Pattern Matching and Replacement

Basic syntax:

(SEQUENCE-LIKE-PATTERN pattern IN sequence) (SEQUENCES-LIKE-PATTERN pattern IN sequence) (TEXT-LIKE-PATTERN pattern IN text) (TEXTS-LIKE-PATTERN pattern IN text)

(REPLACE-PATTERN pattern IN text BY replacement-text)

where *sequence* is anything that can be interpreted as a sequence (e.g. a string, a gene, a protein, a set of same), *text* is any string, and *pattern* is a string the nature of which is discussed below.

Simple patterns:

Any string of characters, excluding special characters (see below).

Example:

(SEQUENCES-LIKE-PATTERN "GGATCC" IN (SEQUENCE-OF A7120.chromosome))

Character sets and some special characters:

•	Any character
\\d	Any digit
\\D	Any non-digit
\/w	Any word character (letters and digits)
$\setminus \setminus W$	Any non-word character
\\s	Any space character (space, tab, and newline)
\\S	Any non-space character
[<i>abc</i>]	Set of characters
[^ abc]	Set of excluded characters
[a-z]	Set of characters from first character to last

Examples:

(TEXT-LIKE-PATT	ERN "\\d\\	d-\\w\\w\\w	-//d//d	\\d\\d"	
IN "LOCUS	ANGLNA	2225 bp	DNA	linear	BCT 12-SEP-1993")
Extract	s the date fro	om a locus lin	e of a Ge	nBank file	

(TEXT-LIKE-PATTERN "[^ACGT]" IN (SEQUENCE-OF Cw?0002)) Returns positions of the sequence with nonstandard nucleotides

^{*} PLEASE NOTE: At present, only simple strings work.

Repetition symbols

?	Previous element may be present or absent
+	Previous element may be present 1 or any number of times (choose maximum number of times)
+?	Previous element may be present 1 or any number of times (choose minimum number of times)
*	Previous element may be absent or present any number of times (choose maximum number of times)
*?	Previous element may be absent or present any number of times (choose minimum number of times)
$\{n\}$	Previous element must be present the <i>n</i> number of times
$\{m, n\}$	Previous element may be present anywhere from m to n number of times

Example:

```
(SEQUENCE-LIKE-PATTERN "C..C..C" IN (SEQUENCE-OF p-Ssr3184))
Finds amino acid sequence with spaced cysteines.
```

Other special symbols

\\t	tab
\\n	newline
\\.	Period (because . itself is special)
\\+	Plus (because + itself is special)
*	Asterisk (because * itself is special)
^	Element that follows must occur at beginning of string (not to be confused with ^ within a set designation, e.g. [^ACGT])
\$	Element that follows must occur at end of string
()	Group (to be considered a single element in pattern matching)
()	Remember these elements
	Or

Problems

- 1. Write a statement that will find all recognition sites of the restriction enzyme *Sfi*I in the genome of *Anabaena* PCC 7120. The enzyme recognizes the sequence GGCCNNNNNGGCC, where N can be any nucleotide.
- 2. Write a statement that will find all consensus NtcA-binding sites in the genome of *Anabaena* PCC 7120. You can find a description of NtcA-binding sites in the notes for March 1.
- 3. Write a statement like the one above, but looking for NtcA-binding sites properly spaced from a downstream promoter.
- 4. Find all proteins that contain the four-amino acid pattern typical of DNA methyltransferases. "aPPb", where "a" represents serine, aspartate, or asparagines, and "b" represents tryptophan or tyrosine. List the descriptions of the proteins you found.
- 5. Improve the search of the previous problem by looking for only those amino acid sequences in which the four-amino acid motif is preceded by "xxn", where x represents a hydrophobic amino acid and n represents any amino acid. Is this search better than the last?
- 6. Find the context 4 nucleotides to either side of the DNA sequence CGATCG in the genome of *Synechocystis* PCC6803. Any pattern?
- 7. Find the length of the longest sequence in the genome of *Synechocystis* PCC6803 between two GCGATCGC sequences.
- 8. Look for an origin of replication in *Synechococcus* PCC 7942 as a region that has two sequences (TTTTCCACA) within 40 nucleotides of each other.
- 9. Determine whether there are any nonstandard nucleotides (i.e., not A, C, G, or T) within any gene of *Trichodesmium erythreum*.
- 10. Extract all the words from a BioBIKE error message (generate a good lengthy message if you have to). <u>All</u> the words, where a word is defined as something bound by a space, hyphen, parenthesis, etc.
- 11. Parse a GenBank file
 - a. Go to GenBank and find the file for *glnA* from Nostoc PCC 7120. Download it as a text file and upload the file into your file space of BioBIKE.
 - b. Read in the file as a list of lines:

(DEFINE *name-of-list* AS (FILE-TO-STRING-LIST *file-name*))

c. Write a loop that will print out each line of the file, preceded by a number. Follow this form:

(FOR-EACH line IN *fill-in-something* FOR n FROM 1 (DISPLAY-LINE *fill-in-something*))

- d. Take a look at the first line of the list. Assign that first line to a variable.
- e. Write a statement that will extract from the first line the number of nucleotides (bp) in the file.
- f. Write a statement that will extract the date of submission of the sequence.
- g. Assign to a variable the contents of the first line that contains the word "promoter"
- h. Write a statement that will extract the coordinates of the given promoter.

- i. Write a loop that will extract and save in a list the coordinates of all promoters identified in the documentation
- j. Write a loop that will extract and save in a list the sequences of all promoters identified in the documentation.
- k. Assign to a variable the first line after ORIGIN
- 1. Write a statement that will extract the sequence parts of the line and only those parts (no numbers or blanks) and save them as a list.
- m. Write a statement that will take that list and JOIN them into a single sequence.
- n. Write a statement that will convert the joined sequence to upper case (use STRING-UPCASE).
- o. Find a way to consider the lines from 61 to the end and extract the sequence from it, yielding, in the end, a single upper-case sequence with no numbers or blanks.
- p. Improve on the above code, by having it find the beginning of the sequence itself.
- 12. Find all candidate iron-sulfer proteins in *Anabaena* PCC 7120, taking advantage of the fact that such proteins should contain the motif of four cysteines (C), spaced 2, 2, and 3 amino acids apart.
- 13. Find a way to identify the largest open-reading frames encoded in the DNA of plasmid pNpD.