
What’s wrong with BlastN? - 1

BIOL591: Introduction to Bioinformatics
What’s wrong with BlastN?

I. Interlude: Progress in solving the Mystery of the Missing Match
I.A. Local BlastN vs NCBI’s BlastN
Friday in class we discovered the following:

1. We have in our hands a working program BlastN, written in Perl, that at least in some
respects acts like BlastN implemented by NCBI.

2. The parameters set in the local program are the same as those set in the NCBI
implementation (except for gap dropoff and Expect threshold)

3. The main loop of the program sequentially extracts words from the query sequence and
finds matches between them and the target sequence.

4. A subroutine called within the main loop is responsible for constructing the scoring tables
necessary to extend the exact match in both directions.

5. The local implementation differs from the NCBI implementation in at least the following
particulars:

a. The local BlastN does not filter the query sequence
b. The local BlastN does not calculate a score related to the probability of finding a

match as good or better than the match found.
c. Therefore, the local BlastN does not throw away or rank sequences based on this

score.

6. Unlike NCBI-implemented BlastN, the local program printed several matches when
DG47 (the sequence of the PCR product) was blasted against M29081 (bona fide lef
gene). All the matches were very short, except for one that extended the length of DG47.

I.B. Mysteries to be solved

1. There remains the main mystery: Why can’t NCBI BlastN find the similarity between
DG47 and lef that we can readily see by eye?

2. Now we have a new and possibly related mystery: Why does BlastN implemented by
NCBI give different output from homegrown BlastN ?

There was a suggestion on Friday that perhaps the filtering performed by NCBI’s version could
account for the different output.
SQ1. Test whether filtering is the key difference in two ways:

a. Compare DG47 and lef via NCBI’s pairwise Blast, after disabling filtering.

b. Compare DG47 and lef via local BlastN with filtering. You could teach the program
how to recognize and mask repetitive sequences, but for our purposes that’s way too
much work. Find the repetitive sequence yourself by eye and then edit the query to
replace the repetitive sequence with random nucleotides. Use this modified DG47
also in a pairwise Blast search using NCBI’s Blast.

In both cases, is the output of the two programs now the same?

What’s wrong with BlastN? - 2

I.C. How to solve the ultimate mystery (of BlastN, I mean)
Filtering indeed makes a big difference in certain cases what output you get from BlastN. But
even accounting for filtering out regions of low complexity, the main mystery still remains. I
would still consider DG47 and lef a good match, even if I excluded regions of low complexity.
Yet BlastN does not, neither NCBI’s nor our own.

SQ2. Think seriously on why BlastN does not find the match. For starters, why do you
think it should find a match?

a. Extract a small region of DG47 and lef that you think should match and use those
regions as query and subject. Does our BlastN still fail to find a match?

b. Make yourself into BlastN, and by hand go through all the steps of the BlastN
algorithm using the small query you invented in 2a to search through the small
target sequence. Do you still find a match?

I.D. How to account for the extra sequences found by homegrown BlastN
When you accounted for filtering, you should have discovered that there are still matches found
by local BlastN that are not found by NCBI’s implementation. Why is that? Consider the steps of
the BlastN algorithm:

1. Read the query and target sequences
2. (optional) Filter the query sequence to remove regions of low complexity
3. Find all query-target matches as follows:

a. Extract a word from the query, using a sliding window
b. Find an exact match of the word in the target sequence

(if no match: Return to Step 3a)
(if a match, continue)

c. Extend match in both directions
d. Calculate an E-value for the final match
e. Save matches whose E-values are better than a given threshold
f. Repeat steps 3a-3e until all possible query words have been tried

4. Rank the matches by their E-values
5. Print out the top matches

SQ3. Which of these steps are performed by our homegrown BlastN?

Certainly one major difference is that our BlastN does not calculate E-values. Consider how you
would go about doing this – what you need to know and where in the program you need to know
it.

SQ4. Add a line to the program that calculates the E-value for a match and then prints it.
To do this, you will need to know (amongst other things) values for lambda and K.
Grab those values from the output from a Blast search you do at NCBI. For now,
don’t bother saving the E-values or think about ranking matches based on E-values.

SQ5. After running your program, resolve the discrepancy between the different output of
our program and NCBI’s.

What’s wrong with BlastN? - 3

II. Does local BlastN make scoring tables properly?
I overheard a conversation between Jen and James regarding the meaning of gap-extension
penalty. The issue, I think (I didn’t hover over them to find out for sure), was whether the gap
extension penalty was exacted on all mismatches or only starting from the second one. The
Smith-Waterman method charges a gap-opening penalty for the first gap and a gap extension
penalty for each additional gaps, but the online documentation for Blast does not make clear
whether Blast computes penalties in this way or some other way. An alternative approach is to
charge a gap-opening penalty and a gap extension penalty (or more accurately a gap-presence
penalty) for the first gap and just a gap extension penalty for each additional gap. These two
choices are illustrated in Table 1.

Table 1: Comparison of methods to calculate gap penalty

Method

Formula for gap penalty

Example: penalty for
AGGC open -5
T--G ext -2

Smith-Waterman Gap_opening + gap_extension · (gap_size-1) 7
Alternative (Blast?) Gap_opening + gap_extension · gap_size 9

Which method does NCBI BlastN use? We’ll be able to answer this better after a discussion of
scoring, but we can answer right now what method local BlastN uses.

SQ6. One way to tell is to examine the program and look for the code that calculates gap
penalties. Find that part of the program. Where is it and which method does the
program use?

SQ7. Another approach is to print out the scoring matrix and examine the values in
adjacent boxes. The notes for Wed Oct 8 describes how to write a subroutine to print
out some values of the scoring matrix. First of all, where in BlastN would you put a
call to this subroutine (print_score) so that the values printed out are meaningful?

SQ8. Complete the subroutine print_score started for you in Wednesday’s notes, insert it at
the end of BlastN, and call it at the appropriate time (determined in SQ3).

