MATH 195: G ödel, Escher, and Bach (Spring 2000)

Problem Set 2: The M U-Puzzle

To be discussed Thu, January 25 (1-4) and Tuesday, January 30 (rest)
These problems range from the relatively straightforward to rather difficult. Don't get frustrated if you're stumped by one or another, but go as far as you can on them by Tuesday.
2.1. Starting with MI, derive MIU in two different ways.
2.2. Starting with MI, derive MIUUI.
2.3. Using the MU-Puzzle program (or just pen and paper), generate 10 different theorems.
2.4. Using the M U-Puzzle program (see instructions) or just a pen and paper, generate 20 different theorems systematically.
a. Theorem \#1 is MI (it's also an axiom)
b. Apply RULES I through IV ${ }^{1}$ to Theorem \#1 (some may not be applicable), generating new theorems. Number them consecutively.
c. Apply RULES I through IV to the theorems you generated in Step b. Give them numbers as well.
d. Apply RULES I through IV to the theorems you generated in Step c. . . and so forth, until you've generated at least 20 theorems.
e. What is the $20^{\text {th }}$ theorem?
f. You've been acting like a machine. Now break out of the system and examine the theorems you've generated. What generalities, if any, do you notice?
g. If you managed to generate MU. . congratulations! If not, then how far would you need to go to convince yourself that the M IU -system is incapable of doing so?
h. Circle all theorems that consist solely of I's plus one M. How many I's are in these theorems? Give a metarule that describes how you could recognize such theorems at a glance.
2.5. Prove that if MI is the sole axiom, the $\mathrm{M} I \mathrm{U}$-system can produce no theorem that does not begin with M.
2.6. Prove that if MI is the sole axiom, the MIU-system cannot produce MU in less than five steps.
2.7. Either generate MU within the MIU-system using MI as the sole axiom or prove that you cannot.

[^0]2.8. Consider the M IU -system with M II as the sole axiom. Is MI a theorem?
2.9. Consider the M IU -system with M U as the sole axiom. Is MI a theorem?
2.10. Can you think of a string that can serve as the sole axiom in the MIU-system and permit you to derive MU ?
2.11. Consider the M IU -system with M IU IIII as the sole axiom. Is MI a theorem? Is M U?
2.12. Can you generate any generality about what sole axioms permit the derivation of M U ? Of MI?
2.13. Change a rule of the MIU -system so that $\mathbf{M U}$ could be derived from MI.
2.14. Consider the string MIUIIUIIIUIIIIU (each set of I's is one more than the last). Describe how to derive this string within the MIU-system using MI as the sole axiom? If you need a hint, just ask. (Unasked for hint: Don't try solving this without insight, i.e. by

[^0]: ${ }^{1}$ You may be able to apply RuLE III more than once to a previous theorem. In such cases, proceed left to right. For example, applying the rule to MIIIII would generate, in order, M UIII, MIUII, M IIUI, and MIIIU

