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▼ Drug discovery through trial and error has
been successful throughout the centuries.
Treatments with positive effects were retained
and unsuccessful remedies were discarded.
Both Western and Eastern medicine attest to
the power of this strategy. Nonetheless, with
the advent of organic chemistry and pharma-
cology came new requirements. Pharmaceutical
companies had to provide explanations for
the positive effects of new drugs and these 
explanations required scientifically rigorous
testing of biological mechanisms. Physiological
causes for specific diseases were discovered
and, in some cases, causes for these causes.
Encouraged by these successes, a scientific de-
duction was made beyond drug development,
namely that, to understand physiological
functioning or disease, an organism had to be
disassembled and its components studied, as
well as the components of components, until
the ultimate building blocks of life were
reached. These would reveal the fundamental
mechanisms of health and disease.

Reduction and reconstruction
The scientific paradigm of focusing on smaller
components at deeper levels of biological 

organization is now called reductionism, and
has been extremely successful over the past
decades and will, without doubt, continue to
be successful. Completion of the Human
Genome Project has, in some sense, meant
reaching the goal of reductionism because
information about health, disease and the
body’s response to stimuli and drugs has been
reduced to a string composed of just four 
different nucleotides.

Although an incredible feat of the human
mind, the unprecedented accumulation of
information about genes, proteins and other
cellular constituents is still clearly insufficient
for a true comprehension of how organisms
work. We have identified most genes and pro-
teins in simple organisms, such as yeast and
Escherichia coli, but we are still unable to make
reliable predictions as to how these organisms
would respond in an untested environment.
We have a list of the three billion base pairs
that define what it means to be human, but
we are still far from understanding health and
disease. This lack of true comprehension has
direct and costly consequences for drug devel-
opment. Pharmaceutical companies have an
inventory of hundreds of thousands of com-
pounds, yet the typical success rate for drug
discovery is only ∼ 4%, at a cost of several
hundred million dollars for executing the
necessary preclinical and clinical trials and
bringing the drug to market [1].

If the reductionist paradigm is insufficient,
what is impeding true understanding? The
missing piece of the puzzle is often the re-
assembly of the analyzed, isolated component
parts into a functioning conceptual entity
[2,3]. This reconstruction is by no means 
trivial, because the biological and metabolic 
systems governing the effects of a drug are
notoriously complex and the study of isolated
metabolites and enzymes alone seldom reveals
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their multitudinous roles in vivo. As a non-pharmacologi-
cal illustration, even a detailed, rigorous study of the gases
hydrogen and oxygen would probably not lead the chemist
to predict key properties of water, such as its wetness [4]. A
cell is more than a collection of membranes, organelles
and proteins, mixed with some DNA and RNA.

The challenge in dealing with complex systems is a 
result of synergistic properties, which do not exist in any
of their constituents but only emerge in their intricate 
interrelationships. This implies that reductionism must 
be complemented with a synergistic systems approach of 
reconstruction. The emerging reconstructionist paradigm
thus freely acknowledges that reductionist methods and
investigations of detailed mechanistic process are crucially 
important, but posits that they need to be accompanied by
mathematical concepts that are capable of capturing the
essence of complex, integrated systems [2,3,5–8].

Synergistic systems as emerging paradigm
To appreciate the challenge of reconstruction, it is necess-
ary to study in greater detail what makes biomedical sys-
tems complex and synergistic. The first criterion is a large
number of constituents. The human genome contains

20,000–40,000 genes and with modifications these ulti-
mately lead to several hundred thousand different proteins
and peptides. Accounting for sugars, lipids and other small
molecules renders the total number of cellular constituents
much larger. Dealing with large numbers of constituents
poses a significant book-keeping problem.

The second key criterion of biological complexity is 
the typically rich network of interactions among the 
constituents. These interactions are numerous and have
nonlinear characteristics that are difficult to handle with 
intuition alone. For instance, a doubled input does not
necessarily lead to a doubled response, and even a small
change in the value of some component might cause the
system to respond in an entirely new fashion. For the 
‘normal’ value of some parameter, the system operates at
some homeostatic ‘steady-state’ point, but if some stimu-
lus causes the value to increase above a certain threshold,
the system begins to oscillate or ceases to function at 
all. The difference between normal tanning and sunburn 
is a simple illustration for such a threshold response.
Nonlinearities make complex systems difficult to under-
stand and predict in their responses because they defy our
innate way of reasoning in terms of chains of causes and
effects.

Complexity at the pathway level
Systems with intrinsic features of complexity are found at
all levels of biological organization. A simple illustration
might suffice as indication of the challenges encountered
in nonlinear systems. Consider a generic pathway with two
sequential branch points and two potential inhibitory
feedback loops; as a biological example, one might envi-
sion a section of a metabolic network (Fig. 1). Suppose the
goal is to increase the output of X3, and the available tools
of alteration are manipulations of any of the branches v10,
v12, v20 and v23. If the total alteration effort were to be the
same, where should it be expended? Does it matter
whether one increases v12 or decreases v10? Would it be
more efficacious to increase v12 four times or to double v12

and v23? Mathematical analysis reveals that the answer de-
pends on the existence of one or both inhibitory loops IL1

and/or IL2 [9]. Without inhibition, it is largely immaterial
whether the branch toward the desired direction (e.g. v12)
is increased by some factor or whether the undesired
branch (v10) is decreased by the same factor. However, if
the inhibitory loop IL1 is present, the two strategies lead to
different results, with an increase in v12 being more effec-
tive than a decrease in v10. If both inhibitory loops are
present, the best strategy is strong activation of the flux
v23. Such results are difficult to obtain with intuition. Some
features of complex systems might even be counterintuitive.
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Figure 1. A generic pathway with two branch points (at X1 and
X2) and two potential feedback inhibition loops, IL1 and IL2 (thin
arrows), which might be present or absent, as indicated by
question marks. The goal is to maximize output through the
flux v30. Intuition might suggest that, for example, it is
immaterial whether one doubles v12 or halves v10. Indeed, in the
absence of inhibition, this conclusion is correct. However,
rigorous analysis with a canonical model of the pathway shows
that this is not true if IL1 is present, and that the optimal
strategy for maximizing output depends on the presence or
absence of IL1 and/or IL2.
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For instance, in the pathway of Fig. 1, inhibition can 
actually increase the potential for enhancing the yield 
and output of X3. This simple example demonstrates that 
apparently unassuming differences in the regulatory struc-
ture of a system require specific strategies for optimal 
manipulation. Intuitive reasoning alone is not sufficient to
predict such strategies (or operating principles), even for
moderately sized systems that are regulated by activators
and inhibitors.

The analysis of complex synergistic systems necessitates
mathematical approaches that are rich enough to capture
the multitude of possible system responses, from satu-
ration to oscillations and possibly even chaos, yet enable
efficient evaluation and facilitate insight and explanation.
These models must be positioned somewhere between un-
structured models-of-data, such as regression models, and
highly detailed, mechanistic models-of-processes, which
tend to become complicated so rapidly that they might 
obscure global patterns or trends in responses [10].

Traditional genome and metabolic analysis
Two types of models presently dominate the analysis of
genomes and metabolic pathways. The default model for
assessing genome-wide expression data is statistical cluster-
ing, which identifies genes that are coexpressed after a
stimulus. The magnitude of upregulation in each cluster of
genes indicates the degree of importance that these genes
have in a given response. Clustering has great potential for
the discovery of known and unknown genes involved in a
variety of organismic reactions. For instance, comparing
the expression of genes from normal cells and cancer cells
might render it possible to identify pathways or processes
that differentiate the two cell types.

The default model for a biochemical process is the
Michaelis–Menten rate law with its generalizations toward
several substrates, reversibility and different mechanisms
of inhibition [11]. This rate law results from a mathemati-
cal formulation of the elemental chemical processes that
occur in an enzyme-catalyzed reaction and implicitly as-
sumes homogeneity of the medium in which the reaction
takes place. Although uncounted experiments in vitro have
lent support to this rate law, three arguments make its va-
lidity questionable for the analysis of larger pathways and
systems in vivo. First, as Schulz pointed out [11]; ‘the con-
cept of an enzyme catalyzing a reaction in isolation runs
counter to the purpose for which enzymes have been pro-
vided in nature. The purpose of an enzyme in nature is 
to catalyze a reaction in concert with the other enzymes in
the metabolic pathway, and the purpose of a metabolic
pathway is to catalyze a series of reactions in concert 
with the many other pathways with which it interacts…

If coordination of the action of…enzymes becomes flawed,
it is certain that the living organism is going to encounter 
serious difficulty.’

Second, cells are strikingly different from a homo-
geneous mix in which substrates and enzymes exist. They
are densely packed with organelles and metabolites [12]
and many reactions take place in dimensionally restricted
spaces, such as on membranes or within channels or small
compartments. This dimensional restriction has an impor-
tant impact on the mathematical concepts that should
govern the kinetics of enzyme-catalyzed reactions. Although
some theoretical work has addressed this topic [13,14], 
experimental quantification is still lacking.

The third issue with the use of the Michaelis–Menten
rate law in vivo is its mathematical form. For a single reac-
tion, the rational function describing the relationship 
between substrate concentration and flux is simple but as
soon as many reactions are involved and the system is regu-
lated by modulators, the mathematics becomes cumber-
some [15]. One could argue that increased computing
power would more than compensate for the greater com-
plexity of larger systems. Indeed, more than 30 years ago,
Garfinkel [16] and others constructed computer models 
in which the enzyme-catalyzed reactions were represented
by rate laws in the tradition of Michaelis and Menten.
However, Garfinkel’s approach encounters two serious
problems. One is the identification of parameter values,
and the second is the analysis of these models and the 
interpretation of their results. Heinrich and Rapoport [17]
described these problems in the following way: ‘First, from
the computer output it appears difficult to differentiate 
between important and unimportant effects, enzymes,
metabolites, etc. Second, it is difficult to see how some 
effects are brought about. Third, such a computation is
often impracticable for experimentalists. Fourth, many ad
hoc assumptions are even now necessary for the mecha-
nisms of several of the constituent enzymes of a chain. The
strong dependence of the model of an enzymatic chain 
on the detailed mechanisms of single enzymes is unfavor-
able.’

Summarizing these types of considerations, Savageau [2]
postulated an agenda for reconstruction in biology: ‘The
reductionist paradigm itself is inherently unable to deal
with reconstructionist issues. We need a radically different
but complementary approach that is able to elucidate
quantitative and qualitative features of complex integrated
systems…This will require adoption of new perspectives,
development of new experimental methodologies for char-
acterizing systemic behavior in situ, and an investment in
‘bilingual’ education [in biology and mathematics] for the
next generation of biologists.’
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Canonical modeling
Assuming that we really target a true biomathematical ap-
proach, what types of models would be most useful and
should be taught? At a superficial level, the answer is easy.
In the context of drug discovery, we are looking for math-
ematical models of disease-related phenomena and these
models should be valid, yet convenient for analysis and
manipulation. Equipped with such models, we would be
able to screen hypotheses and test ideas on the computer,
which is faster and cheaper than a pharmacological study.

Although the goals are clear, the difficulty is that no sin-
gle model entirely satisfies all items on our wish list. All
models are compromises between their validity and applic-
ability on one hand, and abstraction, simplification and
mathematical feasibility on the other. Validity over a large
spectrum of scenarios requires a high degree of complexity
and the involvement of as many known factors and vari-
ables as possible. Simplicity of analysis requires just the
opposite. Every biomathematical modeler has to struggle
with this tension and there is no unique, generally justifi-
able solution.

Biochemical Systems Theory
In the area of metabolic pathways and gene regulatory net-
works, one modeling framework has emerged over the past
30 years as being particularly useful. It is called canonical
modeling [18] and is based on the rigorous mathematical
foundation of Biochemical Systems Theory (BST) [19]. BST has
been the subject of several hundred papers, chapters and
other treatises, including a number of books and extensive
reviews [3,8,15,20–22]. These publications have derived and
analyzed the mathematics behind this formalism in extenso.
Suffice it to say, the formalism is based on rigorous theo-
rems of applied and numerical mathematics. Instead of re-
viewing these purely mathematical aspects (see Box 1 for a
brief summary), it might be more beneficial here to talk
about the two crucial features on which BST is based.

The first is a general tenet of systems analysis: one has to
understand the dynamics of the components (i.e. the vari-
ables) of a system to understand the system itself. In the
context of metabolic pathways, the variables are typically
metabolites, enzymes or modulators, but could also in-
clude experimental conditions, such as temperature and
pH. In physiologically based pharmacokinetics, each vari-
able might represent the amount of a drug in a particular
organ or the bloodstream, and in the analysis of gene regu-
latory networks, variables might represent transcription
factors, repressors or specific gene products. The dynamics
in each variable is described as the change in its value over
time and this change is governed by the difference of all
influxes and effluxes.

The second feature of BST is that all fluxes in the mass-
balance system are approximated by so-called power-law
functions (Box 1), the validity of which is mathematically
justified by an old and famous theorem of Brook Taylor
(1685–1731). The structural homogeneity and simplicity
of power-laws might give the impression that models
based exclusively on these functions are restricted in scope.
However, this is a faulty conclusion: it has been proven
with mathematical rigor that such models can represent
virtually any set of smooth nonlinear phenomena [18,23].
Power-law functions have several properties that make
them suitable for biological modeling purposes. In addi-
tion to the mathematical richness in structure, the list 
includes the following:
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Box 1. Construction of a canonical model [8]

(1) Identify components to be included in the model.
(2) If they change over time, assign to them variable

names Xi. If not, the components might still be
variables by name or they might be absorbed in
some of the model parameters.

(3) Identify the flow of material between variables.
(4) Identify regulatory signals, such as feedbacks.
(5) Create a diagram, as exemplified in Fig. 1.
(6) For each variable Xi that changes over time, define

an equation that relates its change over time to
influxes and effluxes:

Change in Xi = Fluxes into Xi – Fluxes out of Xi

The change is equivalent to the derivative of the
variable Xi, with respect to time: dXi/dt

(7) Collect all influxes to Xi in one function Fi
in and all

effluxes from Xi in a second function Fi
out.

(8) Approximate Fi
in and Fi

out with power-law
functions. If a flux F depends on only one variable
X, the approximation is F(X) ≈ αXg. If n variables
govern the process, the analogous form is:

F(X1, X2,…Xn) ≈ αX1
g1X2

g2…Xn
gn.

The result of substituting these approximations in
the equation of change (under 6) is always a
canonical S-system equation of the form:

dXi/dt = αiX1
gi1X2

gi2…Xn
gin − βiX1

hi1X2
hi2…Xn

hin 

(9) Estimate numerical values for all parameters from
measurements or literature information. Each
kinetic order gij (or hij) uniquely represents the
effect of Xj on the flux Fi

in or Fi
out, respectively. The

parameters α i and βi are rate constants.
(10) Analyze dynamics, steady states, robustness and

responses under different scenarios, such as
health, disease and drug treatment.



(1) Power-law functions are direct generalizations of ele-
mental chemical reactions [15]. For instance, the forma-
tion of product in the elemental reaction 2A + B ⇒ C
is traditionally represented by the (power-law) rate
law; v = k⋅A2⋅B, where k is the rate constant and the
powers of A and B (2 and 1, respectively) are kinetic 
orders. In canonical models, the rates have the same
structure but the kinetic orders might be non-integer.

(2) Intracellular reactions apparently follow power-law 
kinetics [24]. This was shown with direct measure-
ments in vivo and provides further credence to the 
validity of these functions.

(3) Power-law functions often capture metabolic and 
genetic observations over several orders of magnitude. 
For instance, Savageau [15] showed that the induction
characteristic of the arabinose operon follows a power
function over a 100-fold range of variation in the 
inducer arabinose.

(4) If taken to the molecular level, Michaelis–Menten rate
laws are the approximation result of a power-law
model [25]. This is because the Michaelis–Menten
mechanism consists of elemental chemical kinetics,
which themselves are described by power functions
[see comment (1)].

(5) Hundreds of observations document that the growth
rates of different tissues and organs in developing or-
ganisms are not independent of each other but closely
follow the so-called law of allometry [26]. The same 
is true about a large variety of metabolic processes oc-
curring within the same organism. Allometry means
mathematically that a graph of one variable against
the other is linear, if the variables are plotted as 
logarithms. This is exactly equivalent with a power-
law model in linear (Cartesian) coordinates. Canonical
models of the type shown in Box 1, called S-systems,
satisfy the law of allometry, but most other mathemat-
ical models do not [8,27].

(6) The canonical model in Box 1 satisfies all of the previ-
ous features. In addition, the equations characterizing
its steady state are linear [19]. A steady state is a condi-
tion of the system where all influxes exactly balance
the effluxes so that all variables are constant in value
over time, even though material flows through the 
system. Many systems in nature and in the laboratory
reside in this state. The linearity of the steady-state
equations is of great importance because it simplifies
algebraic and numerical analyses [15] and permits 
efficient optimization of networks of pathways in
biotechnology and metabolic engineering [28–30],
which otherwise would be complicated and expensive
in terms of computation time.

(7) Beyond steady-state characteristics, the homogeneous
power-law structure of canonical models permits 
efficient methods of dynamical analysis [15,31] and 
numerical root finding [32].

(8) Power-law models are the basis for the Method of
Controlled Mathematical Comparisons [33–35]. This
method permits the specific assessment of particular
model structures in alternative systems that are other-
wise equivalent. For instance, it enables us to pinpoint
the specific role of a regulatory signal: What are the 
advantages of having this signal? How would a system
without it be disadvantaged? Similarly, the method
enables objective assessments of the operation of a 
system under different environmental conditions. A
typical question here is: Why is this gene upregulated,
but others of the same pathway are not? [9,36].

(9) Although the prime focus of BST has been on meta-
bolic and genetic systems, canonical models have been
applied in a variety of areas. Examples include topics as
diverse as microbial drug resistance [37], immunology
[34], infectious diseases [38], fishery management [39]
and forestry [40,41]. The success of these applications
lends further support to the use of power-law functions
as valid representations of complex biological systems.

(10) The power-law structure of canonical models trans-
lates directly from low to high dimensions (Box 1) and
this has rendered it possible to analyze effectively bio-
medical phenomena with dozens of variables [25,42].

Applications of BST
So, what can actually be done with canonical models? The
spectrum of answers ranges from purely academic to prac-
tical and applied. At the academic end of the spectrum, the
models have led to insights about the generic structure 
and organization of biochemical and genetic systems. For 
example, demand theory within BST correctly predicted
the regulatory mode of dozens of genes in bacteria. Formerly,
it had been assumed that it was an accident of nature
whether a gene was normally switched off and only turned
on upon demand, or whether it was normally switched on
and repressed when necessary. However, using the canoni-
cal modeling approach described here, Savageau [43] 
was able to provide objective rationale for each type of
regulation based on the organism’s needs in its typical 
environment. Subsequently, numerous examples – and no
exceptions – were found in support of the model predic-
tions. In a similar vein, the rationale for different observed
implementations of feedback loops was explained with
methods of BST [15,35].

As a practical application, BST and the custom-tailored
PLAS (http://correio.cc.fc.ul.pt/~aenf/plas.html) for canonical
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models facilitate simulations of complex biological scenarios.
For instance, Curto and collaborators [44,45] developed a
comprehensive model of human purine metabolism. This
model could be used for screening new drugs. Suppose the
goal were to develop a drug that would lower uric acid out-
put. Almost three dozen enzymes are involved in purine
metabolism and each could be a potential drug target.
Clearly, testing all possible drug effects in the lab and in
clinical trials would be expensive and it would be much
cheaper to test a hypothetical drug with the mathematical
model, in the following fashion. Because each enzymatic
step has a unique representation in the canonical model,
the parameters characterizing its kinetic features are easily
identified. They typically consist of just one kinetic order
and one rate constant (Box 1). The direct effect of the 
hypothetical drug on the enzyme under investigation is
implemented in the model through the numerical alter-
ation of the corresponding enzyme activity, possibly in a
time-dependent fashion. For example, if the hypothetical
drug is expected to reduce enzyme activity by 60%, this
quantity is implemented in the corresponding enzymatic
step of the model. Algebraic and dynamical analyses then
show the predicted effects. They not only include the fea-
ture of prime interest, namely here uric acid output, but
also altered levels of other metabolite levels, the relevance
of which has to be evaluated by biochemists and clinicians.
The model also reveals the dynamic transients in metabo-
lites between the original, diseased state and the state upon
administration of the drug. For instance, it could happen
that, although the drug would ultimately lead to a lower
uric acid level, some other metabolites would reach unac-
ceptably high or dangerously low concentrations. The model
could also reveal that even significant changes in a particu-
lar step would be ineffectual in lowering uric acid, and this
result would remove the hypothetical drug from the list 
of top candidates. Through extensive simulations of this
kind, a canonical pathway model can be used to explore
single bolus experiments as well as different drug dosage
and timing regimens [8]. This application is conceptually
comparable with that of physiologically based pharmaco-
kinetic models (D.B. Janszen, PhD Thesis, Medical University
of South Carolina, 1992).

Metabolic engineering
Another example for a practical application of BST falls in
the area of metabolic engineering, whose general goal it is
to redistribute fluxes within a metabolic network toward a
desired goal. For example, we analyzed the goal of increas-
ing citric acid production in the mold Aspergillus niger [30],
an organism that has been used for this purpose for almost
100 years. Although the goal of the alteration is clear, 

numerous precautions are necessary to ensure that by-
products do not accumulate to become toxic or that the
organism suffers from ‘metabolic burden’, which tends to
reduce viability and productivity [22,46]. Canonical mod-
els are uniquely beneficial for this kind of constrained
optimization because they validly represent the metabolic
and regulatory structures of networks of pathways, yet per-
mit methods of linear programming [22,28]. In contrast to
nonlinear optimization, which even for moderately sized
pathways becomes a costly task, linear programming is 
easily executed with standard software for biochemical 
systems of hundreds of variables and constraints. Recently,
Alvarez–Vasquez et al. (unpublished data) optimized the
production of the medically relevant trimethylated amino
acid, L-carnitine, in E. coli and an experimental laboratory
[47] confirmed the theoretical predictions.

Conclusions
In a position paper on genome sequencing, Edgar et al.
[48] stated that the Human Genome Project was a ‘tour de
force’ and that it was ‘not at all clear that knowledge of the
nucleotide sequence of the human genome [would], 
initially, provide deep insights into the physical nature 
of man.’ Sixteen years later, the 2001 brochure Genomes 
to Life (http://DOEGenomestoLife.org), issued by the 
US Department of Energy, states as the ‘next logical step 
[beyond international genome sequencing projects]…the
quest to understand the composition and function of the
biochemical networks and pathways that carry out the 
essential processes of living organisms.’

This next logical step will require four components,
which are all within reach. First, the accuracy of gene 
expression profiles must be increased, so that it can be 
decided if a 1.5-fold increase in upregulation is real or noise.

Second, methods must be developed and improved 
for obtaining precise and encompassing measurements of 
protein and small molecule concentrations. One avenue of
research is the construction of high-throughput proteome
microarrays [49], which show profiles of all proteins that
are available in a cell under defined conditions. These 
arrays are conceptually similar to DNA arrays but show 
directly current protein levels, instead of gene expression
that ultimately might or might not translate into functional
protein. Thus, if protein responses following a stimulus can
be ‘profiled’ with reliability, questions concerning selective
transcription of genes and post-translational modifications
of their immediate products become less important for as-
sessments of organismic responses at the metabolic level. In
addition to the characterization of proteomes, it is becoming
feasible to establish metabolite profiles with MS or NMR
methods. Such profiles contain simultaneous measurements

626

DDT Vol. 7, No. 11 June 2002reviews research focus

www.drugdiscoverytoday.com



of the concentrations of hundreds of molecules in various
size ranges, from small molecules to lipids to proteins and
nucleic acids. Obtained as time series, these profiles will be
invaluable sources for identifying and quantifying the
structure and properties of metabolic pathways in vivo.

Third, intensive research will be needed to decipher the
exceedingly complex mechanisms of signal transduction
[50–52]. If we truly understand the strategies and mecha-
nisms with which a cell or organism responds to outside
signals, it might become possible to use signaling molecules
as specific targets that would require only minute amounts
of drug to be efficacious. In mammalian cells, the signaling
mechanisms are, at present, simply overwhelming in their
complexity and redundancy. Although it will take some
time to grasp these systems, simpler, yet similar signaling
pathways are operative in yeast and other microbes and
offer some hope for insight that might eventually be 
applicable to signal transduction in humans [53].

Fourth, we need to hone our mathematical modeling
skills to integrate the enormous amounts of diverse types
of data that are being produced in molecular biology and
genome research. One starting point is metabolic flux
analysis, which has the advantage of being linear and eas-
ily scaled up to organism-wide networks [54–58]. However,
the key property of linearity is intimately intertwined with
the greatest limitation of this approach, namely that non-
linear kinetic and regulatory features cannot be included
in a straightforward fashion. This can become problematic,
as in the simple pathway example of Fig. 1, where the regu-
latory structure dictates optimal strategies for effective op-
eration. It is here that metabolic modeling with methods
of BST could make the greatest contributions by explain-
ing gene expression and metabolic profiles at the biochem-
ical and physiological levels [36]. In comparison to purely
stoichiometric approaches, canonical models require a lot
of data, which are needed to decipher and quantify the 
kinetic and regulatory structure of metabolic pathways. In
the past, these data were seldom available and a stoichio-
metric analysis was considered a valuable substitute. However,
modern experimental methods of genomics, proteomics
and metabolic profiling are rapidly changing the playing
field, and comprehensive quality data will soon be avail-
able in great quantities for integrative analyses. This will
enable detailed analyses not only of flux distributions but
also of the more intricate strategies with which organisms
control and regulate metabolism. Canonical models are
good candidates for the execution of these types of analyses.
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Free journals for developing countries

The WHO and six medical journal publishers have launched the Access to Research initiative, which enables ~70

developing countries to gain free access to biomedical literature through the Internet.

The science publishers, Blackwell, Elsevier Science, the Harcourt Worldwide STM group, Wolters Kluwer International

Health and Science, Springer–Verlag and John Wiley, were approached by the WHO and the British Medical Journal in

2001. Initially, >1000 journals will be available for free or at significantly reduced prices to universities, medical schools,

research and public institutions in developing countries. The second stage involves extending this initiative to institutions

in other countries.

Gro Harlem Brundtland, director-general for the WHO, said that this initiative was ‘perhaps the biggest step ever taken

towards reducing the health information gap between rich and poor countries’. 

See http://www.healthinternetwork.net for more information.


