Bioinformatics
Problem Set 8: Mixed Bag

1. If there's only one lesson you gain from this course, let it be a respect for the connection

between evidence and assertion. Some of you may object, "Hey! That's the same thing you
said last semester in Molecular Biology!", to which I respond, "Yes,... evidence of my own
respect." With that in mind, I present to you the following scenario.

Suppose you are an editor at a high class scientific journal, and you are considering the
following submission for publication:

Mary had a little lamb, whose fleece was white as snow,
And everywhere that Mary went, the lamb was sure to go.
It followed her to school one day, which was against the rules.
It made the children laugh and play, to see a lamb in school.

You're inclined to reject the manuscript out of hand. It is shorter than the usual submission to
your journal, but the main objection is the lack of what you perceive to be the rigor a
scientific article requires. But your heart softens, and you resolve to fulfill your calling as an
editor by editing, rewriting the submission to meet your specifications. What follows is the
first paragraph of what came of your effort, the Results section of an article in which every
assertion is connected to an observation, either yours or someone else's, and every
observation is connected to the means by which it was produced.

Cultural Impact of Human‐Ovine Mutualism

Results

An adolescent human female (code‐named "Mary") was tagged with a fluorescent
protein for subsequent identification and then released. She was repeatedly observed
(n=7) within 2 meters of a sheep with juvenile morphological characteristics [1] whose
length from the ischium (pelvis bone) to the scapula (shoulder bone) was measured to
be 18.7 cm. This is smaller than 95% of lambs in the 2010 U.S. lamb census [2].

. . .

References

1. Reese WO (2009). Functional Anatomy and Physiology of Domesticated Animals.
Fourth edition. Wiley‐Blackwell, Danvers MA.

2. U.S. Bureau of Agronomic Statistics (2010). Morphological Assessment of Livestock.
p.47. U.S. Government Printing Office, Washington DC.

Your task now is to complete the Results section of the manuscript, following the original as
closely as possible but adhering to your high standards regarding evidence. However, those
high standards for some reason do not prevent you from making up any facts you may need
and any references to justify those facts.

(27/iii/13)

Problem Set 8 - 2

2. One of the most commonly used strategies in sequence analysis is the moving window, in
which you consider small segments of a much larger sequence, one after the other. Here,
you'll use this strategy to make your own DOTPLOT function. Dotplots are a means of
comparing one sequence with another. They're discussed in the tour of Hatfull (Part I).

Your strategy to construct a dotplot will be to slide a window across one sequence and
compare that window against the second sequence. The matches for each window will
provide information for one line of the dotplot, using the PLOT function to display the
dotplot. For example, to construct a dotplot of Sequence A vs Sequence B (see below), you'll
compare the first 11 nucleotides of Sequence A to every point in Sequence B, noting where
matches occur.

Sequence A: CAACCCTCCATCATAAAACTTGGGCTTGGGAGGCAGAGCCTAACCTCTCT

Sequence B: CAACCCTCCATCATAAAACAACCCTCCATCATAAAACTTGGGCTTGGGAG

A match of the first window occurs in Sequence B at positions 1 and 20, so the first line will
contain a dot at each of those positions. Then you slide the window one nucleotide to the
right and repeat the comparison to obtain the dots for the second line, and so forth.

As a test of the function (and to give us raw material as we build it), we’ll try it on the
sequences of two small phage: Chlamydia phage 3 and Chlamydia phage phicpg1 (find the
sequences in either Phantome/BioBIKE or ViroBIKE).

Your implementation of DOTPLOT will compare two sequences through a window of 11
nucleotides, grabbing 11 nucleotides at a time from the first sequence and searching the
second sequence for matches to it. As you go through each step below, notice the result in the
result pane and compare it with what you expect from the actual sequence.

2a. In the end you will use the PLOT function to display the results of your sequence
comparisons. To see where you're heading, start off by experimenting with the PLOT
function. One way to use PLOT is by providing it with a set of number pairs, such as
((1 1)(2 4)(3 9)). Play with PLOT until you understand what it does with the pairs.

2b. DEFINE seq1 as the SEQUENCE-OF Chlamydia phage 3 and seq2 as the
SEQUENCE-OF Chlamydia phage phicpg1.*

2c. DEFINE window-size as 11 (each comparison will be 11 nucleotides)

2d. DEFINE start-of-window as 1 (we’ll start the first window at coordinate 1

2e. DEFINE end-of-window as… as what? If start-of-window is the first coordinate of
the window, what is the last? Knowing the start-of-window and the window-size, how
would you calculate the end coordinate? Keep in mind that the values of these variables
may change. Use SUM-OF to do the calculation. The function will look something like
this:

* Of course the names of the first phage will not be literally "Chlamydia phage 3". That's just the human name for
the phage. Use the usual tricks to find the name of the gene as known to BioBIKE. By the way, NAME-OF
[organism] SHORT will give you a short nickname,.

(27/iii/13)

Problem Set 8 - 3

What value should go in the number box? Check this by counting!

2f. Now use the values you've defined to define the portion of the first sequence you'll try to
match with the second sequence. DEFINE window as SUBSTRING seq1 FROM
start-of-window TO end-of-window

2g. DEFINE matches as MATCHES-OF-ITEM window IN seq2. It will be more
convenient if the function returns only the position of the match, so specify the
+COORDINATES option. Try it with and without the option so you can see what I mean.

2h. Now we need to turn this information into number pairs. The first number in each pair
will be the coordinate of the window (for simplicity, we’ll use start-of-window). The
second number of each pair will be the coordinate of a match. A pair will be formed by:

 LIST start-of-window n

 where n is one of the coordinates returned by MATCHES-OF. We don’t know how many
matches will be found, but we can MAP the LIST function over the list of matches:

 APPLY-FUNCTION
 LIST start-of-window n
 REPLACING n WITH matches

 DEFINE number-pairs as this function (i.e., APPLY-FUNCTION …)

If all has gone well, you should have the number pairs necessary for PLOT to display one
line of a dotplot of seq1 vs seq2. To generalize, i.e. repeat these operations over all
windows within seq1, we need a loop.

2i. Bring down a FOR-EACH loop. We’ll treat seq1, seq2, and window-size as constants
for the moment. The loop will presume they already exist. The loop will repeat lines 2e
through 2h and loop through all values of start-of-window, FROM . Open up the
body of the FOR-EACH loop and create holes for each function made in lines 2e through
2h. Then drag each of those four functions (in order) into one of the four holes.

2j. Open up a primary control number from n1 to n2 box. Replace variable with start-of-
window. The first value should be 1 of course, so that the window begins at the
beginning of seq2. What about the last value? Surely it’s related to the length of seq2.
Is it equal to the length? Devise a calculation for the last value and put it in the last value
box. If you don't know how to calculate the number, make up a simpler case, say a
sequence composed of just 11 letters.

2k. Open up a Results Section, using WHEN… APPEND. Why WHEN? You don’t always
want to add to the results, just when you found a match. Why APPEND? The difference
between APPEND and COLLECT is subtle. We may explore it later. For now, trust me.

2l. WHEN what? WHEN matches has a value. That’s expressed simply as WHEN matches.
Put the variable matches in the condition box.

(27/iii/13)

Problem Set 8 - 4

Epoch 1

Strain1

Strain2

Strain3

Strain2

Strain3

Strain4

Strain5

Strain4

Strain5

Strain4

Strain5

Strain4

Strain5

Strain2 Strain2

Strain6

Strain7

Strain6

Strain7

Epoch 2 Epoch 3 Epoch 4 Epoch 5Epoch 1

Strain1

Strain2

Strain3

Strain2

Strain3

Strain4

Strain5

Strain4

Strain5

Strain4

Strain5

Strain4

Strain5

Strain2 Strain2

Strain6

Strain7

Strain6

Strain7

Epoch 2 Epoch 3 Epoch 4 Epoch 5

2m. APPEND what? APPEND all the number-pairs you found. Put the variable number-pairs
in the value box.

2n. Execute the loop. Do you get the expected collection of number pairs?

2o. Put the loop within a PLOT function. The easiest way to do this is to mouse over the
action icon of FOR-EACH, click Surround, and then click PLOT in either the INPUT-
OUTPUT menu or the ALL menu. The PLOT function by default plots lines, but you're
doing a dot plot, so choose the POINTS option from the option menu of PLOT. Execute
the resulting function.

2p. How do you interpret the dotplot?

3. Regardless of the focus of your research project, there is an excellent chance that the time
will come when you wish to compare protein or DNA sequences from different phages and
predict their evolutionary relationships. A family tree would be nice… how to do that?

But proteins, dotplots,… we've been fooling
around long enough. The time has come to
evolve Life! What, after all, is life except
replication with the possibility of change? If
you agree, then here's the plan (see diagram to
the right): We'll create a strain (call it Strain1),
let it replicate and occasionally mutate, and see
what we get in several epochs.

The fact is, however, we don't have the ability
to watch events unfold over epochs. We can see
only what's present today. So the next step will
be to erase all knowledge of the course of the
events we created and see if we can recreate
those events solely on the basis of the final results.

3a. You'll be using the MUTATE function in this simulation of life. In PhAnToMe, bring it
into your workspace by using RUN-FILE (Input-Output menu). Type in the file-name
box "mutate.bike", select the SHARED option, and execute the function. If all is
well, you should now have the MUTATE function on your Function button.

3b. Test the MUTATE function by bringing it down from the Function button, entering
"AAAAA" into the sequence box, and executing the completed function. Play with it a
bit. Do you see what it does?

Epoch 1

3c. DEFINE Strain1 as a random DNA sequence 40 nucleotides long using the
RANDOM-DNA function (Strings-Sequences menu, String-Production submenu).
Use the LABELED option of DEFINE, associating the name of the variable with the
sequence.

3d. DEFINE Strain2 as the SEQUENCE-OF Strain1 (again LABELED), and DEFINE
Strain3 the same way. During Epoch 1, these strains are identical.

(27/iii/13)

Problem Set 8 - 5

Epoch 2

3e. MUTATE Strain2, by putting Strain2 in the sequence box, and executing the
completed function. Do the same with Strain3, but don't mutate Strain1. Every
epoch, mutations arise in the strains, but we'll leave Strain1 frozen in time.

3f. Define Strain4 and Strain5 as the SEQUENCE-OF Strain3 (again LABELED).
During Epoch 2, these strains are identical.

Epoch 3

3g. MUTATE Strain2, Strain4, and Strain5. Leave Strain3 frozen in time.

Epoch 4

3h. MUTATE Strain2, Strain4, and Strain5.

3i. Define Strain6 and Strain7 1 as the SEQUENCE-OF Strain2 (again LABELED).
During Epoch 4, these strains are identical.

Epoch 5

3j. MUTATE Strain4, Strain5, Strain6, and Strain7. Leave Strain2 frozen in
time.

Present day

3k. We now have four evolved strains (Strains 4, 5, 6, and 7) and three strains frozen in an
ancient time (Strains 1, 2, and 3). Compare their sequences by aligning them by means
of the ALIGNMENT-OF function (available from the Strings-Sequences menu,
Bioinformatic-tools submenu). Note that this function requires a single list of
sequences, so you'll need to put a LIST function (available from the List-Tables menu)
into the sequence-list argument of ALIGNMENT-OF, create seven boxes within LIST
(through the More icon), and populate them with the seven sequences you've defined.
Does the alignment make sense? Can you identify the mutations?

3l. Make a tree from the alignment by dragging the completed ALIGNMENT-OF function
into the argument box of TREE-OF (available from the Strings-Sequences menu,
Phylogenetic-tree submenu). Does the tree make sense, in light of how the strains
evolved?

3m. Do the same thing, but this time with only the four present day strains (i.e., delete Strains
1, 2, and 3 from the list to be aligned).

From trees such as these, you can analyze present day sequences, inferring the events that led
to them.

4. Now build a tree from real sequences. How closely related are different phage? That's a
surprisingly difficult question to answer, owing to mosaicism (as discussed in the Hatfull
review article). But we can readily assess the relatedness of specific phage proteins.

4a. All bacteriophage should have tails. Find the tail proteins in phage Che12, using the
GENES-DESCRIBED-BY function.

(27/iii/13)

Problem Set 8 - 6

4b. Choose the two minor tail proteins. What phage proteins are they similar to? Use each of
the two proteins as a query to SEQUENCE-SIMILAR-TO and all-phage as the target
(using the IN option). Be sure you're doing a PROTEIN-VS-PROTEIN comparison. Are
the two proteins similar to each other? Which protein has the most similar phage
proteins?

4c. Choose the minor tail protein with the most similar phage proteins and DEFINE a
variable containing those similar proteins. Do this by dragging the completed
SEQUENCE-SIMILAR-TO function to the value box and choose the RETURN-
TARGETS option of SEQUENCE-SIMILAR-TO. This causes the proteins found by
Blast to be returned by the function and assigned to the variable.

4d. Make a tree of those proteins, using the TREE-OF function on the ALIGNMENT-OF
the variable you just created. What groupings do you discern?

Tables and the [] notation

It is often incredibly helpful to be able to create a set of information and refer to individual
elements of the set. For example, you might consider the subjects of an experiment as S1, S2, S3,
etc. Or you might want to divide information into different categories, such as GNPEurope,
GNPChina, etc. In computer languages, this is achieved through data structures sometimes called
arrays (if the subscripts are numbers) or hashes (if the subscripts are anything else). In BioBIKE,
the two are combined into a concept called Tables.

5. You can create something like an Excel table by defining the contents of each cell in the
following way:

Note the use of the [] function (obtainable from the LISTS-TABLE menu) to access a
specific cell of a table. Replace row and column with different numbers and letters and
re-execute the definition. Then display the table. From these experiments, how does
BioBIKE think of tables?

6. From the Variables menu, Expunge the excel-table variable you created in Question 5
(so you can start fresh). Then put the definition of excel-table into a loop in such a way
that you define a table with rows from 1 to 10 and columns from "A" to "J" (which may be
accomplished by creating a loop variable that is IN a set defined by FROM "A" TO "J"). The
content of each cell should be the row JOINed with the column. For example, the content of
cell 1A would be "1A". Make and display this table.

(27/iii/13)

Problem Set 8 - 7

7. Make and display a table of squares, where the index is a number from 1 to 100 and the
value of the table is that number squared.

8. Make and display a table containing information about the cyanobacteria known to
BioBIKE. If you're in PhAnToMe, you can get a list of all cyanobacteria using the
Bacteria (phylo) menu from the Organisms button. The row labels should be the short
names of the organisms (using the NAME-OF function with the SHORT option). The
column labels should "size", "gene-number", and "GC-fraction". If you're irritated by
quotes, you can use as labels 'size, 'gene-number, and 'GC-fraction.

