MATH 198: G ödel, Escher, and Bach (Spring 2000)

Problem Set 1: Logic Puzzles

To be discussed Tuesday, January 23

1. Fill in the blanks so that this self-referential sentence is true. Your solution should be different from the one given in class.

In this sentence, the number of occurrences of 0 is 1 , of 1 is __, of 2 is of 3 is __, of 4 is 1 , of 5 is 1 , of 6 is 1 , of 7 is __, of 8 is 1 , and of 9 is 1 .
2. These sentences take a peculiar interest in each other's contents! Fill in the blanks to make each sentence true.

- In the next sentence, the number of occurrences of 0 is 1 , of 1 is \qquad , of 2 is \qquad , of 3 is 1 , of 4 is 1 , of 5 is 1 , of 6 is 1 , of 7 is 1 , of 8 is __, and of 9 is 1 .
- In the previous sentence, the number of occurrences of 0 is 1 , of 1 is __, of 2 is __ of 3 is 1 , of 4 is __, of 5 is 1 , of 6 is 1 , of 7 is __, of 8 is 1 , and of 9 is 1 .

3. I offer two prizes --- Prize 1 and Prize 2. You are to make a statement. If the statement is true, then I will give you one of the prizes (I'm not saying which one). If your statement is false, then you get no prize. Obviously you can be sure of winning a prize by saying, e.g., "Two plus two is four," but suppose you have your heart set on Prize 1; what statement could you make that would guarantee that you will get Prize 1? (Hint: Consider a statement of the form "Y ou will not give me. . .", then reason if the statement is false then. . . while if the statement is true then....)
4. Another game with two prizes. This time, if you make a true statement, you get Prize 2; if you make a false statement, you don't get Prize 2 (you may or may not get Prize 1). What statement will get you Prize 1? (Hint: there are four possible outcomes to the game in terms of what you get, and the statement to make is similar in form to the one in problem 3).
5. Make up a strange loop, either in language or some other medium. The stranger the better. Try posting your favorite answer on the Discussion Board.
