
Loops - 1 

BioBIKE Language Syntax 
Working with large numbers of items: Mapping and Loops 

II. Loops 

II.A. Overview of loops by example 
Implicit mapping is simple: just replace a single item with a set of items. Explicit mapping is not 
too bad: just define a function f(x) = function and provide a list of x's. In contrast, looping uses 
what seems like a separate language. A loop executes one set of instructions repeatedly. Each 
time through the instructions is called an iteration. Here’s a previous example rendered as a 
loop:* 

Translation: 
a. Consider each protein in the set of all proteins of ss120, one at a time. 
b. Accumulate the molecular weights of each protein. 
c. When the last protein has been considered, return the sum 

That gets you the total molecular weight. Or this code gets you the entire answer by means of a 
more complicated loop:  

 



Loops - 2 

Translation: 
a. Consider each protein in the set of all proteins of ss120, one at a time. 
b. Before the loop begins, set the sum of molecular weights to zero. The initialization 

occurs only once.  
c. Before the loop begins, set the number of proteins. This will be a constant. 
d. Find the molecular weight of the one protein you’re considering at the moment. 

This assignment is repeated each time through the loop for each protein. 
e. Add that molecular weight to the growing total. 
f. (Loop) Repeat steps d and e until you’ve considered each protein in the set. 
g. When you’ve finished considering each protein, calculate the average molecular 

weight and use that as the value returned by the FOR-EACH function. 

II.B. Overview of anatomy of the loop 
BioBIKE supports two functions to describe loops: FOR-EACH and the very similar but more 
general LOOP function. This section will discuss only FOR-EACH. Loops can be divided into 
the following (mostly optional) parts: 

The Initialization section  (green) is the first to be executed and is executed only once, before the 
loop begins. The Primary iteration control (first section) and Control section (light green) are 
then set up before the loop begins, but they are considered again with each iteration. The next 
three sections (blue) are executed each iteration. The Final Action section (red) is executed only  
once, after the loop is finished. In the sections that follow, I'll discuss each part. 

II.C. Primary iteration control (top line of FOR-EACH) 
The primary iteration consists of two parts: the variable and the values that will be assigned to 
the variable. Each time through the loop, the variable will take only one of the values. The rest of 
the loop describes how that value will be used.  

Most people who have learned other computer programming languages expect loop variables to 
take only numeric values, counting sequentially from one number to another number. BBL loops 
can do this, but it's more common in bioinformatics to want to go through a list of things, like a 
list of genes or organisms or the nucleotides of a sequence. The example at the beginning of this 
section calculating molecular weight is a typical case. You can change the primary iteration, how 
the variable is assigned values, to achieve the following forms: 
                                                                                                                                                             
* In this and many other examples shown here, I use a version of the language, not what is currently available. 



Loops - 3 

SQ1. What values do you predict will be displayed in the following loop? 

SQ2. What values do you predict will be displayed in the following loop? 

II.D. (Additional) Control section 
Format E above makes clear that sometimes additional control over the loop is necessary besides 
that provided by the primary iterater. If the loop were allowed to proceed as shown in that 
format, it would begin at 3 and continue forever. Through the Control Section, you can impose 
additional FOR-EACH conditions and conditions of two new types: WHILE and UNTIL. 

The additional FOR-EACH conditions proceed in parallel with the first. Thus: 

 

A. 

B. 

C. 

D. 

E. 

F, 

Code fragments showing different formats for primary iteration: 
A. Consider each organism within the list of organisms called *all-cyanobacteria* 
B. Consider each letter within the string called my-sequence 
C. Consider each header/sequence pair in the list of such pairs read from the FastA file "fly-reads.txt" 
D. Consider each position, taking values from -15 up to -1. 
E. Consider each position, taking values from the variable called gene-end down to the same number less 30. 
F. Consider each codon-number, starting from 3 and proceeding by 3 (3, 6, 9,…) 



Loops - 4 

…displays only 10 numbers (1, 4, 9, … 100), not the 10 x 10 table you might expect. The loop 
shown above may be understood as follows: 

Translation: 
a. Consider each number, one at a time, from 1 to 10. Call it number1. 
b. At the same time, consider each number, one at a time, from 1 to 10. Call it 

number2.   
(Notice that when explained in this way, the folly of this loop becomes clear. 
There's no difference between number1 and number2 and no sense in inventing 
both. They will never differ from one another.) 

c. Display the following on a single, fresh  line: the value of number1 multiplied by 
number2. 

d. (Loop) Repeat steps c for each number1 and number2, changing in lockstep. 

There is a way of breaking the connection between the number1 and number2 so that they 
increase not in lockstep but like columns in a speedometer. We'll cover that in the Body section. 

In contrast to FOR-EACH, WHILE and UNTIL do not create a new variable. They describe a 
condition. In the case of WHILE, that condition must be met or the loop is terminated. In the 
case of UNTIL, if that condition then the loop is terminated. For example: 

Both loop fragments will have the same effect. In the first case, codon-position will 
increase by 3 so long as that position remains less than the full length of some gene. In the 
second case, codon-position will increase by 3 up until the point that position exceeds the 
length of the gene. Sometimes it is easier to think about continuing the loop WHILE something 
remains true, and sometimes it is easier think about continuing it UNTIL something becomes 
true. It is possible to combine any number of controls into a loop. The first loop fragment may be 
understood as follows: 

Translation: 
a. Consider each codon-position, one at a time, starting with the number 3 and 

proceeding upwards, counting by 3. 
b. Continue with the loop so long as the codon position is less than the length of 

my-gene (This example presumes that you have previously defined my-gene to 
be some gene.     

c. (The loop continues in some way not shown here)  
 



Loops - 5 

Using WHILE or UNTIL can be a bit dangerous. If you specify a condition that is always true or 
that never can be met, you might end up with a loop that goes on forever (or until your time 
allocation is exceeded,… default = 40 seconds). 

SQ3. How many numbers will the following loop display? 

II.E. Initialization section 
The first thing a loop does is to initialize variables you specify to be initialized. It does this even 
before initializing the primary iterater. You often may make loops without this section, but it 
does have its moments. For example, you might want to initialize variables to set a constant:  

Or, you might want to initialize a variable that will change over the course of the loop: 

It is possible to define any number of variables and constants.  

SQ4. What will the following loop display? 



Loops - 6 

II.F. Variable update section 
The Initialization Section initializes variables only once, at the beginning. In the Variable Update 
section, variables are modified every iteration through the loop. This is most commonly 
employed to set up quantities that will be used within the loop but depend on the value of the 
iteration variable. For example: 

… which may be understood as follows: 

Translation:  
a. Consider each gene  amongst those with shared evolutionary antecedents as 

pro0047 
b. Retrieve the short form of the name of the gene under consideration and assign 

that value to name 
c. Retrieve the short name of the organism of the gene under consideration and 

assign that value to organism. 
d. Retrieve the description of the gene under consideration and assign that value to 

description. 
e. Display the following, listing on a new line the name of the variable and its value 

for each of: name, organism, and description. 
f. (Loop) Repeat steps b through e until the set of genes has been exhausted.  

Note that the assignments (steps b through d) are redone each iteration. 

Each time through the loop, name, organism, and description will take on different values, 
because they are derived from the primary iterator, gene, which takes on a different value each 
iteration. Variables may also be updated using values that have been defined in the Initialization 
Section or updated earlier in the Variable Update Section. You could use this section to assign 
values to variables that don't change, but that's best left to the Initialization Section. 

Sometimes the entire loop is calculating variables and there's no need for the Body Section. It is 
enough to collect one or more of the variables.  

 

 



Loops - 7 

SQ5. Consider the example below of how initialized variables differ from updated 
variables. Predict what will be displayed. 

II.G. Body  
In all the sections discussed thus far, there are constraints as to what kind of actions may be 
taken (e.g. definitions in the Initialization section). In the Body section, you have almost free 
rein. It is important to realize, however, that actions in the Body section do not cause a result to 
be returned by the loop, unless there is an explicit RETURN statement. You may multiply a one 
variable by another, but that multiplication will not necessarily find its way into the results. 

Sometimes you would like to have two loop variables running separately from one another, 
unlike the two variables locked together in the example shown in SQ3. You can do this by 
having one loop nested within another. Nested loops work like a speedometer, with the variable 
of the inner nested loop like the 1's-digit and the variable of the outer nested loop like the 
10's-digit. The inner loop runs to completion for each iteration of the outer loop. Here's an 
example: 

SQ6. What does the function below display? 

Or, more interesting: 



Loops - 8 

SQ7. What does the function below display? 

II.H. Results section 
Like all BioBIKE functions, loops return a value. If you pay no attention to what it returns -- for 
example if you’re concerned only what the loop displays (as in the last example) -- then NIL will 
be returned. Most of the loops used as examples thus far return NIL. They just display something 
as output. In the real world, however you’ll usually want the loop to return a value or a list of 
values. On the first page of the notes there are examples of loops that do return values, one 
because of the SUM keyword and one because of the RETURN function.  

Here are five ways of returning values: 

- COLLECT, returns a list of values saved over the course of the loop 

- COUNT, returns the number of times the clause is invoked 

- SUM, returns the sum of a number of items. 

- MAX, returns the largest number considered in the loop 

- MIN, returns the smallest number considered in the loop 

(RETURN is another way, but that will be discussed in the next section, Final Actions). 

You may use no more than one of these methods in a specific loop. Each of these five ways of 
developing a result can be activated conditionally, using the very useful WHEN option. Here are 
some examples, some using WHEN, some not. 

How to make a list of large genes: 



Loops - 9 

Translation:  
a. Consider, one at a time, each gene in the set of genes of Anabaena PCC 7120. 
b. Retrieve the length of the gene and assign that value to a variable called  name. 
c. When the length is greater than 2000, put the gene and its length into a collection 

that will eventually be the result of the completed loop. 
d. (Loop) Repeat steps b and c until the set of genes has been exhausted.  

How to count the number of small proteins: 

 Translation:  
a. Consider, one at a time, each protein in the set of proteins of Prochlorococcus 

marinus ss120. 
b. Retrieve the molecular weight of the protein and assign that value to a variable 

called MW. 
c. When the MW is less than or equal to 10000, count the protein, i.e., add one to a 

count, which will eventually be the result of the completed loop. 
d. (Loop) Repeat steps b and c until the set of proteins has been exhausted.  

How to get a sum of the number of nucleotides devoted to tRNA: 

 



Loops - 10 

Translation:  
a. Consider, one at a time, each gene in the set of noncoding genes of Anabaena 

PCC 7120. 
b. Retrieve the length of the gene and assign that value to a variable called length. 
c. Retrieve the description of the gene and assign that value to a variable called 

description. 
d. When a match is found for the text "tRNA" within the description, add the length 

of the gene to a running sum, which will eventually be the result of the completed 
loop. 

e. (Loop) Repeat steps b through d until the set of genes has been exhausted.  

What is the size of the largest gene? 

Translation:  
a. Consider, one at a time, each gene in the set of genes of Anabaena PCC 7120. 
b. Retrieve the length of the gene and assign that value to a variable called length. 
c. If the length is bigger than any previously considered in this loop, remember it, 

and eventually this largest length as the result of the completed loop. 
d. (Loop) Repeat steps b and c until the set of genes has been exhausted.  

SQ8. Predict the result you would get by replacing XXX in the example below with each of 
the five Result Section options. 

II.I. Final action and the RETURN command (incomplete) 

Sometimes the ways of constructing a result offered by the Result Section are insufficient. The 
RETURN command makes it possible to return a result of any form, at any time. It is possible to 
stop the loop during an iteration and return a value by placing RETURN within the Body 
Section. For example, if you want to find the first instance of a long upstream sequence in a 
genome, you might do something like this: 



Loops - 11 

Translation:  
a. Consider, one at a time, each gene in the set of genes of Anabaena PCC 7120. 
b. Retrieve the sequence upstream of the gene (the sequence extending from the 

beginning of the gene backwards until it encounters the previous gene) and assign 
that value to a variable called upstream-seq. 

c. Retrieve the length of the gene and assign that value to a variable called length. 
d. If the length of the upstream region is greater than 1000 nucleotides, then return 

the current gene and exit the loop. 
e. (Loop) Repeat steps b through d until the above condition is met or until the set of 

genes has been exhausted.  
 
In some loops, you may want to perform some actions after all the iterations have been 
completed. Most commonly, the action to perform is to return a value using quantities developed 
by the loop. An example of this type is given on the first page of these notes.  
 


