
Notes on ThreadProtein.pl - 1

BIOL591: Introduction to Bioinformatics (2003)
Program to superimpose one sequence on a known structure
I. Our starting point: Threading a sequence through a known structure
By now you’ve probably used Protein Explorer to look at the known 3-dimensional structure of
UDP-glucose dehydrogenase (UDPGD) from Streptococcus pyogenes, and a thing of beauty it is.
Unfortunately, it does not tell you how to prevent the similar enzyme from Mesorhizobium loti
from precipitating when it is overexpressed in E. coli. The first step is to see the three
dimensional structure from the M. loti enzyme. That structure has not been determined, but if the
sequences of UDPGD from the two bacteria are similar enough, one may presume that the two
structures are also similar.

If the structures are indeed similar, we could use the alignment to affix the sequence of the M.
loti enzyme to the structure of the S. pyogenes enzyme. What does this get us? It doesn’t tell us
anything new about the structure UDPGD from M. loti, because we presume the structure to be
the same as that of the structure of the homologous enzyme in S. pyogenes. The analysis does tell
us, however, where specific amino acids are located if the structure is basically applicable. We
can use this mapping to tell us the location of altered amino acids in mutants of UDPGD we
isolated that are moderately more soluble. And from that knowledge, we might be able to predict
what additional mutations would affect solubility, perhaps to a greater extent than any we
isolated.

The first step is to get an alignment between UDPGD sequences from the two bacteria. Clustal
(see link in unit web page) takes two or more sequences and returns the best alignment of the
sequences it can find.

SQ1. Get the sequences of UDPGD from Streptococcus pyogenes and Mesorhizobium loti
in FastA format (if you haven’t already) or convert the sequences from some other
format into FastA format. Concatenate them into one file.

SQ2. Download Clustal (if you haven’t done so already) and upload the file you created in
SQ1. Then do a complete alignment. Save the aligned sequences (Save as) in
NBRF/PIR format (which is FastA format but allowing gaps).

You can now use the aligned sequences as in put to ThreadProtein.pl (available on the unit web
page). That program is ready to go, as soon as you get the files you need (and change the Files
section of the program so that the file names are correct).

SQ3. Find and download the PDB file containing the structure of UDPGD from
S. pyogenes.

SQ4. Download, modify, and run ThreadProtein.pl

SQ5. Upload the resulting PDB file into Protein Explorer (see link on unit web page).
Stop the protein from spinning, get into QuickViews, toggle the water out of existence, and you
should see a three-dimensional structure with four colors. What do these colors mean?

SQ6. Examine the documentation for ThreadProtein.pl. What do the colors mean? Which
color corresponds to which type of amino acid residue? To answer this, you might

Notes on ThreadProtein.pl - 2

click on a residue (its identity will appear in the command box) or select a chain and
change its color.

You can isolate different chains by selecting the others and changing their display to ball+stick.

SQ7. What generality can you draw regarding the location of amino acids in common
between S. pyogenes and M. loti. How do you explain this generality?

SQ8. What generality can you draw regarding the location of amino acids that are
insertions or deletions in one sequence relative to the other? How do you explain this
generality?

II. The workings of ThreadProtein.pl
II.A. Modules

In a moment you will modify ThreadProtein.pl so that you can identify the positions of new
mutations in UDPGC in the same way you can now identify replacements, insertions, and
deletions. First, however, it might be useful to learn a bit about how the program works. Before
getting to the strategy of the program, notice two things unusual about this program. Every other
program this semester has had a Libraries and Pragmas section consisting of a single line:

use strict;
The section in this program has three use statements.

To see a second, more subtle difference, one that is intimately related to the first, go to the Main
Program, which opens:
 Read_FastA_sequences ($alignment_file);

By now you immediately recognize this as a call to a subroutine called Read_FastA_sequences.
So you scroll down to the Subroutine section and… no subroutine! How can this call work if
there’s no subroutine telling Perl what to do?

You’ve no doubt guessed the solution to this mystery. The use FastA_module statement must
somehow make Read_FastA_sequences meaningful, even in the absence of a subroutine in
ThreadProtein. Examine FastA_module.pm and you’ll see how: Except for the first four magical
lines and a new Initialization section, FastA_module contains just a collection of subroutines,
including the one we were looking for. FastA_module is an example of a Perl module (indeed,
the pm suffix means “Perl module”).

Modules are great. They enable you to use and reuse proven code without need for cutting and
pasting. Never again will you need to search through programs for a routine that reads FastA
files. Just bring in FastA_module and you’re ready to go. They have another benefit.
ThreadProtein is less cluttered than it would otherwise be because housekeeping functions have
been dropped into modules. What remains is code that’s specific to the task of threading protein.

As you write generally useful subroutines for one program or another, it is a good practice to
package it up into a module so that you can easily reuse the code later. Soon you’ll find that
much of programming is piecing together capabilities you’ve accumulated for a new purpose.
Much easier than writing from scratch!

You may surmise that there are other people in the world using Perl, even others using it for
bioinformatics. If so, then there’s probably lots of useful modules on different computers, often

Notes on ThreadProtein.pl - 3

just the one you need. Wouldn’t it be wonderful if there were libraries you could visit to check
out a module when you need it?

Well, there are. In particular, there’s a useful library full of modules of bioinformatic interest,
called BioPerl. (see web site links page).

Bringing in modules seems like inserting the code into your program, but there are significant
differences. First, the module can’t access variables in your program and you can’t access
variables in the module (at least not by the usual means). This is good. Neither entity can
accidentally alter the values of variables when it shouldn’t. The only part of the module you can
normally access is what is exported to you, e.g. the three subroutines of FastA_module and the
three hashes of AA_module, via the declaration of the special variable @EXPORT.

Second, modules are initialized prior to use. Your program never calls Read_aa_info in
AA_module (and it couldn’t even if it wanted to, since the subroutine was not exported).
Nonetheless, that subroutine is invoked during the initialization of the module, once and only
once. This behavior makes modules ideal for taking care of informational entities (like
databases) whose workings need not concern the main program.

II.B. The threading process

Scroll to the Main Program of ThreadProtein to read the overall strategy of the program. The
claim is that the output PDB file is the same as the input PDB file, except for ATOM lines. This
is more easily seen than explained, so…

SQ9. Open both the input and output PDB files simultaneously and scroll down in each
window so that you can see the first 20 or so ATOM lines (roughly 10% of the way
through the file). How do the two files differ? What do the values in the first six
columns signify? Where did the missing amino acids go in the output file?

SQ10. Scroll down the C chain of the output PDB file. Why is it that all the other chains
have multiple atoms per amino acid but the C chain has only one? Why is it that the
program assigned such a large number to all the residues in this chain?

So somehow the program figures out which amino acids are common between the two
sequences, which are different, which are insertions, which are deletions, and then apportions
them to the four chains. In the Main Program you can read that all that information is stored
somehow in a variable called $comparison_summary. How is that done?

SQ11. Modify ThreadProtein.pl so that $comparison_summary is printed out immediately
after it is calculated. It might be helpful to see on the same screen the sequences that
are being compared, so print those two out as well. Pause the program at that point
and see if you can determine what all the symbols in $comparison_summary mean,
relative to the two sequences.

Armed with that insight, look now at the subroutine that actually constructs the new PDB file.
Look at it just for the overall logic – never mind for now the nuts and bolts of what it actually
does.

SQ12. The variable $residue_state seems to be pretty important in directing events. What
is contained in this variable? Where did it come from?

Notes on ThreadProtein.pl - 4

III. Modification of ThreadProtein to set apart positions of known mutations
III.A. Overview of problem

Finally we come to our appointed task: writing a program that will produce a PDB file readable
by Protein Explorer and enable PE to make visible altered positions of mutant UDPGD from
M. loti that are able to partially avoid precipitation. You can see the list of the mutated amino
acid in each of the seven mutants by going to the unit web page. Some have a single mutation,
others multiple. Of course, there’s no way of knowing which of the mutations is responsible for
the observed decrease in precipitation or if more than one mutation is responsible (in those cases
where a mutant protein has multiple mutations).

The first thing to realize is that this is a very similar problem to the one that ThreadProtein has
already solved. In the end, Protein Explorer doesn’t care if we divide amino acids by match vs
replacement or wild-type vs mutant. It will color whatever categories we set up, so long as
they’re set up properly. If we can get the mutation information into the same format
ThreadProtein understands, we might be able to get the job done with relatively minor
modifications.

What needs to be modified?

1. First, we need a variable to hold the mutation information and a subroutine to read the
file into that variable.

2. We need a subroutine to incorporate that information into the variable used by
ThreadProtein to hold the bases for partitioning the amino acid residues into different
chains.

3. We need to alter the subroutine that builds the new PDB file to be cognizant of the new
symbol we’ll define to represent mutations.

That should do it.

III.B. Reading in mutation information

We need to understand what information we’re given regarding the mutant enzymes. The file,
UDPGD-mutants.txt (available from the unit web page), describes mutations according to a
common convention. Each mutation is given in the form: XXX ddd YYY, where XXX and YYY
are the three-letter codes of the wild-type and mutant proteins, respectively, and ddd is the
position of the amino acid. Each line begins with an identification number of the mutant.

How much of this information do we need? There might be some value in giving the set of
mutations in each mutant a different color, but for now I’m going to combine all the mutations
into one set. So the mutant ID number is of no consequence. The position of the mutant amino
acids is the main value, since that’s what I’ll use to define a new subdivision of the protein (i.e. a
new chain), to be colored separately from the other amino acids. What about the names of the
amino acids? The name of the wild-type amino acid is useful information, because I can use it as
a cross check, to make sure that the it agrees with the amino acid given by the amino acid
sequence of M. loti enzyme. But that’s an extra. Grabbing that information will complicate the
subroutine. You can decide if you want to save that information or throw it away. The name of
the mutant amino acid could be useful in a different way. It would be nice to be able to visualize
alternatively the original amino acid then the mutant amino acid. That is still another

Notes on ThreadProtein.pl - 5

complication. In the interest of simplicity, I’ve decided for the first draft to use only the
positional information.

Having defined what we want, writing the subroutine boils down to the kind of parsing we did
weeks ago. What kind of regular expression will capture everything we want?

SQ13. Write a subroutine that will read the file UDPGDH-mutants.txt and print out the
coordinate of each mutation. Once that works, modify it so as to save those
coordinates in an array.

III.C. Incorporating the position of mutations into the summary of changes

ThreadProtein incorporates information about the alignment into a summary of changes in the
subroutine called Analyze_alignment. My first thought is to use this as a model for a second
subroutine that inpororates information about the mutation positions into the same summary. So,
just as Analyze_alignment proceeds via a foreach loop through a sequence (actually two)
containing the information it wants, my subroutine will proceed through the array in which I put
all the positional information.

What I want to do then is very simple: put a new symbol in every position where a mutation
occurred, just as Analyze_alignment puts, for example, a symbol in every position where an
insertion occurs. If it weren’t for one complication, this part of the program would be relatively
simple. The complication is that I have the mutations in coordinates of the M. loti enzyme.
ThreadProtein wants to see everything in terms of coordinates of the aligned sequences, with
gaps included.

When such a complication arises, there are two general approaches. One is to write the
subroutine such that it recognizes and handles the complication. The other is to write a separate
function that transforms what I know into what I want to know and then write a much simpler
subroutine. I think the second approach is both easier to code and easier to understand when
you’re reading the program (e.g. weeks from now when you’ve forgotten what you did). So I
suggest you begin this part of the problem by writing a subroutine that takes as input the
coordinate of the mutation and returns the coordinate of the mutation relative to the aligned
sequences. There are many ways of accomplishing this.

SQ14. Write a subroutine that will read translate one coordinate system into another: from
M. loti UDPGDH coordinates to S. pyogenes/M. loti alignment coordinates.

SQ15. Write a subroutine analogous to Analyze_alignment that incorporates mutant
positional information into the same variable that contains information about
insertions and deletions.

III.D. Modifying the routine that builds the new PDB file

Here again, what we want to do is very analogous to what ThreadProtein already does. The
subroutine Create_new_structure_file goes through the string that summarizes the status of each
residue in the alignment and partitions the residues amongst four different chains. We want to
add one more chain, built in a way very similar to the way that one of the chains is already built.

Notes on ThreadProtein.pl - 6

SQ16. Which condition (match, replacement, insertion, deletion) is most similar to
mutating an amino acid? Which section of Create_new_structure_file would be the
best model for the task at hand?

SQ17. Modify Create_new_structure_file so that the PDB file produced has a fifth chain,
containing those amino acids that were observed to be mutated when selecting for
increased solubility of UDPGD.

You may complete the last study question but feel a bit uneasy. How do you know that the right
amino acids were flagged? Protein Explorer will be of limited use in testing, because if you click
on an amino acid (i.e. those you identify as in the new, fifth chain) it will report to you the amino
acid position in S. pyogenes coordinates! It will help a lot if we had a concordance, enabling us
to go back and forth between coordinate systems.

SQ18. Print out for each mutation the position of the amino acid in S. pyogenes coordinates
and in M. loti coordinates. Hint: if you use the handy function called True_size, you
can accomplish this task in a single line!

That’s a lot of programming! Even if each step is not overwhelming, the irritating details add up.
Let’s see how far we can get by the end of class tomorrow. Go as far as you can beforehand.

