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1 Introduction 

Mobile crowdsensing (MCS) aims to complete spatio-temporal sensing tasks, which 
usually require massive expenses and execution times when performed individually, 
using the help from mobile participants (workers). This happens through recruit-
ment of mobile users and leveraging the sensing capabilities (e.g., microphone, 
camera, and GPS) on their mobile devices. In an MCS system, there are mainly 
four entities; namely, the platform, requesters, tasks, and workers. Requesters define 
the tasks and post them to the platform with the requirements of their tasks, e.g., 
deadline, reward, and budget. Workers are the mobile users that register to the 
system with a set of their capabilities and limitations, e.g., a regional service area. 
The platform, knowing the tasks requested and the works eligible for each task in 
the system, makes the assignment of tasks to the requesters. This assignment can 
be made through a predefined logic with some goal, e.g., maximum tasks matched 
with minimum cost to requesters. Moreover, the platform, instead of performing 
the matching itself, can let the workers and requesters communicate and agree on 
an assignment in a distributed way. In this case, the platform acts as a mediator 
between the workers and task requesters. 

One of the key and most studied problems in MCS systems is the assignment 
of sensing tasks to workers. The challenging part of this problem is there are 
many parameters that can be considered and objectives can vary depending on 
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the system design. On the one side, there are task requesters who want their tasks 
to be completed in the best way (e.g., with the minimum cost to them and with 
the minimum delay), and, on the other side, there are workers who would like to 
make the best profit from the rewards they obtain once the tasks are completed 
and after their costs are taken out. There is also the platform that might be getting 
some registration cost from each user (i.e., task requester and worker) or some fee 
from each task completed and thus may aim to match as many tasks as possible 
to the eligible workers or maximize the total quality of service (QoS) received 
by the task requesters [1, 2]. In most of the existing studies in the literature, 
however, the objective during the task assignment process is defined in the favor 
of either one side (workers or task requesters) or for the system/platform itself. 
However, such assignments that do not take into account the individual needs and 
preferences of different entities may result in dissatisfied users and impair their 
future participation. This is because users in practice may not want to sacrifice their 
individual convenience for the sake of system utility or the other side’s benefit. 

In this chapter, we study the task assignment problem in MCS systems consid-
ering the preferences of entities involved in an MCS scenario. Preference-aware or 
stable matching has indeed been extensively studied in general bipartite matching 
problems especially in the economics literature [3]. However, these studies do 
not consider the features that are specific to MCS systems such as budget of 
task requesters, uncertainty in matching opportunities due to unknown worker 
trajectories, and time constraints of tasks. The stable matching problem for task 
assignment in MCS systems can indeed be defined in many different ways because 
of the varying settings of MCS scenarios, and, in each, the solution can be based on 
different approaches. Thus, we overview the different stable matching definitions 
studied recently in the MCS domain for the task assignment problem and provide a 
summary of proposed solutions. We also refer the readers to the actual studies for 
the details of the solutions. We hope this will highlight the spectrum of different 
stability definitions considered for MCS systems and summarize the differences. 

The remainder of the chapter is organized as follows: in Sect. 2, we first start 
with a background on worker–task assignment problem and proposed solutions in 
the MCS literature, as well as with a background on stable matching theory and 
its applications in several domains. We then provide a motivation for using stable 
matching inMCS in Sect. 3. In Sect. 4, we provide with the classification of theMCS 
scenarios studied while considering preference awareness in the task assignments. 
We provide the blocking or unhappy pair definitions considered in different MCS 
settings and discuss how the stability is defined in each. We also summarize the 
algorithms proposed to find the stable matchings in such settings. Finally, we discuss 
the open problems that need to be studied in the MCS systems while considering the 
preference awareness and conclude the chapter in Sect. 5.
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2 Background 

In this section, we first provide an overview of worker–task assignment solutions in 
different MCS settings. Then, we look at the matching problems and solutions stud-
ied considering the user preferences in different domains. During these overviews as 
well as through the rest of this chapter, we base our discussion considering the three 
main categories of MCS scenarios illustrated in Fig. 1. In  participatory sensing, 
workers can interrupt their daily schedule to carry out the assigned tasks (e.g., 
measuring air quality at a specific location) at the expense of additional cost, e.g., 
traveling distance. In opportunistic sensing, workers do not alter their schedules and 
perform the assigned tasks (e.g., traffic monitoring) only when they happen to be in 
the task regions, thus without an additional cost but with less likelihood of visiting 
task regions. Finally, in hybrid sensing, workers provide some flexibility through a 
set of alternative paths they can follow and let the platform decide which one to use 
to increase the utility from the matching. 

2.1 Worker–Task Assignment in Mobile Crowdsensing 

The overall performance of an MCS system and the satisfaction of its users are 
highly dependent on the efficiency of the assignments; thus, there have been 
many task assignment solutions proposed in different studies. These studies have 
considered various objectives in the task assignment process such as maximizing 
the number of completed tasks [5], minimizing the completion times of tasks [6], 
minimizing the incentives provided to the users [7], assuring the task or sensing 
quality [2] under some constraints on traveling distance [8], energy consumption [1], 
and expenses of task requesters [9]. Beyond these works, the issues of security [10], 
privacy [11], and truthfulness [12] have also been considered in the worker 
recruitment process. 

Opportunistic 

Semi-Opportunistic 
Participatory 

Task 

Fig. 1 Three different MCS scenarios considered [4]. Solid line is the regular path that the user 
follows. Dashed blue lines are alternative similar paths to the user’s regular path. Red line is the 
path the user is forced to follow to complete the tasks



146 F. Yucel et al.

In participatory MCS, since workers need to travel between the task regions to 
perform the assigned tasks, a key factor that shapes the task assignment process 
is the travel costs of the workers. In [13], the authors investigate the problem of 
minimizing the total travel costs of the workers while maximizing the number of 
completed tasks and keeping the rewards to be paid to the workers as low as possible. 
In [8], the authors study the task assignment problem in an online setting and aim 
to maximize the total task quality while ensuring that the travel costs of the workers 
do not exceed their individual travel budgets. In [14], the authors adopt a system 
model in which each worker has a maximum traveling distance that needs to be 
considered in the assignment process, and the objective is to maximize the profit 
of the platform. The authors propose a deep reinforcement learning-based scheme 
that significantly outperforms the other heuristic algorithms. In [15], the goal is 
also to minimize the travel distance of workers, and however, differently from the 
aforementioned studies, the authors consider the issue of user privacy and present a 
mechanism that finds the task assignments without exposing any private information 
about workers or task requesters. Lastly, in [16], the authors study the destination-
aware task assignment problem in participatory crowdsourcing systems. 

On the other hand, in opportunistic MCS, the main objectives are to maximize the 
coverage and to minimize the completion times of the tasks due to the uncontrolled 
mobility, i.e., a task can only be performed if its region resides on the trajectory 
of a worker. In [17], the authors study the maximum coverage task assignment 
problem in opportunistic MCS with worker trajectories that are known beforehand. 
It is assumed that each task needs to be performed at a certain point of interest 
and has a weight that indicates how important its completion is to the platform, 
which has a fixed budget and can hence recruit only so many workers. The objective 
of the platform is to select a set of workers within the budget constraints, which 
maximizes the weighted coverage over the set of tasks according to the given 
trajectories of workers. The authors develop a .(1 − 1/e)-approximate algorithm 
with a time complexity of .O(n5), where n is the number of workers in the system. 
[18] studies the same problem and proposes a greedy algorithm that, despite not 
having a theoretical guarantee, outperforms the algorithm proposed in [17] in terms  
of achieved coverage in certain settings and runs in .O(n2) time. 

Adding the delivery probability of the sensed data to the goals notably changes 
the problem being studied as shown in [19]. In this design, after carrying out a 
task, a worker should either deliver the sensed data to the server through one of 
the collection points (i.e., Wi-Fi APs) on his trajectory or transmit it to another 
user who will deliver it for him. Thus, here, not only does the platform need to 
estimate whether and when workers would visit task regions and collection points, 
but it is also crucial to obtain and utilize the encounter frequencies of workers to 
improve the delivery probability of the sensed data. The authors present different 
approximation algorithms for the systems with deterministic and uncertain worker 
trajectories and evaluate their performance on real datasets. The data delivery aspect 
of the problem in [19] has also been studied in [20] and [21]. They both utilize 
Nash Bargaining Theory to decide on whether or not selfish data collectors and 
mobile (relay) users who only take part in delivery of sensed data would like to
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cooperate with each other according to their utility in either scenario. However, in 
[21], the authors consider a more complete mobile social network model and present 
an enhanced data collection mechanism. 

Another aspect to the MCS system design is the uncertainty of workers’ trajecto-
ries. In [22], the problem of maximizing spatio-temporal coverage in vehicular MCS 
with uncertain but predictable vehicle (i.e., worker) trajectories is investigated. The 
authors first prove that the problem is NP-hard when there is a budget constraint and 
then propose a greedy approximation algorithm and a genetic algorithm. In [23], 
the authors also assume predictable worker trajectories. However, they focus on the 
task assignment problem in a mobile social network where task assignments and 
delivery of sensed data are realized in an online manner when task requesters and 
workers encounter with each other. They aim to minimize the task completion times 
and propose different approximation algorithms to optimize both worst-case and 
average-case performance. For predictions of worker trajectories, [22] uses spatio-
temporal trajectory matrices, while [23] assumes that user inter-meeting times 
follow an exponential distribution, which is used widely in mobile social networks 
[24–26] literature. 

Recently, there are studies [27, 28] that look at the task assignment problem in 
a hybrid system model to simultaneously leverage the advantages of participatory 
and opportunistic MCS. In [27], the authors propose a two-phased task allocation 
process, where opportunistic task assignment is followed by participatory task 
assignment. The objective behind this design is to maximize the number of tasks 
that are performed in an opportunistic manner, which is much less costly compared 
to participatory MCS, and then to ensure that the tasks that cannot be completed by 
opportunistic workers are assigned to workers that are willing to perform tasks in 
a participatory manner to alleviate the coverage problem in opportunistic MCS. On 
the other hand, in [28], the workers carry out the sensing tasks only in opportunistic 
mode, but they provide the matching platform with multiple paths that they would 
take if requested, instead of a single path as in classic opportunistic MCS. This 
enables the platform to find a matching with a high task coverage. However, none 
of the studies considers the stability in the assignment based on the preferences of 
the workers and task requesters. 

2.2 Matching Under Preferences 

Stable matching problem is introduced in the seminal paper of Gale and Shap-
ley [29] and can simply be defined as the problem of finding a matching between two 
groups of objects such that no pair of objects favor each other over their partners in 
the matching. Gale and Shapley have also introduced what is called the deferred 
acceptance procedure that finds stable matchings in both one-to-one matching 
scenarios (e.g., stable marriages) and many-to-one matching scenarios with capacity 
constraints (e.g., stable college admissions) in .O(mn) time, where m and n are 
the size of the sets being matched. Since its introduction in [29], the concept
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of stability has been utilized in different problems including hospital resident 
assignment [30], resource allocation in device-to-device communications [31], SDN 
controller assignment in data center networks [32], supplier and demander matching 
in electric vehicle charging [33–35], and peer-to-peer energy sharing among mobile 
devices [36–38]. 

Some matching problems allow or require nodes in one or both sides to 
be matched with multiple nodes, i.e., many-to-one and many-to-many matching 
problems. A few studies investigate the issue of stability in such matching problems. 
For instance, [39] and [40] study the many-to-one stable matching of students– 
colleges and doctors–hospitals, respectively. In [39], all colleges define a utility 
and a wage value for students and aim to hire the best set of students (i.e., with 
the highest total utility) within their budget constraints. Each student also forms a 
preference list over colleges. The authors prove that there may not exist a stable 
matching in this setting and even checking the existence is NP-hard. However, they 
provide a polynomial time algorithm that finds pairwise stable matchings in the 
so-called typed weighted model where students are categorized into groups (e.g., 
Master’s and PhD students) and colleges are restricted to define a set of possible 
wages for each group, i.e., they cannot define a particular wage for each student. 
[40] studies the same problem and proposes two different fully polynomial time 
approximation algorithms with some performance guarantee in terms of coalitional 
stability for general and proportional (i.e., the wage of doctors are proportional 
to their utility for hospitals) settings. However, the study does not provide an 
experimental analysis of the algorithms or discuss their actual/expected performance 
in these settings. Moreover, the proposed solutions can only be applied to a limited 
set of scenarios. 

There are some studies that look at the stable matching problem in settings with 
incomplete information on user preferences or dynamic user arrivals/departures. 
[41] and [42] both study the dynamic stable taxi dispatching problem considering 
passenger and taxi preferences. However, the objective adopted in [42] is to find  
locally optimal stable assignments for a given time-point, whereas that in [41] is  
to minimize the number of unhappy taxi–passenger pairs globally. The authors in 
[43] investigate the stable matching problem in the presence of uncertainty in user 
preferences. [44] looks at the problem of minimizing the number of partner changes 
that need to be made in a stable matching to maintain stability when preference 
profiles of some users change in time. Lastly, [45] studies an interesting combination 
of famous stable marriage and secretary (hiring) problems. 

The concept of stability is studied in multi-dimensional matching problems as 
well. In [46], the authors introduce the three-dimensional stable matching problem. 
In this problem, there are three sets of different types, each individual from a set 
has a preference list over all pairs from the other two sets, and the goal is to form 
stable/satisfactory families of three, where each individual in a family is a member 
of a different set. Wu [47] investigates a different version of this problem, where 
each individual has a one-dimensional preference list over the individuals from the 
other two sets instead of over all pairs of individuals as in [46]. In [48], the authors 
extend the stable roommates problem [49] to a three-dimensional setting, where a
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set of individuals are assigned into groups of three instead of two based on their 
preferences. Lastly, in [50], the authors study the problem of matching data sources, 
servers, and users in a stable manner in video streaming services under restricted 
preference settings. 

In a typical MCS system, the objectives of workers and task requesters can be 
defined as to maximize their profits and to have their tasks completed with the 
highest quality possible, respectively. Thus, they are likely to have preferences 
over possible assignments they can get, and the task assignment in MCS can 
be consequently characterized as a matching problem under preferences. Apart 
from the studies that we will present in the next section, there are only a few 
studies that consider user preferences in mobile crowdsensing (or in mobile 
crowdsourcing). In [51], the authors study the budget-constrained many-to-many 
stable task assignment problem, which they prove to be NP-hard, and propose 
efficient approximation algorithms. Similarly, in [52], stability in many-to-many 
assignments has also been studied considering a competition congestion metric. 
In [53], the authors study the same problem, but in a system model with capacity 
constraints. On the other hand, [54] considers a many-to-one matching setting and 
introduce additional constraints (e.g., minimum task quality requirements) that are 
taken into account in the matching process, along with user preferences. Lastly, 
in [55], the authors consider a budget-constrained MCS system where the quality of 
a worker is identical for all tasks and present an exponential-time algorithm to find 
weakly stable many-to-one matchings. Note that there are also studies (e.g., [56]) 
that use auctions for fairness in crowdsensing systems, but these are out of the scope 
of this work. 

3 Why Should We Care About Stability in MCS? 

The answer of this question is rather obvious in MCS campaigns with no central 
authority, where the task assignments are made in a distributed manner or by a 
piece of software that runs on the cloud and is managed jointly by the users. This is 
because aside from malicious intent, there is no reason for the users of such systems 
to adopt a task assignment mechanism that would favor certain individuals, and thus 
the long-term functioning of such systems can only be made possible by considering 
user preferences in a fair way and producing stable assignments where no user has 
an incentive to deviate from their assigned partners. 

However, in MCS campaigns with a central service provider (SP) which aims 
to maximize its profits, the question set forth above is more of a business question 
than an engineering question. The main motivation for an SP to consider the user 
preferences and provide a stable worker–task assignment would be to ensure the 
continuous participation of the existing users and to promote their willingness to 
perform the assigned tasks. However, this may not align perfectly with the SP’s 
goal of maximizing its own utility. So, here the SP faces a critical business decision: 
it should either choose to maximize its own utility by disregarding user preferences,
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but potentially suffer from the consequences of doing so (e.g., unhappy users 
abandoning the platform), or should prioritize user preferences to keep the users 
actively participating in the MCS campaign at the cost of its own utility. 

In order to demonstrate this trade-off between the utility of SP and user 
happiness, we have performed a series of experiments and shown that [57] a  
task assignment solely maximizing the utility of the SP without considering user 
preferences may make the majority of users unhappy with their assignments. In 
such cases, if the users that get such dissatisfying assignments do not obey the 
task assignment results and not perform the task, as they can be selfish and can 
consider their own benefit, the SP will face a significant utility loss. Furthermore, 
if this dissatisfaction causes even a certain part of the users to abandon the system 
in each assignment cycle, over time, the numbers of workers and task requesters 
participating in the campaign will decrease and this will result in an exponential 
utility loss for the SP. Even though these results show the value of considering user 
preferences, they do not necessarily indicate that the SP should always only care 
about user preferences and ignore its own utility. In fact, in some scenarios, the 
SP may benefit from producing task assignments [57], which maximize its own 
utility while keeping the conflicts with user preferences as minimal as possible 
(i.e., the system utility and user preferences as primary and secondary objectives, 
respectively). 

4 Stable Task Assignments in Different MCS Applications 

In this section, we present the stability definitions considered in three different MCS 
scenarios (i.e., participatory, opportunistic, and hybrid). Throughout the section, we 
also use the terms uniform and proportional MCS systems, where the former refers 
to the MCS scenarios when the QoS provided by each worker is the same for all 
tasks, and the latter refers to the MCS scenarios where the rewards that are offered 
to the workers are proportional to the QoS they provide. Note that these are exclusive 
to the three aforementioned categories (i.e., participatory, opportunistic, and hybrid). 

Throughout the chapter, we assume a system model with a set of workers . W =
{w1, w2, . . . , wn} and a set of sensing tasks .T = {t1, t2, . . . , tm}. We also define 
.ct (w) as the cost of performing task t for worker w and use .rt (w) for the reward 
that worker w is offered to carry out task t . 

4.1 Participatory MCS 

AnMCS system is called participatory if the available workers considered in the task 
assignment process are actively waiting for new tasks to be assigned and are willing 
to go to the locations of the assigned tasks immediately or whenever requested by the 
task requesters. In other words, the task assignment mechanisms in these systems
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can be assumed to have the ability to control the mobility of workers, generally 
within some constraints specified by workers. This, of course, creates additional 
cost to the task requesters, as workers need to travel to task locations and ask for 
more rewards to cover this cost. 

In MCS systems where each task can recruit multiple workers within their 
budget constraints, the stability can be defined in two different ways: pairwise 
and coalitional. Due to the many-to-one nature of task assignments and budget 
constraints, the conditions of both pairwise and coalitional stability differ from 
the classic stability conditions specified in [29], and thus existing stable matching 
solutions cannot be used to find pairwise or coalitional stable matchings in such 
systems. Moreover, depending on the relation (i.e., proportional or not) between the 
QoS provided by workers and the reward they gain, the hardness of the problem and 
the corresponding solution approach completely change. 

Since a rational worker will aim to maximize their profit and will not accept to 
perform the tasks that cost higher than the corresponding rewards that will be paid, 
we can define the preference list of worker w as 

.Pw = ti1, ti2 , . . . , tik , (1) 

where .Pw ⊆ T, .∀t ∈ Pw, .rt (w) > ct (w), and .∀t ′ = tij , t
′′ = tij+1 , . rt ′(w)−ct ′(w) >

rt ′′(w) − ct ′′(w). We denote the j th task (. tij ) in  . Pw by .Pw(j) and utilize . t ′ �w t ′′
notation to express that . t ′ precedes . t ′′ in . Pw. 

On the other hand, a rational task requester will try to maximize the total quality 
of service (QoS) that can be obtained from the recruited workers considering his/her 
budget constraint. Let .qt (w) denote the QoS that worker w can provide for task t 
and . bt denote the budget of task t . Then, we can define the preference list of task t 
as 

.Pt = S1, S2, . . . , Sk, (2) 

where .∀S ∈ Pt , .S ⊆W and .
∑

w∈S rt (w) ≤ bt , and .∀Si, Si+1 ∈ Pt , . 
∑

w∈Si
qt (w) ≥∑

w∈Si+1
qt (w). 

Here, given a matching . M and .w ∈ W, t ∈ T, the partner1 of worker w is 
denoted by .M(w) and the partner set of task t is denoted by .M(t). If  . M(u) = ∅
for user .u ∈ W ∪ T, it means user u is unmatched in . M. Note that the last set in 
the preference list of each task t is . ∅, so we have .S �t ∅, .∀S ∈ (Pt \ ∅). Also, even 
though the preference lists of workers do not include . ∅, since we assume that the 
workers in our system are rational, we have .t �w ∅, for all .w ∈W and .t ∈ Pw. We  
denote the remaining budget of task t in . M by .bMt = bt − rt (M(t)).

1 The partner of a worker refers to the task that the worker is assigned to perform, while the partner 
set of a task refers to the set of all workers assigned with the task. 
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Table 1 Mobile crowdsensing scenarios (i.e., uniform (U) and proportional (P)) and correspond-
ing applicable algorithms (. ∗ indicates the algorithm is applicable but has a very poor performance 
since it is not specifically designed for that scenario) 

MCS Type UTA [58] PSTA [58] Heuristic [58] SJA [55] .φ-STA [59] .θ -STA [59] 

P. & U. � � � � � * 

P. & N.U. � � � * 

N.P. & U. � � � �
N.P. & N.U. � � �

Definition 1 (Unhappy Pair) Given a matching . M, a worker  w, and a task t form 
an unhappy (blocking) pair .〈w, t〉 if .t �w M(w), and there is a subset . S ⊆ M(t)

such that .{w} �t S and .rt (w) ≤ bMt + rt (S). 

Then, a matching . M is said to be pairwise stable if it does not admit any 
unhappy pairs. 

Definition 2 (Unhappy Coalition) Given a matching . M, a subset of workers . S ⊆
W and a task t form an unhappy (blocking) coalition .〈S, t〉 if .∀w ∈ S, . t �w M(w)

and there is a subset .S′ ⊆M(t) such that .S �t S′ and .rt (S) ≤ bMt + rt (S
′). 

Similarly, a matching . M is said to be coalitionally stable if it does not admit 
any unhappy coalition. 

Following these different unhappy pair and stability definitions and using a 
classification of MCS systems based on the variability in the QoS provided by the 
workers for different tasks (uniform/non-uniform) and the relationship between the 
QoS provided by the workers and the rewards they are offered (proportional/non-
proportional), three different stable task assignment algorithms, namely UTA, 
PSTA, and Heuristic, have been provided for different MCS classes and scenarios 
in [58]. These algorithms are summarized in Table 1. In [58], we prove that UTA and 
PSTA algorithms always produce pairwise stable task assignments in uniform and 
proportional MCS systems, respectively. With simulation results, we also show that 
our algorithms significantly outperform the state-of-the-art stable task assignment 
algorithms in most scenarios. Specifically, PSTA and Heuristic algorithms usually 
achieve the highest outward and overall user happiness, respectively. 

In participatory MCS systems where the number of workers is scarce, it is also 
possible that some workers are assigned to multiple tasks to complete all the tasks, 
while still assigning each task to a single worker. While this provides workers with 
an opportunity to earn more rewards, the consideration of preferences and stability 
can be different. Note that in such systems, the task assignments can be performed 
either instantly or in a predetermined way. In the former, workers are assigned one 
task at a time, and they are assigned a new one only after completing their currently 
assigned task. However, this creates an uncertainty for the worker and also the 
assignments made become not optimal. On the other hand, if the task assignments 
for all workers could be planned in a foreseeable future (e.g., the next hour or day), 
such issues can be avoided. This is studied in [60] and a task assignment algorithm
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that not only considers the scheduling of tasks for workers but also respects user 
preferences so that no user will have a desire to deviate from their assignment (i.e., 
stable) is proposed. 

4.2 Opportunistic MCS 

An MCS system is called opportunistic if the mobility of workers is not controllable 
and the tasks can be completed by workers only when they happen to visit the task 
locations in their regular mobility patterns. Thus, the task assignments should be 
made considering the likelihood that the workers will visit the task regions within 
an acceptable time frame. As workers are not directed to a certain location, there 
is also no travel cost associated with task assignments, and however, it may take 
longer for workers to visit task regions in an opportunistic manner (compared to 
participatory sensing). 

A particularly important objective in the opportunistic MCS systems is to 
maximize the sensing coverage over a set of points of interest (POIs), which has 
recently been studied in [9, 18, 61, 62]. However, these studies either do not consider 
budget constraints of task requesters or assume that there is only a single task 
requester (i.e., a single budget constraint) in the system. This may not be a practical 
assumption as there can be multiple task requesters with a unique set of goals 
and an individual budget constraint. Moreover, some task requesters may prefer to 
allocate a separate budget for different sets of POIs. Thus, in such systems, stable 
assignment that considers each requester’s preferences would benefit all. When the 
utility functions are additive (i.e., the total utility of a set of workers for a task is 
equal to the sum of their individual utilities). However, when the utility functions 
are additive (...), the stability can be handled easily. On the other hand, the coverage 
of workers over a set of POIs is usually non-additive because of the commonly 
covered POIs by different workers. In order to handle such scenarios, in [63], we 
propose the following definition for unhappy coalitions. 

Definition 3 (Unhappy Coalition with Non-additive Worker Utilities) Given a 
matching . M, a task  t and a subset S of workers form an unhappy coalition (denoted 
by .〈S, t〉) if the following conditions hold for a subset . S′ of the workers assigned to 
task t in . M: 

• Task t would be better off with S than with . S′, i.e., 

.Ut(S ∪ (M(t) \ S′)) > Ut(M(t)), (3) 

where .Ut(S) defines the non-additive utility of set S of workers [63], 
• Task t can replace . S′ with S without violating her budget constraint, i.e., 

.rt (S) − rt (S
′) ≤ bMt , (4)
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where .bMt is the remaining budget of task t in . M (i.e., . bMt = bt −∑
w∈M(t) rt (w)), 

• Every worker w in S prefers task t to task . t ′ to whom he is currently assigned in 
. M, i.e., 

.∀w ∈ S, gt (w) > gt ′(w), (5) 

where .gt (w) = rt (w) − ct (w) is the net profit of performing task t for worker w 
and .gt ′(w) = 0 if worker w is currently unmatched (i.e., .M(w) = t ′ = ∅). 
Given this definition, a matching . M is considered coalitionally stable if it 

does not contain any unhappy coalitions. However, we show that in some MCS 
instances it may not be possible to find a stable matching under this definition. 
Thus, we propose .α-stability if the matching obtained achieves not more than . α
dissatisfaction for each worker. This .α-stability is studied in different scenarios (e.g., 
proportional rewards) and corresponding algorithms that guarantee certain . α values 
are provided. These algorithms are adapted from the well-known online budgeted 
maximum coverage (OBMC) problem [64]. 

In an opportunistic MCS setting, it is also possible that worker trajectories can be 
uncertain and hence not known in advance. Thus, existing solutions fail to produce 
an effective task assignment. Moreover, the uncertainty in worker trajectories 
requires a different stability definition. In [65], we study this problem with the 
following unhappy pair definition. 

Definition 4 (Decision–time Unhappy Pair) A worker–task pair .(wi, tj ) is said to 
be a decision–time unhappy pair if the following conditions hold for any time-step 
s in .[tj .b, tj .d] (i.e., beginning and deadline of task j ): 

• Worker . wi has a positive remaining capacity. 
• Task . tj is unassigned. 
• Worker . wi is in region . tj .r . 
• Either (i) SP matches worker . wi to task . tj , but at least one of them would be 

better off otherwise, i.e., 

. Wi (s) > W′
i,j (s) or Tj (s) > T′

j,i (s) (6) 

• Or (ii) SP does not match worker . wi to task . tj , but they both would be better off 
otherwise, i.e., 

. W′
i,j (s) > Wi (s) and T′

j,i (s) > Tj (s). (7) 

Here, .Wi (s) and .W′
i,j (s) refer to the expected total reward worker . wi would get 

in time frame .[s, T ] if he was not assigned to task . tj at time-step s, and otherwise, 
respectively. Similarly, .Tj (s) and .T′

j,i (s) refer to the expected sensing quality to be



Stable Worker–Task Assignment in Mobile Crowdsensing Applications 155

received by task . tj if it is not assigned to worker . wi at time-step s and otherwise, 
respectively. 

Thus, a matching . M is called an online stable matching if it does not admit 
any decision–time unhappy pairs. While it is straightforward to see that the optimal 
matching strategy toward such stable matching would match a worker–task pair 
if (7) holds, the challenge comes from the computation of the values of .Wi (s), 
.W′

i,j (s), and .Tj (s) because . As (which is defined as the set of all possible worker 
visit scenarios for the time frame .[s, T ] given the visit probabilities of the workers 
for all task regions [65]) grows exponentially with the number of users and the 
length of the assignment period (T ). In [65], we compute these values efficiently 
without actually forming the set . As and develop an efficient solution that always 
finds online stable matchings. 

4.3 Hybrid MCS 

Besides a purely participatory or a purely opportunistic MCS system, it is also 
possible to have a hybrid MCS system to take advantage of both systems while 
avoiding the issues in each. The key issue in the participatory mode is that the 
paths assigned to workers are likely to disturb their daily schedules and introduce 
significant additional travel costs, whereas the opportunistic mode mainly suffers 
from the issue of poor coverage, as a task cannot be carried out if its region will not 
be visited in time by any worker in the system during their self-defined trips. 

A hybrid (or semi-opportunistic) sensing mode can address these issues and finds 
a middle ground between the participatory and opportunistic modes [28]. In the 
hybrid mode, the workers provide the matching platform with alternative paths (e.g., 
dashed lines in Fig. 1) they would be willing to take within their comfort zones in 
addition to the path they would normally take. This yields a wider range of task 
assignment options for both workers and tasks and hence not only improves the task 
coverage but also expands the set of tasks that workers can carry out, allowing them 
to increase their profits by performing more tasks. However, existing studies [27, 
28] do not consider the stability in the assignment based on the preferences of the 
workers and task requesters; thus, the resulting assignment may impair their long-
term participation in the MCS campaign. 

The three-dimensional version of stable matching was indeed introduced by 
Knuth [66] by considering three sets of agents (e.g., woman, man, dogs) and their 
preferences on the others. Moreover, several variants that consider cyclic preference 
relations [67] as well as one-dimensional preference lists over all individuals from 
the other two sets [47] have also been studied. Such three-dimensional stable 
matching has also been considered in several other application domains such as 
server-data source–user matching [50] in video streaming services. 

In some recent studies, three-dimensional stability is also considered in spatial-
crowdsourcing context. However, these studies have a limited understanding of user 
preferences and stability. For example, [68] only considers the preferences of users
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on the potential places (that the tasks will be completed) based on their proximity, 
while workers and task requesters do not have preferences over each other. On the 
other hand, there are also studies [69, 70] that consider trichromatic matching (i.e., 
matching of three items such as tasks, workers, and workplaces/PoIs) with some 
stability definitions. However, these studies mainly focus on task scheduling within 
a deadline without considering the matching stability based on user preferences and 
aim to maximize the number of matched items. 

In this section, we present a totally different scenario that is studied in [4] where 
only the nodes in two (i.e., workers, tasks) of the three sets have preferences over 
each other depending on the features of the nodes in the third set (i.e., acceptable 
paths of workers). 

Each worker . wi provides the service provider (SP) with a set of paths . Pi =
{pi,1, pi,2, . . . , pi,ai

} that he finds acceptable from his current location to his 
destination. In each assignment period, it is the responsibility of SP to find a 
satisfactory assignment between workers and tasks by matching workers to one 
of their acceptable paths and assigning a subset of tasks on their selected paths. 
Each path .pi,j has a capacity . ci,j associated with it, which indicates the maximum 
number of tasks that worker . wi is willing to perform if he is assigned to path . pi,j . 
Given these constraints, then we define the following to base our stable solution on. 

Definition 5 (Unhappy Triad) Given a matching . M, worker  . wi , path . pi,j , and a 
set S of tasks form an unhappy triad denoted by .〈wi, pi,j , S〉 if 

• S is an acceptable assignment for . wi , i.e., 

.1 ≤ |S| ≤ ci,j , S ⊆ Lw
i , and S ⊆ Ti,j . (8) 

• . wi is an acceptable assignment for each .tk ∈ S, i.e., 

.wi ∈ Lt
k and tk ∈ Ti,j . (9) 

• Each task .tk ∈ S either prefers worker . wi to their current assignment . wh in . M, 
i.e., 

.qi,k > qh,k where qh,k = 0 if wh = ∅, (10) 

or is already assigned to worker . wi , i.e., .Mu(tk) = wi . 
• Worker . wi prefers the task set S to his current assignment in . M, i.e., 

.

∑

th∈S

rh,i >
∑

tk∈Mu(wi)

rk,i . (11) 

Thus, given an unhappy triad .〈wi, pi,j , S〉, we see from the first two conditions 
that it is possible to assign the tasks in the set S to worker . wi through path . pi,j

without violating any feasibility constraints and see from the last two conditions
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that this would make at least one task in S and worker . wi strictly better off without 
making any task in S worse off. 

A matching is said to be 3D-stable if it does not contain any unhappy triads. 
In [4], we provide two different algorithms for different MCS systems. In the first 
algorithm, we provide a solution that always finds the stable matching in uniform 
MCS systems. In the second algorithm, we consider the general MCS instances 
where stable matchings may not exist and propose an approximation algorithm that 
finds near-optimal matchings in terms of stability. 

5 Conclusion and Open Problems 

In this chapter, we studied the worker–task assignment problem in MCS systems 
while considering their preferences or aiming to obtain a stable matching solution. 
Due to the various kinds of MCS scenarios possible and many parameters (e.g., 
budget of task requesters, capacity of workers) that can be considered in their 
design, obtaining a stable matching is very challenging, and existing solutions 
cannot be applied directly. Thus, we provided an overview of the recent studies 
that considered stability in their design while assigning the tasks in the system 
to the eligible workers. Considering the three main categories of MCS systems, 
namely participatory, opportunistic, and hybrid, we have provided the core blocking 
or unhappy pair definitions considered to define the stability in each scenario and 
discussed in what conditions the proposed algorithms can find exact stable or 
approximate stable solutions. 

Besides the studies considered in this chapter, as the stability has only been 
studied in a few recent studies in MCS literature, there are many potential interesting 
problems that stability can be studied during the task assignment process. For exam-
ple, in MCS systems that are defined within a mobile social network (MSN) using 
the local communication technologies (e.g., device to device (D2D), Bluetooth, and 
Wi-Fi) between the users, the decision of online task assignments while considering 
the stability of the decisions made is a challenging and not studied problem. Note 
that in such MCS systems, not only the task assignments happen in a distributed 
fashion and when the workers and task requesters meet each other, but also the 
delivery of tasks completed happens opportunistically and when the same parties 
meet each other again. Thus, two problems should be considered together. While 
the short-distance communication helps reduce the overhead on cellular networks 
and allows for local user recruitment and sensed data collection even if the cellular 
network coverage is poor [19, 71], the uncertainty increases in the system, making 
the stability management much harder (which can get more challenging with 
correlation among the mobility patterns of users [72]). Having budget constraints of 
task requesters and capacity constraints of workers make the problem even further 
challenging. Some recent studies have looked at the task assignment and worker 
recruitment problem [73–76]) in such MSN-based opportunistic crowdsensing 
scenarios. While these studies leverage the opportunistic encounters of nodes for
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task assignment and communication between nodes, they do not consider stability 
in the assignment. Thus, this problem is still an open problem. 

Another key aspect that has been overlooked so far is the benefit of cooperation 
between workers. In MCS systems with non-trivial tasks, it may be the case that two 
workers who cannot carry out a certain task individually can do so if they are both 
assigned to the task and work in a cooperative manner. Therefore, their total utility 
for the task would be larger than the sum of their individual utilities. Additional 
costs, however, may need to be incurred to make them work cooperatively, which 
need to be considered in the assignment process, along with the potential benefits 
to be reaped. This is similar to the assignment problem with non-additive utility 
functions studied in [63], but a major difference is that the total (coverage-based) 
utility of two (or more) workers for a task in the model considered there cannot be 
larger than the sum of their individual utilities. 

In this chapter, we assumed a system model with rational and reliable partic-
ipants. However, there may be, for example, workers who are trying to spread 
misinformation by submitting fabricated data. When the possibility of having 
such malicious users are taken into consideration, user preferences may become 
uncertain. We have also assumed that the sets of workers and tasks were known to 
the matching platform before the sensing campaign actually starts. Yet for many 
real-world applications, a more realistic model would allow users to join and leave 
the system and allow task requesters to publish new tasks and withdraw some 
of their existing tasks in real time during the campaign. Lastly, it is possible 
to improve the long-term efficiency of the proposed algorithms by forming the 
task assignments for an assignment period by modifying the assignments in the 
previous task assignment period(s) instead of creating a new task assignment from 
scratch in each assignment period. This has the potential to largely reduce the 
total running time of the proposed algorithms, especially in MCS applications, 
where user preferences do not change significantly between consecutive assignment 
periods. Thus, this is another interesting problem that can be explored with the 
stability in mind. 
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