
Scoring Blast alignments and aligning protein sequences - 1

BIOL591: Introduction to Bioinformatics
Scoring and protein alignments

Reading in text (Mount Bioinformatics):
There is much in the text on the topics covered below. You’ll have to decide for yourself if the
explanation helps or hinders understanding.

• pp.300-307 Description of Blast

• pp. 76-89: Amino acid substitution matrices

Outline:
 I. Interlude: Progress in solving the Mystery of the Missing Match
 II. Scoring sequence alignments
 III. Scoring tables for protein
 IV. Practical Blast

I. Interlude: Progress in solving the Mystery of the Missing Match
I.A. Local BlastN vs NCBI’s BlastN
Wednesday in class we discovered the following:

1. We have in our hands a working program BlastN, written in Perl, that at least in some
respects acts like BlastN implemented by NCBI.

2. The parameters set in the local program are the same as those set in the NCBI
implementation (except for gap dropoff and Expect threshold)

3. The main loop of the program sequentially extracts words from the query sequence and
finds matches between them and the target sequence.

4. A subroutine called within the main loop is responsible for constructing the scoring tables
necessary to extend the exact match in both directions.

5. The local implementation differs from the NCBI implementation in at least the following
particulars:

a. The local BlastN does not filter the query sequence
b. The local BlastN does not calculate a score related to the probability of finding a

match as good or better than the match found.
c. Therefore, the local BlastN does not throw away or rank sequences based on this

score.

6. Unlike NCBI-implemented BlastN, the local program printed several matches when
DG47 (the sequence of the PCR product) was blasted against M29081 (bona fide lef
gene). All the matches were very short, except for one that extended the length of DG47.

We have therefore yet another mystery: Why does local BlastN find the match between DG47
and lef that is apparent by eye while NCBI BlastN does not? It was suggested in class that the
absence of filtering by local BlastN might be the answer.

Scoring Blast alignments and aligning protein sequences - 2

SQ1. Test whether filtering is the key difference in two ways:

a. Compare DG47 and lef via NCBI’s pairwise Blast, after disabling filtering (you can
get both sequences from links in the notes for Sep 25).

b. Compare DG47 and lef via local BlastN with filtering. You could teach the program
how to recognize and mask repetitive sequences, but for our purposes that’s way too
much work. Find the repetitive sequence yourself by eye and then edit the query to
replace the repetitive sequence with random nucleotides. Use this modified DG47
also in a pairwise Blast search using NCBI’s Blast.

I.B. Does local BlastN score properly?

Todd noticed that the way the Smith-Waterman algorithm handles gap penalties (which is the
way we did it in class) may not be the way that Blast does it. The Smith-Waterman method
charges a gap-opening penalty for the first gap and a gap extension penalty for each additional
gaps. An alternative approach is to charge a gap-opening penalty and a gap extension penalty (or
more accurately a gap-presence penalty) for the first gap and just a gap extension penalty for
each additional gap. These two choices are illustrated in Table 1.

Table 1: Comparison of methods to calculate gap penalty

Method

Formula for gap penalty

Example: penalty for
AGGC open -5
T--G ext -2

Smith-Waterman Gap_opening + gap_extension · (gap_size-1) 7
Alternative (Blast?) Gap_opening + gap_extension · gap_size 9

Which method does NCBI BlastN use? We’ll be able to answer this better after a discussion of
scoring, but we can answer right now what method local BlastN uses.

SQ2. One way to tell is to examine the program and look for the code that calculates gap
penalties. Find that part of the program. Where is it and which method does the
program use?

SQ3. Another approach is to print out the scoring matrix and examine the values in
adjacent boxes. The notes for Wed Sep 25 describes how to write a subroutine to
print out some values of the scoring matrix. First of all, where in BlastN would you
put a call to this subroutine (print_score) so that the values printed out are
meaningful?

SQ4. Complete the subroutine print_score started for you in Wednesday’s notes, insert it at
the end of BlastN, and call it at the appropriate time (determined in SQ3). By the
way, the notes for Wednesday have been modified so to contain a link for the starter
program, incorporating some of the hints Fritz gave you.

Scoring Blast alignments and aligning protein sequences - 3

II. Scoring sequence alignments
Our version of BlastN prints out every word match it finds, after extending it in both directions
as far as it can. Real BlastN doesn’t do that. Instead, it calculates a score for each match, ranks
all matches by their scores, and provides the top x matches that exceed a threshold y (you can
specify x and y). The score thus serves to order the matches, so you can look at the best ones
first, and also tosses out matches that are worse than you want to consider.

What kind of scoring system would be appropriate for sequence alignments? The first idea that
might come to mind would be to use directly the raw score that BlastN calculates, i.e. one of the
numbers found in scoring tables. This is OK for ranking matches, but suppose that all of the
matches were no good, according to your tastes. How could you prevent BlastN from providing
you with pages of garbage?

A better idea is to transform the raw score into a probability. If a match would occur frequently
in a random sequence, you don’t want to know about it. If you’d have to go through 10180
random sequences to find a match as good as the one BlastN is considering, then you want the
program to pass that one on to you. So, we need to talk about expected frequency.

Suppose you’re following Blast as it compares a 100-nucleotide sequence with a 100,000-
nucleotide sequence. The first step is to extract a word from the query (let’s say that the word
size had been set to 11 nucleotides). What’s the probability that this particular 11 nucleotides
match the first 11 nucleotides of the 100,000-nucleotide sequence? Not much, sure, but we need
a number. Let’s simplify the situation and say that the probability of a match of one nucleotide is
¼ . If so, then:
 word #3
 word #2 word #90

Query: AATATTGACGCTTTACTACATCAGTCCATCGGAAGTACGTTGTATAATAAAATATATCTGTATGAAAACATGAATATAAATAACTTAACAGCAACGTTAG

 word #1

 A A T A T T G A C G C

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 100,000

Target: ···
 ¼·¼·¼·¼·¼·¼·¼·¼·¼·¼·¼

The probability of a match between word #1 and positions 1-11 of the target is (¼)11. But there is
the same probability of a match between word #1 and positions 2–12 and 3–13, etc., all the way
up to positions 99,990 – 100,000. That’s about 100,000 possible matches, each with a probability
of (¼)11, giving a combined probability of 100,000·(¼)11. But that’s not the end: there are also
words #2, #3, all the way up to word #90,a so there are now 90 · 100,000 ways of getting a
match, each with a probability of (¼)11. That gives a total expected number of matches of:
 90 ·100,000 · (¼)11

a Why not 100 words? Because the last word ends at position 100, so must begin at position 90. The number of
words = length – wordsize + 1.

Scoring Blast alignments and aligning protein sequences - 4

or more generally:

 (1) E = m · n · pS

where E is the expected number of matches, m is the effective length of the query, n is the
effective length of the target, p is the probability of a single match, and S is (for the moment) the
total number of matches.

Mathematically, it is more convenient to transform this expression into an exponential based on
e, forcing the expression to look like:

 (2) E = m · n · e -λS

To fit this form, it works out that the constant λ has to equal –ln(p).b

We now have almost what we want: a score that tells us how frequent we should expect a match
to be. Unfortunately for this expression, BlastN finds matches that are more complicated than a
string of matching nucleotides. This means that the expression has to be modified. I don’t
understand half the math necessary to tell you how the ultimate expression arises, but you can
see that this expression used by BlastN to calculate expected frequency is pretty close to the
expression we derived intuitively from first principles. In the actual expression:
 (3) E = K · m · n · e -λS

where K and λ are empirically derived constants, the expected frequency, E, depends on the
effective lengths of the query and the target, and it is related exponentially to the score S.
Furthermore, λ is generally close to ln(¼), and K (a constant that depends on the base
composition of the target) is not far from 1.

SQ5. Let’s see these symbols in action. Go to the NCBI web site and do a BlastN search of

M29081 against all available nucleotide sequences (see instructions in Scenario 3 if
you’ve forgotten how to do this). Look at the very end of the results you obtain to
find values for K, λ, m, and n. Then go to any match in the results (you’ll have to
scroll down from the top past the summary list) that has an E-value greater than
zero. You’ll find the E-value and the raw score, S, in the line that begins:

 Score = nnn bits ([raw score]), Expect = [E-value]

Determine from these values whether the given E-value can be calculated by
equation (3).

You’ll notice in the same line that gave you raw score and E-value, there’s a quantity called bits.
This is yet another way of representing the score. One problem with the raw score is that its
significance depends on other parameters (K and λ) that can change depending on the base
composition of the sequence being examined. One way to transform the raw score into a score
whose significance is independent of these quantities is to force the equation for E-value into the
form:

 (4) E = K · m · n · e –λS

 (5) = m · n · 2 –S’

b m · n · pS = E = m · n · e –λS, leads to pS = e –λS, and (taking the log of both sides) ln(p) = –λ.

Scoring Blast alignments and aligning protein sequences - 5

leading to:
 (6) S’ = [λ · S – ln(K)] / ln(2)
where S’ represents the normalized score. Since the E-value depends in the latter expression only
on S’ and on readily determined quantities (i.e., the effective length of the query sequence, m,
and the effective length of the target sequence,n), it is more transportable. Secondly, since S’ is
present as an exponent of 2, it relates the number of binary digits, or bits, necessary to represent
a number, just as the exponent in 10n tells you how many digits are in the decimal representation
of a number. Bits is also the currency of information theory, making it a theoretically attractive
unit, one that is introconvertible with the E-value. You might also think of bits as the number of
binary digits it takes to represent the probability of a specific match as good as the one reported.
Multiply this probability by the sizes of the two sequences considered and you get, as in
equation (1), the expected number of matches.

SQ6. Using the same BlastN result from SQ1, calculate the E-value from the bit score (S’)
and equation (5), and determine whether this value corresponds well with the given
E-value.

II. Aligning protein sequences
Aligning pairs of protein sequences introduces additional complications, although the search
algorithm is only a bit different from that used in aligning nucleic acid sequences. The root of the
problem is the more complex functional roles played by amino acids relative to nucleotides.
With nucleotides, scoring is simple: there’s a gap, a match, or a mismatch. With amino acids,
there are various levels of mismatch, as illustrated in Figure 1. The region of the protein shown
in the figure is relatively well conserved over evolution, but there is variation in amino acids at
each position, and there is often order to that variation. For example, the first position is
occupied by either lysine or arginine, both positively charged amino acids. The second position
shows either isoleucine, leucine, or valine, all aliphaticc hydrophobic amino acids. The last
position is a different matter, however, with a mixed bag of amino acids. One would imagine that
in many cases, mutation from one amino acid to a similar amino acid would retain function of
the protein, and we would like to score that mismatch differently from a mutation that leads to a
more drastic change.

c An “aliphatic” amino acid is one means that has a side chain consisting solely of a hydrocarbon chain.

M.AvaV KLEIFARE + charged hydrophobic/aliphatic
Orf(EfBm4382) RVELFARQ K lysine I isoleucine
Orf(EfV853) RVELFARQ R arginine L leucine
M.Mun(Msp) KIELFARN — charged V valine
MT-A70(Hs) KIELFGRP D aspartate V methionine
CG5933(Dm) KIELFGRP E glutamate hydrophilic/uncharged
At4g10760(At) KLELFARM small N asparagine
SPO8(Sc) KLEIFGRD A alanine Q glutamine
 G glycine
Figure 1: Alignment of a region from eight DNA-modifying enzymes (some putative).
Note that the alignment isn’t perfect, but most of the imperfections fall into certain
families of amino acids.

Scoring Blast alignments and aligning protein sequences - 6

II.A. Percent Accepted Mutation (PAM) tables

We would like to be able to look at a protein and say that this amino acid change is minimally
significant, hence a low mismatch penalty, while another is worthy of a high mismatch penalty,
but we don’t yet know enough about protein structure to do this. Instead, we’ve asked the
proteins to tell us to score their own mutations. This has been done in two ways. Margaret
Dayhoff collected pairs of very similar protein sequences that differed from each other in about
one amino acid per one hundred resides and analyzed which amino acid were replaced by which
others. All of the proteins analyzed were functional, so the amino acid changes did not abolish
function and were termed “acceptable”. The resulting table, called PAM1 for Percent Accepted
Mutation at 1% change, provides a guide as to what amino acid substitutions might be considered
conservative (more likely to retain function of the protein) and a basis for the construction of a
rational scoring table for protein sequence alignment.

However, a table constructed from the comparison of closely related protein is not as applicable
to the comparison of proteins that have a much greater degree of divergence. For this reason
other PAM tables were calculated. Multiplying the PAM1 matrix by itself gives a PAM2 matrix,
representing predicted mutation frequencies amongst proteins with a 2% degree change. By this
procedure, matrices as high as PAM400 have been calculated. It may seem surprising that there
exist a table that predicts the frequencies of amino acid substitutions in protein with 400% degree
of change, but you have to remember that over millions of years, the same position in a protein
may change multiple times. A 400% degree of change means that each amino acid position has
changed, on average, 4 times. Figure 2 provides a theoretical correlation between the degree of
change and the percent similarity between protein. PAM tables higher than PAM250 are of
limited value, because with such a low degree of similarity, matches between amino acids may
have arisen by chance rather than common descent. PAM250 is commonly used in Blast
searches.

Table 2: PAM1 amino acid change frequencies*

 Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr
 A R N D C Q E G H I L K M F P S T W Y
Ala A 9867 2 9 10 3 8 17 21 2 6 4 2 6 2 22 35 32 0 2
Arg R 1 9913 1 0 1 10 0 0 10 3 1 19 4 1 4 6 1 8 0
Asn N 4 1 9822 36 0 4 6 6 21 3 1 13 0 1 2 20 9 1 4
Asp D 6 0 42 9859 0 6 53 6 4 1 0 3 0 0 1 5 3 0 0
Cys C 1 1 0 0 9973 0 0 0 1 1 0 0 0 0 1 5 1 0 3
Gln Q 3 9 4 5 0 9876 27 1 23 1 3 6 4 0 6 2 2 0 0
Glu E 10 0 7 56 0 35 9865 4 2 3 1 4 1 0 3 4 2 0 1
Gly G 21 1 12 11 1 3 7 9935 1 0 1 2 1 1 3 21 3 0 0
His H 1 8 18 3 1 20 1 0 9912 0 1 1 0 2 3 1 1 1 4
Ile I 2 2 3 1 2 1 2 0 0 9872 9 2 12 7 0 1 7 0 1
Leu L 3 1 3 0 0 6 1 1 4 22 9947 2 45 13 3 1 3 4 2
Lys K 2 37 25 6 0 12 7 2 2 4 1 9926 20 0 3 8 11 0 1
Met M 1 1 0 0 0 2 0 0 0 5 8 4 9874 1 0 1 2 0 0
Phe F 1 1 1 0 0 0 0 1 2 8 6 0 4 9946 0 2 1 3 28
Pro P 13 5 2 1 1 8 3 2 5 1 2 2 1 1 9926 12 4 0 0
Ser S 28 11 34 7 11 4 6 16 2 2 1 7 4 3 17 9840 38 5 2
Thr T 22 2 13 4 1 3 2 2 1 11 2 8 6 1 5 32 9871 0 2
Trp W 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 9976 1
Tyr Y 1 0 3 0 3 0 1 0 4 1 1 0 0 21 0 1 1 2 9945
Val V 13 2 1 1 3 2 2 3 3 57 11 1 17 1 3 2 10 0 2
*Each cell gives the number of times the amino acid listed horizontally changed to the amino acid listed vertically,
per 10,000 changes of the first amino acid.

Scoring Blast alignments and aligning protein sequences - 7

SQ7. Amongst protein pairs that are 99%
similar to each other, what fraction of
arginines in one protein correspond to
lysines in the other (at the equivalent
position)? What fraction of arginines in
one correspond to leucines in the
other?

SQ8. What PAM table would be appropriate
to search for proteins about 50%
identical to a query sequence?

II.B. Block Substitution Matrices (BLOSUM)

PAM tables suffer from several deficiencies.
Since they’re all calculated from PAM1, any
error in that table is propagated throughout the
rest. Since the original data consisted of only 1572 amino acid changes, many possible changes
were not observed (e.g. aspartate to arginine). Even though such changes must be possible at
some frequency, no PAM table will not admit this. Secondly, the procedure of multiplying PAM
matrices to get tables for less similar proteins presumes the debatable evolutionary model in
which similar and dissimilar protein pairs arose from the same kind of amino acid substitutions.
Third, PAM tables are built from a consideration of amino acid substitutions at all positions in
similar proteins. It may well be that the pattern of amino acid substitutions would differ in
different regions.

Henikoff and Henikoff (1992)d proposed an alternative strategy to address the deficiencies in
PAM tables. They compiled a list of conserved blocks of amino acid sequences (regions within
proteins that are relatively conserved across many organisms) and calculated the frequency of
each amino acid change. Owing to the size of their database, even the least common amino acid
transitions is represented 2369 times. The table derived from blocks in which there is 62%
identity of amino acids is called BLOSUM62 (Block substitution matrix, 62%). Two other
tables, BLOSUM45 and BLOSUM80 are also available, derived from blocks with 45% and 80%
identity, respectively. Note that BLOSUM’s numbering system is the opposite in direction from
PAM’s. Per BLOSUM: low numbers mean low identity. Per PAM: low numbers mean low
change (so high identity).

II.C. Constructing scoring matrices from PAM and BLOSUM tables

Blast uses PAM and BLOSUM tables to calculate a probability that a series of matches and
mismatches would occur given the presumed model. To facilitate this calculation, the tables are
modified in the following way.

1. The frequency of each amino acid-amino acid transition is rendered as an odds ratio. For
example, for the transition from asp-glu (in either direction):

Total number of asp-glu transitions observed/Total number of transitions observed = relative frequency
 2 · (frequency of asp residues) · (frequency of glu residues) expected frequency

d Henikoff S & Henikoff J (1992). Proc Natl Acad Sci USA 89:10915-10919.

Figure 2: Relationship between degree of change
(Pam value) and dissimilarity between two
proteins. The hatched box indicates the degree of
dissimilarity sufficient to cast doubt on a conclusion
of common lineage between two proteins. (from
Doolittle, 1987)

Scoring Blast alignments and aligning protein sequences - 8

The expected frequency is the fraction of transitions you’d expect just from the frequency
of the component amino acids. So the odds ratio is the degree to which the frequency of
an amino acid transition deviates from expectation.

2. The from the odds ratio, the log odds ratio (lod) is derived:

 lod = log10(relative frequency/expected frequency)

Adding the lod scores is equivalent to multiplying the odds ratios, and since addition is
faster than multiplication, the program becomes more efficient.

3. The lod score is multiplied by 10 and only the integer portion is shown. This makes the
table easier to read, though making it more difficult to comprehend how the number
relates to the odds ratio.

Figure 3 shows the
BLOSUM62 table in its log
odds ratio form. A scoring
matrix would use this table to
replace match rewards and
mismatch penalties. The
alignment of the first
sequences given in Figure 1:
 KLEIFARE
 RVELFARQ

would give a score (using
BLOSUM62) of:

 2+1+5+2+6+4+5+2 = 27

Gaps are still dealt with using
gap open and gap extension
penalties as in BlastN.

SQ9. What is score do you calculate for the alignment between the last two sequences
given in Figure 1?

II.D. One additional difference between BlastP and BlastN: The initial match

BlastN begins by looking for an exact match in the target sequence of a word extracted from the
query sequence. Unfortunately, exact matches in proteins are too rare for this procedure to be
useful. Instead, BlastP (analogous to BlastN, but acting on protein sequences) searches for exact
and almost exact matches to words. How exact the match has to be is determined by what is
known as the neighborhood word threshold value (T). For example, if T is set to 13, then the
word FIM will find the following sequences: FIM (score=15), FIM (score=13), and FLM
(score=14). Any of these three sequences in the target will instigate a search for extensions in
both directions.

SQ10. What sequences would be found by VLI using a T value of 13? Considering your
answer, do you think that this system or the T value used has a defect?

Figure 3: BLOSUM62. Each number represents the log10 of the odds that a
given amino acid transition occurs. Since the table is symmetrical (the
direction of change is irrelevant), only half of it is shown.

Scoring Blast alignments and aligning protein sequences - 9

III. Practical Blast
You now know how to score DNA and protein alignments, you have an idea how BlastN and
BlastP work… how does this change your life? If you do alignments (and there’s probably
nothing more common in bioinformatics than that), you should now be able to talk to Blast
better, to make it do what you want.

III.A. Which scoring matrix to use? (protein searches only)

From the considerations discussed above, you shouldn’t be surprised to learn that BLOSUM
matrices outperform their PAM counterparts, so if you are searching for protein that figure to be
around 45%, 62%, or 80% identical, then choose BLOSUM45, BLOSUM62, or BLOSUM80,
respectively (BLOSUM62 is BlastP’s default). If you’re using a short query, then you want to
choose a matrix that demands a higher degree of identity (otherwise true matches will get mixed
in with the background). In that case, PAM30 (length <35 amino acids) or PAM70 (length
between 35 and 50 amino acids) is preferable to any available BLOSUM table.

III.B. What scoring parameters to use?

If you want to find the most
significant matches, leave
the Blast default parameters
alone. You’ll often get a
patchwork of partial
matches between your query
and the target, as shown in
Figure 4. Often it is possible to connect the strong matches with less significant matches by
reducing the gap penalties or reducing the mismatch penalty (in the case of nucleotides).

If you’re searching for short matches, you may want to reduce the word size and increase the
E-value threshold (since even good short matches will get worse scores than the long matches
Blast is set up for). If you’re looking for significant matches and you’re getting a lot of them, you
can reduce their number by setting the E-value from 10 (default) to .001. While this will almost
always get rid of many spurious matches, you will need to decide if anything valuable is also
being tossed out.

Probably the common mistake people make with Blast is to search for DNA similarity when they
could instead look for protein similarity. Evolution operates at the level of protein function, not
DNA sequence, so DNA searches invariably miss distant matches that protein searches find.

The second common mistake people make with Blast is to equate similarity of sequence with
similarity of function. This is a large topic that takes us out of the scope of this course, but you
might heed the warning given by Persemlidis and Fondon.e

e http://genomebiology.com/2001/2/10/reviews/2002

Query:
Target (G=11):
Target (G=7):
Figure 4: Effect of changing gap open penalty (G). Hypothetical example
of results of a Blast search of a query sequence (red line) against a target
sequence. Regions found by the search are shown in blue.

