
Chemical properties that affect binding of  
enzyme-inhibiting drugs to enzymes 

Introduction 

The production of new drugs requires time for development and testing, and can result in large 
prohibitive costs if done in vitro. Advances in computer technology allow for the computational 
testing and development of drugs before any wet-lab experiments are conducted, thus saving 
time and money. Programs for simulating how proteins bind to each other have been 
developed, and can be categorized as predicting either the 3D shape complementarity of 
proteins (1), or predicting whether proteins likely to bind based on chemical properties (2). 
These simulations prove to be more efficient in the drug-development-pipeline, but generally 
require some initial user input in order to begin working (such as maximum distance between 
atoms) (3), thus making them inaccurate for predicting all possible protein types. Accuracy can 
be improved by developing reference databases from which developers can compare 
successful binding techniques, or by experimentally determining a set of models that allow 
simulation programs to predict protein-protein (or protein-ligand) affinity based on the specific 
type of molecule being assessed (4). 


Molecular complex prediction models are developed by assessing the chemical properties of 
the molecules’ atomic compositions. Differing atomic compositions mean some binding 
patterns rely more on hydrophobicity, while others depend more on acid/base electrostatics (5). 
These chemical properties include solvent accessible surface area, hydrophobicity, 
electrostatics, van der waals forces, residue pair potential, desolvation energies, atomic 
contact energies, complementary determining regions, etc... (4) (6). These properties can be 
tested mathematically by evaluating atom type, atomic distances, and neighboring atoms, thus 
they can be placed in an equation that produces an overall positive or negative score (called an 
affinity score), indicating whether the two atoms will have a favorable or unfavorable 
interaction. 


The model of interest in this experiment will be the 
Hydropathic INTeractions (HINT) model developed at 
Virginia Commonwealth University (6) (7). The HINT 
equation, along with the chemical properties it 
evaluates are shown in equation 1. The equation 
produces scores on an atom by atom basis, and sums 
them up at the end, thus producing a score for the 
molecules as a whole.


Li et al (2007) found that “weighing” different chemical properties allows for the simulation 
model to produce a more type-specific affinity score, based on the properties of the protein 
complex being evaluated. A summary of their results shown in table 1 shows that once 
processed through their weighted equation, the success of the binding simulation improved (4).


bij = ai aj Si Sj Tij Rij + rij 

Equation 1. The HINT Equation
• i & j : the atoms being compared
• b : the affinity score for i & j
• a : atomic contact energy
• S : solvent accessible surface area
• T : electrostatics (acid/base chem.)
• R : atomic distance
• r : Lennard-Jones potential



Table 1 
Post-weighted equation results from Li et al (2007) 

With these results in mind, this experiment seeks to find whether weighing the HINT algorithm 
through exponentiation of the variables a, S, T, R, and r will allow for the discovery of which 
chemical properties play the greatest role in the binding of enzyme/inhibitor complexes. 



Methods 

Enzyme/inhibitor complexes will be taken 
from the Benchmark 5 (8), a list of PDB files 
commonly used to test molecular docking 
software, curated at the Massachusetts 
Institute of Technology. PDB files are lists of 
every primary, secondary, tertiary, and 
quaternary structure in a protein or protein-
complex, presented as a list of atomic 
coordinates. Figure 1 shows the process for 
how the PDB files will be used by the 
software and explains the significance of the 
bound/unbound terminology. As of now, 
there are 46 enzyme/inhibitor complexes on 
the Benchmark 5, thus 46 will be used for 
the experiment (shown in table 5 at the end 
of this document).


Those 46 bound and unbound complexes 
will be processed through an initial 3D 
shape-complementarity software called 
FTDock (9), to produce a large list of 
possible docked complexes. That large list 
will be culled through a ligand root mean 
square deviation (L_RMSD) comparison to 
the true-complex. The L_RMSD comparison 
is an overlapping of the simulated complex 
and the true-complex, wherein atomic 

Name Success Ratio

Protease/Inhibitor 16/17

Enzyme/Inhibitor 6/6

Antibody/Antigen 18/19

Other 11/15

Figure 1. Use of Benchmark 5 PDB files
The first PDB file is the true experimentally 
discovered complex. The second and third are the 
constituents of the true complex, discovered 
through separate experiments. The true-complex 
is computationally split into the constituents, thus 
in the end there are two copies of the complex 
constituents ready for processing. The “bound” 
ones contain important conformational changes, 
and the unbound ones don’t.
Conformational changes are small alterations that 
happen in atomic structure when two molecules 
bind. This is due to repulsive and attractive forces 
in the atomic structure.
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coordinates are compared in angstroms. Thus, the higher an L_RMSD value is, the more 
distant the atomic compositions of the molecules are, and the lower it is, the more similar (and 
closer to the true-complex) they are. After doing this to the large list of complexes, only the top 
20 with the lowest L_RMSD score will be selected for each of the 46 complexes (producing a 
list of 920 complexes)


Next, all 920 of the complexes will be processed through the modified hint algorithm. Each of 
the 5 variables a, S, T, R, and r will be exponentiated at either 0, 0.5, 1, 1.5, or 2, thus 25 tests 
will be conducted for each of the 920 complexes. Exponentiation by 1 will serve as the control. 


The output of the HINT algorithm will produce 23,000 HINT affinity scores. The highest 200 of 
those scores and their corresponding simulated complexes will be processed through a 
second L_RMSD comparison to the true-complex, and the lowest scores from that test will 
reveal which weights produced the most favorable simulated complex. Thus, a conclusion 
could be made about which chemical properties, and what proportion of those properties are 
important to the simulated binding of enzyme/inhibitor complexes.


Possible Results 

Table 2 
Possible Results Indicating Importance of Surface Accessible Surface Area amplified by 1.5 

Table 2 indicates the importance of solvent accessible surface area (SASA) since it appears 
three times in the sample results, and all three times it shows a 1.5 exponent on the SASA 
variable.


Complex Final L_RMSD Score Weighing Used Significant Chemical Property

#1 Bound 4 Å ai aj (Si Sj)1.5 Tij Rij + rij Solvent Accessible Surface Area

#1 Unbound 6 Å ai aj Si Sj (Tij)2 Rij + rij Electrostatics

#2 Bound 2 Å ai aj Si Sj Tij (Rij)0.5 + rij Atomic Distance

#2 Unbound 4 Å (ai aj)1.5 Si Sj Tij Rij + rij Atomic Contact Energy

#3 Bound 3 Å ai aj (Si Sj)1.5 Tij Rij + rij Solvent Accessible Surface Area

#3 Unbound 5 Å ai aj Si Sj (Tij)0 Rij + rij Electrostatics

… … … …

#46 Bound 2 Å ai aj (Si Sj)1.5 Tij Rij + rij Solvent Accessible Surface Area

#46 Unbound 6 Å (ai aj)0.5 Si Sj Tij Rij + rij Atomic Contact Energy



Table 3 
Alternative Results Showing Importance of Electrostatics 

The following shows the importance of Electrostatics since there are 4 instances in which is 
produced a favorable L_RMSD score. In this case the exponents were 2, 0.5, 1.5, 1.5, and 2. 
There is no clear number that is most favorable, but one could conclude that an increase in the 
weight of electrostatics is important to enzyme/inhibitor binding.


Table 4 
Results In Which No Clear Conclusion Can Be Reached 

Complex Final L_RMSD Score Weighing Used Significant Chemical Property

#1 Bound 4 Å ai aj (Si Sj)1.5 Tij Rij + rij Solvent Accessible Surface Area

#1 Unbound 6 Å ai aj Si Sj (Tij)2 Rij + rij Electrostatics

#2 Bound 2 Å ai aj Si Sj Tij (Rij)0.5 + rij Atomic Distance

#2 Unbound 4 Å ai aj Si Sj (Tij)1.5 Rij + rij Electrostatics

#3 Bound 3 Å ai aj (Si Sj)1.5 Tij Rij + rij Solvent Accessible Surface Area

#3 Unbound 5 Å ai aj Si Sj (Tij)1.5 Rij + rij Electrostatics

… … … …

#46 Bound 2 Å ai aj Si Sj (Tij)2 Rij + rij Electrostatics

#46 Unbound 6 Å (ai aj)0.5 Si Sj Tij Rij + rij Atomic Contact Energy

Complex Final L_RMSD Score Weighing Used Significant Chemical Property

#1 Bound 4 Å ai aj (Si Sj)1 Tij Rij + rij Solvent Accessible Surface Area

#1 Unbound 6 Å ai aj Si Sj (Tij)2 Rij + rij Electrostatics

#2 Bound 2 Å ai aj Si Sj Tij (Rij)0.5 + rij Atomic Distance

#2 Unbound 4 Å ai aj Si Sj (Tij)1.5 Rij + rij Electrostatics

#3 Bound 3 Å ai aj (Si Sj)1.5 Tij Rij + rij Solvent Accessible Surface Area

#3 Unbound 5 Å ai aj Si Sj (Tij)0.5 Rij + rij Electrostatics

… … … …

#46 Bound 2 Å ai aj (Si Sj)0 Tij Rij + rij Solvent Accessible Surface Area

#46 Unbound 6 Å (ai aj)0.5 Si Sj Tij Rij + rij Atomic Contact Energy



Table 4 prevents any conclusion from being made. There is an even split between SASA and 
electrostatics, so one may say those are both important in the binding of enzyme/inhibitor 
complexes, though the weighing used does not show a definite preference for increasing or 
decreasing the variable (split between exponent that are <1 and >1), thus no definite 
conclusion can be made. It seems unlikely that no conclusion will be reached given a large 
enough sample size, though it is a possibility. 


If results indicate the most favorable weight is 1 (the control), this would mean that the HINT 
model works best unchanged for that complex.

 

Discussion 

Use of the weighted HINT equation may provide insight into which chemical properties are 
most significant in the binding of enzyme/inhibitor complexes. Based on the results from Li et 
al (2007) (4), the use of weighted variables plays a role in finding which chemical properties are 
most important to the binding of a specific molecular complex. Thus, further work, perhaps 
using different simulation models and types of complexes may allow for further specialization 
of docking software, and allow for more efficient and accurate experimentation for drug 
development. 




Table 5 
Benchmark 5 PDB Files To Be Used 
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