
Microarray Analysis Program - 1

BIOL591: Introduction to Bioinformatics
Microarray Analysis Case Study: The Program

Outline:
 I. Goal of program
 II. Overview of program shell
 III. Outline of your additions to the shell
 IV. Write the subroutines
 V. Sort the training set and print it or write it to disk

I. Goal of program
Our goal now is to write a program in Perl that will recreate the calculations Golub et al (1999)
did in order to produce Fig. 2 of their paper. Why do this? To find what genes are most
predictive of the ALL/AML class distinction? They already did this for us. To verify their
answer? Commendable, but that’s not our official job. To learn how their method works? Excel
is a better tool for that task.

I can think of three better reasons to write this program. First, with the program in hand, you will
be able to go beyond the Excel program we did in class, seeing how Golub et al used the class
predictor to work on data from unknown patients (a task for later). Second, it gives you an
opportunity to reinforce what you learned with the Excel program by doing the same steps in a
different environment. Finally, this is your chance to write the logic of a program almost from
scratch. I’ve given you just the shell of a program, one that takes care of the behind-the-scenes
dirty work (like reading in data) but leaves for you to choose what statistical operations should
take place when.

The starting point is available on the web, from today’s calendar entry or from the Program
section of the web page for this unit (click on Class_predictor.pl).

II. Overview of program shell
Download Class_predictor.pl and examine the most comprehensible parts: the primary
documentation, the Files section and the Main Program. When you reach the Main Program,
you’ll find that there’s nothing much there except two holes for you to fill in. Run the program to
confirm that nothing useful is produced.

Well,... the program is not totally devoid of content. The Main Program already calls a
subroutine that sounds like it has something to do with reading in the data, and scrolling down to
the Subroutine section, you’ll find that the subroutine actually exists and is stuffed with
statements that seem reasonable. But what exactly is read in and in what form?

SQ1. Have the program print out the data from the first line of the training set (open up
the training set file so you know what to expect). The most straightforward way to do
this is through a loop.

You’re given a suggestion in the Main Program to make good use of a subroutine with the
provocative name, Get_data_from_line. Take a look at that subroutine (the documentation may
be all you need to see).

Microarray Analysis Program - 2

SQ2. What data does it get? Have the program print out the values held in each key
variable and compare it to the training set.

 III. Outline of your additions to the shell
Think back on what you did in Excel to calculate the measure of correlation for each gene, i.e. a
measure of the degree to which expression values for a gene fit the distinction between ALL and
AML.

SQ3. Translate the sequence of steps you took into a list of subroutine calls and place these
calls into the appropriate place in the Main Program. Your procedure should be
designed to produce a measure of correlation for each gene in the training set.

Hint 1: A loop seems unavoidable
Hint 2: Don’t try to put any equations into the Main Program. Leave that sort of thing for the

subroutines you invent.
Hint 3: It's not likely that you're going to be able to come up with the ultimate Main Program

immediately from scratch. Still, get something down, realizing that you'll probably
change it before the program is through. Don't get stuck at this point. Jotting down a few
feeble lines and moving on is better than staring miserably at a blank screen. Your
thoughts will no doubt evolve as you go through the problem.

Hint 4: You might be tempted to write subroutine calls like:
 Calculate_mean_of_ALL_patients ();

 Calculate_mean_of_ALL_patients ();

but this this is both inefficient and prone to error, because whenever you correct an error
in the first subroutine, you'll probably have to remember to correct it in the second one
as well. It's better to write a single subroutine that can act on any set of patients, like:
 mean_ALL = Calculate_mean (@ALL_values);
 mean_AML = Calculate_mean (@AML_values);

Now you need only get one subroutine to work right.

SQ4. Perl will object if you call a subroutine that doesn’t exist. For now, put in a stub in
the Subroutine section for each subroutine you invented, just a header in the format
shown below (for a hypothetical subroutine named Calculate_squeegie):

CALCULATE_SQUEEGIE (list of arguments, if any)
Documentation, or fill this in later
sub Calculate_squeegie {
}

SQ5. Go through your new Main Program, noting each variable that you invented (there
will surely be some). Declare and describe each new variable in the Variable section
of the program.

If you’ve done all this properly, your program should run just as well as before, i.e. with no
errors but no useful output either. Writing an outline of this type gives you a framework in which
to work. You can fill in each subroutine, make sure that it works, and make your program
functional one step at a time.

Microarray Analysis Program - 3

IV. Write the subroutines
Teach the program to do just one subroutine at a time and test the new subroutine before moving
on to the next. You know how to do things like calculate means and standard deviations, so the
task is merely a question of translating what you know into Perl. If you don’t remember the
formula, then here are some useful quantities:

mean = (sum of each value) / (number of values summed)

variance = (sum of (each value – mean)2) / (number of values – 1)

standard deviation = Square root of variance

measure of correlation = [look it up in Golub et al (1999)]

Hint 1: Test each subroutine in two ways. First, if possible, try it out under simple conditions
where you know the answer. For example:

print $LF, “mean: “, Calculate_mean ((1 2 3 4 5)), $LF;

Second, try it with actual data and compare the answer with that calculated by Excel.

Hint 2: Avoid the following common errors in writing a subroutine:

a. Forgetting to grab the argument (if the subroutine is called with one):
 mean_AML = Calculate_mean (@AML_values);

...
sub Calculate_mean {
 my (@values) = @_; ← remember something like this

Failing to do this (or failing to initialize a variable by some other means) may lead to the
following error:

 Use of uninitialized value in addition (+) at...

b. Forgetting to declare new variables with my. Failing to do this may lead to the following
error:

Global symbol "$sum" requires explicit package name at...

c. Forgetting to put a semicolon at the end of a statement. Failing to do this will lead to an
unpredictable error. In such cases, the given line number may prove useful.

d. Forgetting to return a value at the end of the subroutine, if the subroutine is called as part
of an assignment statement. For example:
 mean_AML = Calculate_mean (@AML_values);
 ...
 sub Calculate_mean {
 ...
 return sum/n; ← remember something like this

Failing to do this won’t immediately cause an error, but may lead to weird errors later.

SQ6. Write each subroutine called in your Main Program, one at a time, testing each.

Microarray Analysis Program - 4

V. Sort the training set and print it or write it to disk
There are at least two useful directions in which this program might proceed: (1) Save the
correlation measures and expression data for the best genes (however you define them) for use
later in a program designed to assess expression data from patients with unknown types of
leukemia, and (2) Save correlation measures and expression data for all the genes for import into
Excel (to allow you to draw the curve shown in Figure 2 of the paper). Either way, it is first
necessary to sort the data by correlation value.

Sorting is an obscure process in Perl. Fortunately, you have been provided with a subroutine,
Sort_training_set_by_correlation, which takes care of sorting for you, so long as you
know how to call it.

SQ7. Examine Sort_training_set_by_correlation and then put in your main
program a proper call of the subroutine.

Now take a look at the currently ineffectual subroutine Write_best_genes. You need to alter
it so that it actually does write out the genes best able to predict the ALL/AML distinction
according to the criteria proposed by Golub et al. Output is seldom as simple matter, but the hard
part has been done for you in the subroutine Print_gene_info.

SQ8. Examine Print_gene_info and then modify Write_best_genes so that it uses the
subroutine to print the most predictive genes.

Hint: You’ll need two loops for this, the first to print information about those genes that best fit
data from ALL patients and the second to print information about those genes that best fit
data from AML patients.

SQ9. Write a new subroutine modeled after Write_best_genes that saves to file all genes
of the training set (now sorted and given a correlation measure).

Hint: You’ll need to define the name of the output file (in the Files section of the program) and
open the output file (done for you in a commented-out line in Write_best_genes.

