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BIOL591: Introduction to Bioinformatics 
Scoring and protein alignments 

 
Reading in text (Mount Bioinformatics):  
There is much in the text on the topics covered below. You’ll have to decide for yourself if the 
explanation helps or hinders understanding.  

• pp.300-307 Description of Blast 

• pp. 76-89: Amino acid substitution matrices 

Outline: 
 I. Interlude: Progress in solving the Mystery of the Missing Match 
 II. Scoring sequence alignments 
 III. Scoring tables for protein 
 IV. Practical Blast 
 
I. Interlude: Progress in solving the Mystery of the Missing Match 
I.A. Local BlastN vs NCBI’s BlastN 
Wednesday in class we discovered the following: 

1. We have in our hands a working program BlastN, written in Perl, that at least in some 
respects acts like BlastN implemented by NCBI. 

2. The parameters set in the local program are the same as those set in the NCBI 
implementation (except for gap dropoff and Expect threshold) 

3. The main loop of the program sequentially extracts words from the query sequence and 
finds matches between them and the target sequence. 

4. A subroutine called within the main loop is responsible for constructing the scoring tables 
necessary to extend the exact match in both directions. 

5. The local implementation differs from the NCBI implementation in at least the following 
particulars: 

a. The local BlastN does not filter the query sequence 
b. The local BlastN does not calculate a score related to the probability of finding a 

match as good or better than the match found. 
c. Therefore, the local BlastN does not throw away or rank sequences based on this 

score. 

6. Unlike NCBI-implemented BlastN, the local program printed several matches when 
DG47 (the sequence of the PCR product) was blasted against M29081 (bona fide lef 
gene). All the matches were very short, except for one that extended the length of DG47. 

We have therefore yet another mystery: Why does local BlastN find the match between DG47 
and lef that is apparent by eye while NCBI BlastN does not? It was suggested in class that the 
absence of filtering by local BlastN might be the answer. 
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SQ1. Test whether filtering is the key difference in two ways: 

a. Compare DG47 and lef via NCBI’s pairwise Blast, after disabling filtering (you can 
get both sequences from links in the notes for Sep 25). 

b. Compare DG47 and lef via local BlastN with filtering. You could teach the program 
how to recognize and mask repetitive sequences, but for our purposes that’s way too 
much work. Find the repetitive sequence yourself by eye and then edit the query to 
replace the repetitive sequence with random nucleotides. Use this modified DG47 
also in a pairwise Blast search using NCBI’s Blast.   

I.B. Does local BlastN score properly? 

Todd noticed that the way the Smith-Waterman algorithm handles gap penalties (which is the 
way we did it in class) may not be the way that Blast does it. The Smith-Waterman method 
charges a gap-opening penalty for the first gap and a gap extension penalty for each additional 
gaps. An alternative approach is to charge a gap-opening penalty and a gap extension penalty (or 
more accurately a gap-presence penalty) for the first gap and just a gap extension penalty for 
each additional gap. These two choices are illustrated in Table 1. 

Table 1: Comparison of methods to calculate gap penalty 

 

Method 

 

Formula for gap penalty 

Example: penalty for  
AGGC  open  -5 
T--G  ext  -2 

Smith-Waterman Gap_opening + gap_extension · (gap_size-1) 7 
Alternative (Blast?) Gap_opening + gap_extension · gap_size 9 

 

Which method does NCBI BlastN use? We’ll be able to answer this better after a discussion of 
scoring, but we can answer right now what method local BlastN uses.  

SQ2. One way to tell is to examine the program and look for the code that calculates gap 
penalties. Find that part of the program. Where is it and which method does the 
program use? 

SQ3. Another approach is to print out the scoring matrix and examine the values in 
adjacent boxes. The notes for Wed Sep 25 describes how to write a subroutine to 
print out some values of the scoring matrix. First of all, where in BlastN would you 
put a call to this subroutine (print_score) so that the values printed out are 
meaningful? 

SQ4. Complete the subroutine print_score started for you in Wednesday’s notes, insert it at 
the end of BlastN, and call it at the appropriate time (determined in SQ3). By the 
way, the notes for Wednesday have been modified so to contain a link for the starter 
program, incorporating some of the hints Fritz gave you.  
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II. Scoring sequence alignments 
Our version of BlastN prints out every word match it finds, after extending it in both directions 
as far as it can. Real BlastN doesn’t do that. Instead, it calculates a score for each match, ranks 
all matches by their scores, and provides the top x matches that exceed a threshold y (you can 
specify x and y). The score thus serves to order the matches, so you can look at the best ones 
first, and also tosses out matches that are worse than you want to consider. 

What kind of scoring system would be appropriate for sequence alignments? The first idea that 
might come to mind would be to use directly the raw score that BlastN calculates, i.e. one of the 
numbers found in scoring tables. This is OK for ranking matches, but suppose that all of the 
matches were no good, according to your tastes. How could you prevent BlastN from providing 
you with pages of garbage? 

A better idea is to transform the raw score into a probability. If a match would occur frequently 
in a random sequence, you don’t want to know about it. If you’d have to go through 10180 
random sequences to find a match as good as the one BlastN is considering, then you want the 
program to pass that one on to you. So, we need to talk about expected frequency. 

Suppose you’re following Blast as it compares a 100-nucleotide sequence with a 100,000-
nucleotide sequence. The first step is to extract a word from the query (let’s say that the word 
size had been set to 11 nucleotides). What’s the probability that this particular 11 nucleotides 
match the first 11 nucleotides of the 100,000-nucleotide sequence? Not much, sure, but we need 
a number. Let’s simplify the situation and say that the probability of a match of one nucleotide is 
¼ . If so, then: 
                           word #3 
            word #2             word #90 
                  
 
Query: AATATTGACGCTTTACTACATCAGTCCATCGGAAGTACGTTGTATAATAAAATATATCTGTATGAAAACATGAATATAAATAACTTAACAGCAACGTTAG 

 
           word #1 

 
       A A T A T T G A C G C 
 

             1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18  19  20                                                         100,000 

Target: ··· 
       ¼·¼·¼·¼·¼·¼·¼·¼·¼·¼·¼ 

The probability of a match between word #1 and positions 1-11 of the target is (¼)11. But there is 
the same probability of a match between word #1 and positions 2–12 and 3–13, etc., all the way 
up to positions 99,990 – 100,000. That’s about 100,000 possible matches, each with a probability 
of (¼)11, giving a combined probability of 100,000·(¼)11. But that’s not the end: there are also 
words #2, #3, all the way up to word #90,a so there are now 90 · 100,000 ways of getting a 
match, each with a probability of  (¼)11. That gives a total expected number of matches of: 
  90 ·100,000 · (¼)11 

                                                 
a Why not 100 words? Because the last word ends at position 100, so must begin at position 90. The number of 
words = length – wordsize + 1. 
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or more generally: 

  (1)  E = m · n · pS 

where E is the expected number of matches, m is the effective length of the query, n is the 
effective length of the target, p is the probability of a single match, and S is (for the moment) the 
total number of matches. 

Mathematically, it is more convenient to transform this expression into an exponential based on 
e, forcing the expression to look like: 

  (2)  E = m · n · e -λS 

To fit this form, it works out that the constant λ has to equal –ln(p).b 
 
We now have almost what we want: a score that tells us how frequent we should expect a match 
to be. Unfortunately for this expression, BlastN finds matches that are more complicated than a 
string of matching nucleotides. This means that the expression has to be modified. I don’t 
understand half the math necessary to tell you how the ultimate expression arises, but you can 
see that this expression used by BlastN to calculate expected frequency is pretty close to the 
expression we derived intuitively from first principles. In the actual expression: 
  (3)  E = K · m · n · e -λS 

where K and λ are empirically derived constants, the expected frequency, E, depends on the 
effective lengths of the query and the target, and it is related exponentially to the score S. 
Furthermore, λ is generally close to ln(¼), and K (a constant that depends on the base 
composition of the target) is not far from 1. 
 
SQ5. Let’s see these symbols in action. Go to the NCBI web site and do a BlastN search of 

M29081 against all available nucleotide sequences (see instructions in Scenario 3 if 
you’ve forgotten how to do this).  Look at the very end of the results you obtain to 
find values for K, λ, m, and n.  Then go to any match in the results (you’ll have to 
scroll down from the top past the summary list) that has an E-value greater than 
zero. You’ll find the E-value and the raw score, S, in the line that begins: 

    Score = nnn bits ([raw score]), Expect = [E-value] 

Determine from these values whether the given E-value can be calculated by 
equation (3). 

 
You’ll notice in the same line that gave you raw score and E-value, there’s a quantity called bits. 
This is yet another way of representing the score. One problem with the raw score is that its 
significance depends on other parameters (K and λ) that can change depending on the base 
composition of the sequence being examined. One way to transform the raw score into a score 
whose significance is independent of these quantities is to force the equation for E-value into the 
form: 

  (4) E = K · m · n · e –λS   

   (5)     =    m · n · 2 –S’ 

                                                 
b m · n · pS = E = m · n · e –λS, leads to pS = e –λS, and (taking the log of both sides) ln(p) =  –λ. 
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leading to: 
        (6) S’  =  [ λ · S – ln(K) ]  / ln(2) 
where S’ represents the normalized score. Since the E-value depends in the latter expression only 
on S’ and on readily determined quantities (i.e., the effective length of the query sequence, m, 
and the effective length of the target sequence,n), it is more transportable. Secondly, since S’ is 
present as an exponent of 2, it relates the number of binary digits, or bits, necessary to represent 
a number, just as the exponent in 10n tells you how many digits are in the decimal representation 
of a number. Bits is also the currency of information theory, making it a theoretically attractive 
unit, one that is introconvertible with the E-value. You might also think of bits as the number of 
binary digits it takes to represent the probability of a specific match as good as the one reported. 
Multiply this probability by the sizes of the two sequences considered and you get, as in 
equation (1), the expected number of matches. 

SQ6. Using the same BlastN result from SQ1, calculate the E-value from the bit score (S’) 
and equation (5), and determine whether this value corresponds well with the given 
E-value. 

II. Aligning protein sequences 
Aligning pairs of protein sequences introduces additional complications, although the search 
algorithm is only a bit different from that used in aligning nucleic acid sequences. The root of the 
problem is the more complex functional roles played by amino acids relative to nucleotides. 
With nucleotides, scoring is simple: there’s a gap, a match, or a mismatch. With amino acids, 
there are various levels of mismatch, as illustrated in Figure 1. The region of the protein shown 
in the figure is relatively well conserved over evolution, but there is variation in amino acids at 
each position, and there is often order to that variation. For example, the first position is 
occupied by either lysine or arginine, both positively charged amino acids. The second position 
shows either isoleucine, leucine, or valine, all aliphaticc hydrophobic amino acids. The last 
position is a different matter, however, with a mixed bag of amino acids. One would imagine that 
in many cases, mutation from one amino acid to a similar amino acid would retain function of 
the protein, and we would like to score that mismatch differently from a mutation that leads to a 
more drastic change.  

                                                 
c An “aliphatic” amino acid is one means that has a side chain consisting solely of a hydrocarbon chain. 

M.AvaV KLEIFARE  + charged   hydrophobic/aliphatic  
Orf(EfBm4382) RVELFARQ K  lysine I  isoleucine             
Orf(EfV853) RVELFARQ R  arginine L  leucine                 
M.Mun(Msp) KIELFARN  — charged   V  valine                   
MT-A70(Hs) KIELFGRP D  aspartate V  methionine           
CG5933(Dm) KIELFGRP E  glutamate hydrophilic/uncharged 
At4g10760(At) KLELFARM      small      N  asparagine          
SPO8(Sc) KLEIFGRD A  alanine    Q  glutamine             
  G  glycine    
Figure 1: Alignment of a region from eight DNA-modifying enzymes (some putative). 
Note that the alignment isn’t perfect, but most of the imperfections fall into certain 
families of amino acids. 
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II.A. Percent Accepted Mutation (PAM) tables  

We would like to be able to look at a protein and say that this amino acid change is minimally 
significant, hence a low mismatch penalty, while another is worthy of a high mismatch penalty, 
but we don’t yet know enough about protein structure to do this. Instead, we’ve asked the 
proteins to tell us to score their own mutations. This has been done in two ways. Margaret 
Dayhoff collected pairs of very similar protein sequences that differed from each other in about 
one amino acid per one hundred resides and analyzed which amino acid were replaced by which 
others. All of the proteins analyzed were functional, so the amino acid changes did not abolish 
function and were termed “acceptable”. The resulting table, called PAM1 for Percent Accepted 
Mutation at 1% change, provides a guide as to what amino acid substitutions might be considered 
conservative (more likely to retain function of the protein) and a basis for the construction of a 
rational scoring table for protein sequence alignment. 

However, a table constructed from the comparison of closely related protein is not as applicable 
to the comparison of proteins that have a much greater degree of divergence. For this reason 
other PAM tables were calculated. Multiplying the PAM1 matrix by itself gives a PAM2 matrix, 
representing predicted mutation frequencies amongst proteins with a 2% degree change. By this 
procedure, matrices as high as PAM400 have been calculated. It may seem surprising that there 
exist a table that predicts the frequencies of amino acid substitutions in protein with 400% degree 
of change, but you have to remember that over millions of years, the same position in a protein 
may change multiple times. A 400% degree of change means that each amino acid position has 
changed, on average, 4 times. Figure 2 provides a theoretical correlation between the degree of 
change and the percent similarity between protein. PAM tables higher than PAM250 are of 
limited value, because with such a low degree of similarity, matches between amino acids may 
have arisen by chance rather than common descent. PAM250 is commonly used in Blast 
searches. 

 

Table 2: PAM1 amino acid change frequencies* 

  Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr 
  A R N D C Q E G H I L K M F P S T W Y 
Ala A 9867 2 9 10 3 8 17 21 2 6 4 2 6 2 22 35 32 0 2 
Arg R 1 9913 1 0 1 10 0 0 10 3 1 19 4 1 4 6 1 8 0 
Asn N 4 1 9822 36 0 4 6 6 21 3 1 13 0 1 2 20 9 1 4 
Asp D 6 0 42 9859 0 6 53 6 4 1 0 3 0 0 1 5 3 0 0 
Cys C 1 1 0 0 9973 0 0 0 1 1 0 0 0 0 1 5 1 0 3 
Gln Q 3 9 4 5 0 9876 27 1 23 1 3 6 4 0 6 2 2 0 0 
Glu E 10 0 7 56 0 35 9865 4 2 3 1 4 1 0 3 4 2 0 1 
Gly G 21 1 12 11 1 3 7 9935 1 0 1 2 1 1 3 21 3 0 0 
His H 1 8 18 3 1 20 1 0 9912 0 1 1 0 2 3 1 1 1 4 
Ile I 2 2 3 1 2 1 2 0 0 9872 9 2 12 7 0 1 7 0 1 
Leu L 3 1 3 0 0 6 1 1 4 22 9947 2 45 13 3 1 3 4 2 
Lys K 2 37 25 6 0 12 7 2 2 4 1 9926 20 0 3 8 11 0 1 
Met M 1 1 0 0 0 2 0 0 0 5 8 4 9874 1 0 1 2 0 0 
Phe F 1 1 1 0 0 0 0 1 2 8 6 0 4 9946 0 2 1 3 28 
Pro P 13 5 2 1 1 8 3 2 5 1 2 2 1 1 9926 12 4 0 0 
Ser S 28 11 34 7 11 4 6 16 2 2 1 7 4 3 17 9840 38 5 2 
Thr T 22 2 13 4 1 3 2 2 1 11 2 8 6 1 5 32 9871 0 2 
Trp W 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 9976 1 
Tyr Y 1 0 3 0 3 0 1 0 4 1 1 0 0 21 0 1 1 2 9945 
Val V 13 2 1 1 3 2 2 3 3 57 11 1 17 1 3 2 10 0 2 
*Each cell gives the number of times the amino acid listed horizontally changed to the amino acid listed vertically, 
per 10,000 changes of the first amino acid. 



Scoring Blast alignments and aligning protein sequences - 7 

SQ7. Amongst protein pairs that are 99% 
similar to each other, what fraction of 
arginines in one protein correspond to 
lysines in the other (at the equivalent 
position)? What fraction of arginines in 
one correspond to leucines in the 
other? 

SQ8. What PAM table would be appropriate 
to search for proteins about 50% 
identical to a query sequence? 

II.B. Block Substitution Matrices (BLOSUM) 

PAM tables suffer from several deficiencies. 
Since they’re all calculated from PAM1, any 
error in that table is propagated throughout the 
rest. Since the original data consisted of only 1572 amino acid changes, many possible changes 
were not observed (e.g. aspartate to arginine). Even though such changes must be possible at 
some frequency, no PAM table will not admit this. Secondly, the procedure of multiplying PAM 
matrices to get tables for less similar proteins presumes the debatable evolutionary model in 
which similar and dissimilar protein pairs arose from the same kind of amino acid substitutions. 
Third, PAM tables are built from a consideration of amino acid substitutions at all positions in 
similar proteins. It may well be that the pattern of amino acid substitutions would differ in 
different regions. 

Henikoff and Henikoff (1992)d proposed an alternative strategy to address the deficiencies in 
PAM tables. They compiled a list of conserved blocks of amino acid sequences (regions within 
proteins that are relatively conserved across many organisms) and calculated the frequency of 
each amino acid change. Owing to the size of their database, even the least common amino acid 
transitions is represented 2369 times. The table derived from blocks in which there is 62% 
identity of amino acids is called BLOSUM62 (Block substitution matrix, 62%). Two other 
tables, BLOSUM45 and BLOSUM80 are also available, derived from blocks with 45% and 80% 
identity, respectively. Note that BLOSUM’s numbering system is the opposite in direction from 
PAM’s. Per BLOSUM: low numbers mean low identity. Per PAM: low numbers mean low 
change (so high identity). 

II.C. Constructing scoring matrices from PAM and BLOSUM tables 

Blast uses PAM and BLOSUM tables to calculate a probability that a series of matches and 
mismatches would occur given the presumed model. To facilitate this calculation, the tables are 
modified in the following way. 

1. The frequency of each amino acid-amino acid transition is rendered as an odds ratio. For 
example, for the transition from asp-glu (in either direction): 

Total number of asp-glu transitions observed/Total number of transitions observed =  relative frequency  
                  2 · (frequency of asp residues) · (frequency of glu residues)                       expected frequency 

                                                 
d Henikoff S & Henikoff J (1992). Proc Natl Acad Sci USA 89:10915-10919. 

Figure 2: Relationship between degree of change 
(Pam value) and dissimilarity between two 
proteins. The hatched box indicates the degree of 
dissimilarity sufficient to cast doubt on a conclusion 
of common lineage between two proteins. (from 
Doolittle, 1987) 
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The expected frequency is the fraction of transitions you’d expect just from the frequency 
of the component amino acids. So the odds ratio is the degree to which the frequency of 
an amino acid transition deviates from expectation. 

2. The from the odds ratio, the log odds ratio (lod) is derived: 

 lod  = log10(relative frequency/expected frequency) 

Adding the lod scores is equivalent to multiplying the odds ratios, and since addition is 
faster than multiplication, the program becomes more efficient. 

3. The lod score is multiplied by 10 and only the integer portion is shown. This makes the 
table easier to read, though making it more difficult to comprehend how the number 
relates to the odds ratio. 

Figure 3 shows the 
BLOSUM62 table in its log 
odds ratio form. A scoring 
matrix would use this table to 
replace match rewards and 
mismatch penalties. The 
alignment of the first 
sequences given in Figure 1: 
 KLEIFARE 
 RVELFARQ 

would give a score (using 
BLOSUM62) of: 

   2+1+5+2+6+4+5+2 = 27 

Gaps are still dealt with using 
gap open and gap extension 
penalties as in BlastN.  

SQ9. What is score do you calculate for the alignment between the last two sequences 
given in Figure 1? 

II.D. One additional difference between BlastP and BlastN: The initial match 

BlastN begins by looking for an exact match in the target sequence of a word extracted from the 
query sequence. Unfortunately, exact matches in proteins are too rare for this procedure to be 
useful. Instead, BlastP (analogous to BlastN, but acting on protein sequences) searches for exact 
and almost exact matches to words. How exact the match has to be is determined by what is 
known as the neighborhood word threshold value (T). For example, if T is set to 13, then the 
word FIM will find the following sequences: FIM (score=15), FIM (score=13), and FLM 
(score=14). Any of these three sequences in the target will instigate a search for extensions in 
both directions. 

SQ10. What sequences would be found by VLI using a T value of 13? Considering your 
answer, do you think that this system or the T value used has a defect? 

 

Figure 3: BLOSUM62. Each number represents the log10 of the odds that a
given amino acid transition occurs. Since the table is symmetrical (the
direction of change is irrelevant), only half of it is shown. 
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III. Practical Blast 
You now know how to score DNA and protein alignments, you have an idea how BlastN and 
BlastP work… how does this change your life? If you do alignments (and there’s probably 
nothing more common in bioinformatics than that), you should now be able to talk to Blast 
better, to make it do what you want.  

III.A. Which scoring matrix to use? (protein searches only) 

From the considerations discussed above, you shouldn’t be surprised to learn that BLOSUM 
matrices outperform their PAM counterparts, so if you are searching for protein that figure to be 
around 45%, 62%, or 80% identical, then choose BLOSUM45, BLOSUM62, or BLOSUM80, 
respectively (BLOSUM62 is BlastP’s default). If you’re using a short query, then you want to 
choose a matrix that demands a higher degree of identity (otherwise true matches will get mixed 
in with the background). In that case, PAM30 (length <35 amino acids) or PAM70 (length 
between 35 and 50 amino acids) is preferable to any available BLOSUM table. 

III.B. What scoring parameters to use? 

If you want to find the most 
significant matches, leave 
the Blast default parameters 
alone. You’ll often get a 
patchwork of partial 
matches between your query 
and the target, as shown in 
Figure 4. Often it is possible to connect the strong matches with less significant matches by 
reducing the gap penalties or reducing the mismatch penalty (in the case of nucleotides).  

If you’re searching for short matches, you may want to reduce the word size and increase the 
E-value threshold (since even good short matches will get worse scores than the long matches 
Blast is set up for). If you’re looking for significant matches and you’re getting a lot of them, you 
can reduce their number by setting the E-value from 10 (default) to .001. While this will almost 
always get rid of many spurious matches, you will need to decide if anything valuable is also 
being tossed out. 

Probably the common mistake people make with Blast is to search for DNA similarity when they 
could instead look for protein similarity. Evolution operates at the level of protein function, not 
DNA sequence, so DNA searches invariably miss distant matches that protein searches find. 

The second common mistake people make with Blast is to equate similarity of sequence with 
similarity of function. This is a large topic that takes us out of the scope of this course, but you 
might heed the warning given by Persemlidis and Fondon.e 

                                                 
e http://genomebiology.com/2001/2/10/reviews/2002 

Query: 
Target (G=11): 
Target (G=7): 
Figure 4: Effect of changing gap open penalty (G). Hypothetical example
of results of a Blast search of a query sequence (red line) against a target
sequence. Regions found by the search are shown in blue.   


