Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes

Research proposal by Dan Nacu

Global Pharmaceutical Industry

\$400,000,000,000

http://www.who.int/trade/glossary/story073/en/

How can it be done?

Simulation Models

Shape Complementarity Chemical Properties

How can it be done?

Chemical Properties

Solvent Accessible Surface Area Hydrophobicity Electrostatics Van Der Waal's Forces Residue Pair potential Desolvation Energies Atomic Contact Energies Complementary Determining Regions etc...

A lot of options...

Its been done before... in a different way.

Li et al, 2007

Their Equation

Score =
$$w_1 E_{\text{RP}} + w_2 E_{\text{ACE}} + w_3 E_{\text{vdw}}^{\text{attr}} + w_4 E_{\text{vdw}}^{\text{rep}} + w_5 E_{\text{ele}}^{\text{sa}} + w_6 E_{\text{ele}}^{\text{sr}} + w_7 E_{\text{ele}}^{\text{la}} + w_8 E_{\text{ele}}^{\text{lr}}$$
,

Its been done before...in a different way.

Li et al, 2007

Their Results

Name	Successful structures out of all Structures	
Protease/Inhibitor	16/17	
Enzyme/Inhibitor	6/6	
Antibody/Antigen	18/19	
Other	11/15	

How will this be different?

Introducing HINT

Hydropathic INTeractions

$b_{ij} = a_i a_j S_i S_j T_{ij} R_{ij} + r_{ij}$

The HINT Equation

Why HINT?

Its more true to life

$b_{ij} = a_i a_j S_i S_j T_{ij} R_{ij} + r_{ij}$

two atoms

$b_{ij} = a_i a_j S_i S_j T_{ij} R_{ij} + r_{ij}$

affinity score for single interaction

All interactions are summed at end

 $b_{ij} = a_i a_j S_i S_j T_{ij} R_{ij} + r_{ij}$

 $b_{ij} = a_i a_j S_i S_j T_{ij} R_{ij} + r_{ij}$

 $b_{ij} = a_i a_j S_i S_j |T_{ij}| R_{ij} + r_{ij}$

Electrostatics

hydrophobic-hydrophobic hydrophobic-polar acid-base hydrogen bond polar-polar acid-acid base-base

returns +1 or -1

 $b_{ij} = a_i a_j S_i S_j T_{ij} R_{ij} + r_{ij}$

Atomic Distance

 $b_{ij} = a_i a_j S_i S_j T_{ij} R_{ij} + r_{ij}$

Lennard-Jones Potential

too close

too far

just right

What can be done?

By weighing each variable in HINT, the most important chemical property for enzyme/ inhibitor complexes can be found.

$$b_{ij} = (a_i a_j)^w (S_i S_j)^w (T_{ij})^w (R_{ij})^w + (r_{ij})^w$$

Why exponents?

Why exponents?

Li et al

Score = $w_1 E_{\text{RP}} + w_2 E_{\text{ACE}} + w_3 E_{\text{vdw}}^{\text{attr}} + w_4 E_{\text{vdw}}^{\text{rep}} + w_5 E_{\text{ele}}^{\text{sa}} + w_6 E_{\text{ele}}^{\text{sr}} + w_7 E_{\text{ele}}^{\text{la}} + w_8 E_{\text{ele}}^{\text{lr}}$,

HINT

 $b_{ij} = (a_i a_j)^w (S_i S_j)^w (T_{ij})^w (R_{ij})^w + (r_{ij})^w$

Start with 46 enzyme inhibitor complexes from the Benchmark 5.

What's FTDock?

FTDock

Rotation & translation in 3D space to find all possible configurations.

FTDock

Huge list of possible complexes

Huge list of possible complexes L RMSD Testing Ligand Root-Mean-Square-Deviation

What's L_RMSD Testing?

L_RMSD Testing

 $\sum (\operatorname{atom} x_1 - \operatorname{atom} x_2)^2$

total # of atoms

L_RMSD Testing Top 20 Structures

Top 20 Structures

For **46** complexes = **920** simulated structures. For both bound and unbound, **1,840 total**

Lets look at just one

20 Possible complexes

In the end...

23,000 HINT Scores for Bound 23,000 HINT Scores for Unbound

6,325,000 scores

46•20•5•5 = 23,000

Highest 50 HINT Scores for each complex L_RMSD Testing

Find best match for each complex

Interpreting result

Enzyme-Inhibitor Simulated Complex

Best L_RMSD Score: 4 \AA **HINT weight used:** $b_{ij} = a_i a_j S_i S_j (T_{ij})^{1.5} R_{ij} + r_{ij}$ \downarrow **Electrostatics**

Possible Results

Complex	Final L_RMSD Score	Weighing Used	Significant Chemical Property	
#1 Bound	4 Å	$a_i a_j (S_i S_j)^{1.5} T_{ij} R_{ij} + r_{ij}$	Solvent Accessible Surface Area	
#1 Unbound	6 Å	$a_i a_j S_i S_j (T_{ij})^2 R_{ij} + r_{ij}$	Electrostatics	
#2 Bound	2 Å	$a_i a_j S_i S_j T_{ij} (R_{ij})^{o.5} + r_{ij}$	Atomic Distance	
#2 Unbound	4 Å	$a_i a_j S_i S_j (T_{ij})^{1.5} R_{ij} + r_{ij}$	Electrostatics	
#3 Bound	3 Å	$a_i a_j (S_i S_j)^{1.5} T_{ij} R_{ij} + r_{ij}$	Solvent Accessible Surface Area	
#3 Unbound	5 Å	$a_i a_j S_i S_j (T_{ij})^{1.5} R_{ij} + r_{ij}$	Electrostatics	
•••	•••	•••		
#46 Bound	2 Å	$a_i a_j S_i S_j (T_{ij})^2 R_{ij} + r_{ij}$	Electrostatics	
#46 Unbound	6 Å	$(a_i a_j)^{o.5} S_i S_j T_{ij} R_{ij} + r_{ij}$	Hydrophobic Atom Constant	

Possible Results

Complex	Final L_RMSD Score	Weighing Used	Significant Chemical Property	
#1 Bound	4 Å	$a_i a_j (S_i S_j)^{\scriptscriptstyle 1} T_{ij} R_{ij} + r_{ij}$	Solvent Accessible Surface Area	
#1 Unbound	6 Å	$a_i a_j S_i S_j (T_{ij})^2 R_{ij} + r_{ij}$	Electrostatics	
#2 Bound	2 Å	$a_i a_j S_i S_j T_{ij} (R_{ij})^{o.5} + r_{ij}$	Atomic Distance	
#2 Unbound	4 Å	$a_i a_j S_i S_j (T_{ij})^{1.5} R_{ij} + r_{ij}$	Electrostatics	
#3 Bound	3 Å	$a_i a_j (S_i S_j)^{1.5} T_{ij} R_{ij} + r_{ij}$	Solvent Accessible Surface Area	
#3 Unbound	5 Å	$a_i a_j S_i S_j (T_{ij})^{o.5} R_{ij} + r_{ij}$	Electrostatics	
•••	•••		•••	
#46 Bound	2 Å	$a_i a_j (S_i S_j)^o T_{ij} R_{ij} + r_{ij}$	Solvent Accessible Surface Area	
#46 Unbound	6 Å	$(a_i a_j)^{o.5} S_i S_j T_{ij} R_{ij} + r_{ij}$	Hydrophobic Atom Constant	

In the future...

Different models (besides HINT) Different complexes (besides enzyme/inhibitor)

Questions?

Extras

Electrostatics Table

Table 1. T_{ij} interaction matrix

Atom Type [atom constant]	H (apolar) [a > 0]	H (polar) ¹ [a > 0]	C (apolar) [a > 0]	Polar (N,O,etc.) [a < 0]
H (apolar) [a > 0]	+1	-1	+1	+1
H (polar) ¹ [a > 0]	-1	-1	-1	-1
C (apolar) [a > 0]	+1	-1	+1	+1
Polar (N,O,etc.) [a < 0]	+1	-1	+1	-1

Notes: green: hydrophobic-hydrophobic; red: hydrophobic-polar; blue: acid-base or hydrogen bond; yellow: polar-polar (horizontal stripes: acid-acid, vertical stripes: base-base).

¹By convention, all hydrogen atoms have a > 0 [13].