Introduction to Bioinformatics
 Problem Set 6: Data Aggregates

A. Strings

A.1. From the example below:

```
    (DEFINE test-string AS "ABCDEFG")
    test-string[2 -> 4]
    test-string[2 5 1]
```

complete the following to extract the third codon from the gene sequence:

```
(DEFINE gene-seq AS (SEQUENCE-OF ssr1600)
fill in
```

Confirm what you did by displaying the sequence and looking for the third codon.
A.2. Write code that will extract the numbers from a social security number of the form: NNN-NN-NNNN
A.3. The third position of codons is the position of greatest variability. It therefore may be that nucleotide frequencies vary more at that position than at position 1 and 2 , and so it may be a better (or maybe a worse!) diagnostic for the genome identity of a sequence. Find the total nucleotide frequencies within the genes of Prochlorococcus marinus SS120 at each of the three positions. The following function might be of use to you:
(FROM 1 TO 30 BY 3)
--> (1 4710131619222528$)$

B. Lists

B.1. From the example below:

```
(DEFINE test-list AS {1 2 3 4 5})
test-list[2 -> 4]
test-list[2 5 1]
```

Define the set of cyanobacteria that live in the ocean. Here are all available cyanobacteria:
*loaded-organisms
Of these, all Prochlorococci, Synechococci, Crocophaera, and Trichodesmium live in the ocean.
C. Tables
C.1. From the example below:

```
(DEFINE test-table[1 "A"] AS "1A")
(DEFINE test-table[2 "G"] AS "2G")
(DISPLAY-TABLE test-table)
```

Write a loop that creates and displays a multiplication table, showing the products of \boldsymbol{m} times \boldsymbol{n} for \boldsymbol{m} and \boldsymbol{n} going from 1 to 10 .

